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OPTIMIZATION AND PREDICTION OF SURFACE
ROUGHNESS IN CNC TURNING OF ALSI13 USING FEED
RATE VARIATION STRATEGY

Hanane MERZOUK', Mohamed RAHOU 2 Fethi, SEBAA 3, Rafik MEDJAHED*

This paper proposes an innovative approach to optimize cutting parameters
in NC machines to achieve high-quality surface finishes. The methodology centers
on developing a mathematical model for feed rate optimization, applicable to both
linear and nonlinear geometries. The paper is divided into two key sections. The
first section presents an experimental study aimed at examining the relationship
between surface finish and feed rate, resulting in a robust database. A total of 55
tests were performed on AlSil3 material, with feed rates varying while cutting depth
and speed remained constant. The second section focuses on the modeling and
optimization of cutting parameters, leveraging variance analysis and response
surface methodology to refine performance.

Keywords: CNC; Average surface roughness; cutting parameters; RSM;
ANOVA.

1. Introduction

Mechanical machining plays an important economic role in the industry of
a country, in the development of strategic national sectors, as well as in the
creation of large-scale employment [1]. It is considered one of the most common
fundamental manufacturing processes for obtaining a finished product with the
required geometry by removing unwanted segments, known (chips), with
precision, surface finish, and maximum tool life [2-4]. It is performed using
specific cutting tools and cutting parameters [5]. Its main objective is to
manufacture products with reduced energy consumption and higher material
removal rates in order to improve productivity and quality, a priority and a
challenge in sustainable manufacturing for industries and researchers [3,6].
However, to achieve this, it is imperative to develop an explicit relational model
between machining parameters and energy cost [7]. The energy and other
resources used during machining are indicated by an index called surface
roughness. It characterizes the surface condition of a mechanical part and is used
to refine contact surfaces, improve fatigue life, corrosion resistance, aesthetics, etc
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[8]. In other words, optimizing the machine’s configuration by choosing the best
cutting parameters, as well as the right approach to cooling and lubrication, will
save energy [9,10]. Recently, the roughness indicator has attracted much attention
among researchers, as the required cutting and machine tool parameters are often
based on previous experience, software packages or the supplier’s own database.
However, this does not guarantee that the parameter values selected will provide
the optimum surface finish, and may even lead to high production costs [11]. To
this end, it is therefore important to study this indicator closely by understanding
and identifying the factor(s) influencing this magnitude, and to achieve this
objective researchers have proposed various machining strategies with variable
machining parameters, including tool path optimization [12], as some conclusions
established by Gustavo M. et al [13],or Chunhua Feng et al [14] simultaneous
optimization of the tool path and cutting parameters reduces the energy
consumption of machining. Additional strategies involve adjusting spindle speed
[15] and feed rate [16,17]. Surface roughness is determined by calculating Rz and
Ra. Rz can provide information about pores, holes or surface deformations that
affect strength, while Ra represents the average surface roughness [18]. Ra is a
quantity which depends on several factors, including the type of material and
cutting tool, cutting parameters, including feed rate, cutting speed, depth of cut,
lubrication, and environmental factors such as temperature and humidity. Bhise et
al [19] state that cutting speed and feed rate are important parameters in the study
of surface roughness. However, roughness is sensitive to variations in feed rate.
The same applies to Fnides et Al [20] and Barali'c et al [21]. And in the work of
Khare et al [22], cutting speed and depth of cut were identified as the most
significant factors influencing surface roughness parameters. To determine the
factor that significantly impacts the output variable, various static techniques are
used. Analysis of variance, or ANOVA, is the most widely used [27]. This
technique effectively quantifies and determines the effect of factors. Using this
technique, Yasar et Al [23], Khettabi et al [24], Qehaja et al [25], and Kiswanto et
al [26] concluded that feed rate (f) contributes significantly to surface roughness.
In most cases, universal formulas linking certain independent variables to an
output variable cannot be found, or do not exist, as in the case of average surface
roughness (Ra), where this relationship is obtained empirically [28]. In general,
methods for modeling the surface finish of workpieces produced by the turning
process are classified into two categories: theoretical modeling and empirical
parametric modeling. And so far, common empirical methods employed include
Response Surface Methodology (RSM), Artificial Neural Networks (ANN),
Support Vector Machine (SVM), and others. [29]. However, in the present work,
only RSM will be used. This approach allows for the relationship of a response
and several input variables or factors influencing it, through the use of an
appropriate experimental design and analysis [30,31]. And by combining it with
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ANOVA, this will make it possible to leverage the advantages of each method to
obtain optimal results for the parameters of the optimization process and identify
the optimum conditions [32,33]. RSM is a crucial and powerful tool for Design of
Experiments (DOE), intrinsic regression modeling, and optimization techniques,
making it valuable across various engineering disciplines [34-37].

2. Experimental study

This experimental study aims to develop a surface roughness prediction
model based on optimal cutting parameters for machining AISi13.

2.1. Materials and methods

2.1.1. Workpiece

Currently, aluminum alloys, particularly those with silicon is the main
limiting factor, are experiencing significant growth. (Al-Si) alloys are known for
their excellent fluidity, castability and high corrosion resistance, representing a
crucial class of materials in the aerospace and transportation sectors [38,39].

The tested workpiece is made of an aluminum-silicon alloy (AlSil3), also
known as Alpax. Widely used in aerospace and automotive applications, this alloy
is valued for its light weight and excellent mechanical and chemical properties, as
specified in Tables (1) and (2) of EN 1706 [40].

Table 1
Physical and Mechanical Characteristics of Al-Sil3 [41]
Tensile T Coefficient of Thermal Density . .
Elastic limit . . Fusion point
strength Re (MPa) Thermal expansion conductivity p Tm (°C)
Rm (MPa) a (um/m.°C) A (WmK) (g/em?)
230 150 20-21 120-150 2.68 577
Table 2
Chemical Composition of Al-Sil3 [41]
. Mn . Zn Sn Ti others
Si Fe Cu o Mg Ni o N N N
e | ) | e | P e | | 00000000
12-13.5 | <0.6 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.05 | <0.2 <0.05

As for the workpiece, it’s a solid round aluminum billet, measuring
50mm*30mm, as shown in Figure 1.

Fig. 1. Overview of the studied geometry

=
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2.1.2. Cutting tool & Machine

The cutting tool is equipped with a tungsten carbide insert of triangular
geometry (Fig 2), corresponding to the standardized reference TPUN 16 03 08
HIO0F. The machine tool used during the machining operation is the BOXFORRD
160 TCLi numerically controlled machine (CNC) ( Figure3).

IC=9.525mm: Inscribed circle diameter 60°
LE=15.6978mm: Effective cutting-edge length &
RE= 0.7938mm: Nose radius

>

S -

S$=3.175mm: Insert thickness

Fig. 2. Geometric characteristics of the plate TPUN 16 03 08 H10F [53]

Fig. 3. Machine used

2.2. Test plan

Several parameters are employed to evaluated surface roughness,
including cutting parameters. In the present work, we have chosen the average
surface roughness (Ra) as an indicator to characterize the surface finish during
turning, wich is the most commonly used parameter in industry. To determine
which of these machining parameters such as feed rate (f), cutting speed (Vc) and
cutting depth (ap) has the most significant influence on surface finish during
machining, a series of 55 experiments was carried out (Figure2). 11 Experimental
levels are defined for each group of parts, which were produced with identical and
constant parameters (cutting speed, spindle speed and depth of cut) as shown in
Table (3). Keeping these parameters constant, the feed rate was varied and the
average surface roughness (Ra) measured each time.



Optimization and prediction of surface roughness in CNC turning of ALSI13 [...] variation strategy 179

Table 3
Level setting
ap Ve Level ap Ve
Level | N(rpm) (m;n) (m/min) N(rpm) (m;n) (m/min)
1 1921.80 175 6 2229.29 2 175
2 1976.71 180 7 2292.99 180
3 2196.35 | 200 8 2547.77 200
4 2470.89 225 9 2786.62 3 175
5 2745.44 250 10 | 2866.24 180
11 3182.71 200

As Ra is a measured quantity, there is no universal formula for expressing
it as a function of machining parameters. This is because these are specific to each
case, such as the material used, the cutting tool used and so on. The best way to do
this is to carry out experiments, measure Ra at different feed rates and fit a
mathematical model to the results obtained. And to find the existing link between
Ra and cutting parameters modelled by equation (1), the RSM methodology was
applied as an approach. First of all, the problem is formulated by identifying the
dependent variable (Ra) and the independent factors influencing it. And to
establish this link, we carry out a set of experiments, by varying the input
variables on each test, and measuring the output variable. An experimental design
approach is adopted to minimize the number of tests while maximizing
information. The effects of each factor are analyzed using ANOVA to determine
their impact on Ra. Then, using regression analysis, we establish a mathematical
model associated with the problem linking inputs and outputs, and optimize the
latter by finding the optimum conditions. Finally, we test the validity of the model
obtained by comparing experimental and predicted results.

Ra=o(Vefap) (1)

The mathematical model established by RSM is obtained by the method of
least squares. And the evaluation of the linear relationships between the dependent
variable (Ra) and the three independent variables (Vc, f and ap) is given by the
equation of the multiple linear regression line which takes the following form:

k K

Y = fo + Zi=1 Bixi + Zii BiiXixj + ei )

The coefficients (Bi) represent the linear effects of machining parameters

on Ra, while (Bij) indicate their interaction effects. O is the intercept and ei the
residual error. The coefficient of determination (R?) assesses the model’s fit
[42,43], ranging from O to 1, with values close to 1 indicating strong agreement
between the model and experimental data. R* is calculated from the sum of
squared residuals (SSE) and the sum of squared totals (SST), and given by the

following general formula.
SSE

2_1_
R=1-—= (3)
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3. Result and discussion

The experimental results were classified in table (4). the levels were
grouped in turn according to the common cutting speed for clarity.

Table 4
Plan of experiment for roughness Ra
Vc (m/min) | level | ap (mm)

01 1 Vi [mm/rev] 0.05]| 0.2 0.28 0.32 0.38

Ra[pm] 0.64 | 0.95 1.11 1.21 1.28

06 2 Vi [mm/rev] 0.05 | 0.08 0.15 0.18 0.20

175 Ra[um] 0.68 | 0.75 | 0.84 | 0.96 | 1.05
09 2.5 Vi [mm/rev] 0.05 | 0.08 0.11 0.19 0.25

Ra[um] 0.72 | 0.79 0.87 0.98 1.2

02 1 Vi [mm/rev] 0.05 | 0.13 0.17 0.21 0.23

Ra[um] 0.67 | 0.73 0.77 0.89 0.97

180 07 2 Vi [mm/rev] 0.05 | 0.10 0.12 0.16 0.20
Ra[um] 0.68 | 0.76 0.88 0.99 1.10

10 2.5 Vi [mm/rev] 0.05 | 0.10 0.15 0.25 0.30

Ra[um] 0.73 | 0.89 0.94 1.25 1.30

03 1 Vi [mm/rev] 0.05 | 0.08 0.10 0.12 0.14

Ra[um] 0.37 | 0.65 0.70 0.75 0.83

200 08 2 Vi [mm/rev] 0.08 | 0.10 0.13 0.18 0.25
Ra[um] 0.67 | 0.73 0.79 0.85 0.97

11 2.5 VI [mm/rev] 0.08 | 0.10 0.16 0.22 0.28

Ra[um] 0.73 | 0.88 0.96 1.22 1.28

25 04 1 Vi [mm/rev] 0.05 | 0.08 0.16 0.18 0.20
Ra[um] 0.32 ] 0.60 0.84 0.89 0.92

250 05 1 Vi [mm/rev] 0.05 | 0.08 0.18 0.26 0.30

Ra[um] 0.28 | 0.50 0.83 1.13 1.2

3.1. Effect of cutting parameters on surface rough

3.1.1. Effect of feed rate

The behavior of the Ra curve at different feed rates is shown in Figure 4.
By analyzing the effect of (f) on (Ra), we remark that for feed rate of 0.05
mm/rev, (Ra) increases with increasing (f) for all cutting speeds (Vc = 175, 180
and 200 m/min). At this stage, (Ra) is between 0.63 and 0.73. A high value of Ra
means a rougher surface due to high feed speeds, as higher material removal per
revolution causes greater cutting forces and vibrations, producing deeper tool
marks [44]. Reducing the feed rate improves surface finish, though excessively
low values may raise temperatures and increase tool wear. We also note that
surface finish improves (minimum) as (Vc¢) increases (Ve > 200) and (f) is
reduced. What Cakir et al [45] have also confirmed. Because as (f) increases, the
cillions become deeper and wider.
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Ve = 175 [m/min] Ve = 180 [m/min]

Ra [um)

0,05 0,1 0,15 0,2 0,25 03 0,35 0,4 0,05 0,1 0,15 0,2 0,25 0,3 0,35

J Imm/rev] S immjrev)

1,27 Ve = 200 [m/min] 1,18 Ve =215,

o

50 [m/min]

Ra [um]

0,05 0,1 0,15 0,2 0,25 0,3 0,05 0,1 0,15 0,2 0,25 ),3 0,35
S [mmjrev]

Fig. 4. Surface roughness vs feed rate

Jmm/rev)

3.1.1. Effect of cutting speed

The evolution of Ra as a function of cutting speed Vc is shown in Figure
5. For f=0.2mm/rev and a cutting speed ranging from 180m/min to 250m/min, Vc
has a low influence on Ra. Nevertheless, it remains acceptable for general
manufacturing applications according to the norm (0.8>Ra>1.6). Furthermore, for
low feed rates, Ra decreases with increasing Vc. This is because during high-
speed machining, the temperature of the cutting zone rises, leading to softening of
the material [46,47]. Moreover, it minimizes the formation of burrs and reduce
vibrations, leading to a more stable cutting process. [48-50].

Rafum]
[ ]

0,45 [——f=0,05
-— f=0,08

=t = 0,20

170 190 210 230 250 270

Ve [m/min]

Fig. 5. Surface roughness vs cutting speed at ap = Imm

3.1.3. Effect of cutting depth

Figure 6 shows that a greater depth of cut leads to a slightly increase in Ra,
due to higher forces and vibrations. However, no significant change is observed
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(ARa= 0.08um). compared to the impact of the cutting parameters studied
previously, ap has little influence on (Ra), which remains virtually stable.

——Ve=175;1=0,05 "

0,72 —a—\c = 180; f=0,05
—m—\c = 200; f= 0,08

Ap [mm]

Fig. 6. Surface roughness vs depth of cut

3.2. Analysis of Variance

In order to significantly analyze and determine the influence of the input
parameters that most affect roughness, an ANOVA is carried out using MINITAB
software. The results are listed in Table (5), and where we find indicated the
degrees of freedom (DF), the sum of squared deviations (SS), the mean squares
(MS), the statistical property (F-Value), the probability (P-Value) and the
percentage contribution of each factor is calculated by the formula (5) which
follows:

Percentage =— ———x 100 (5)
Table 5
Analysis of variance (ANOVA) for Ra
Source DF SS MS F-Value | P-Value Percentage
Model 9 | 2.79640 | 0.310711 80.55 0.000 94.1558332
Linear 3 | 0.98967 | 0.329890 85.53 0.000 33.3225588
f 1 | 0.82891 | 0.828907 | 214.90 0.000 27.9097095
Ve 1 | 0.00025 | 0.000246 0.06 0.802 0.00841759
Ap 1 | 0.02836 | 0.028362 7.35 0.009 0.9548918
Square 3 | 0.01469 | 0.004897 1.27 0.296 0.49461779
£*f 1 | 0.00479 | 0.004793 1.24 0.271 0.16128109
Vc*Ve 1 | 0.00000 | 0.000003 0.00 0.977 0.0000000
Ap*Ap 1 | 0.01176 | 0.011764 3.05 0.088 0.3959636
2-Way interactions | 3 | 0.09223 | 0.030743 7.97 0.000 3.10541857
*Vc 1 | 0.08371 | 0.083711 21.70 0.000 2.81854699
V{*Ap 1 | 0.00012 | 0.000125 0.03 0.858 0.00404044
Vc*Ap 1 | 0.00001 | 0.000012 0.00 0.956 0.0003367
Error 45 | 0.17358 | 0.003857
Total 54 | 2.96997

A low P value (< 0.05) is considered statistically significant [51]. Indeed,
the significance level a, chosen to determine if a result is statistically meaningful
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or not, is generally set at 0.05 (5%). In other words, the confidence level is 95%.
Table (5) show that the significant factors with a low P-value are (f), (ap) and
interaction (f*Vc). According to the ANOVA results, (f) was the factor with the
most effect on Ra, with the highest percentage contribution of 27.91%. This was
followed by the interaction (f*Vc) with 3.1%, and finally ap with 0.95%.

3.2.1. Pareto Chart

The Pareto bar chart shown in figure 7 provides us with more information
on the factors that have the most effect on Ra, by classifying the cutting
parameters in order of importance by the bar length, (f) has a considerable
influence on (Ra). It also allows us to draw a reference line which depends on the
significance threshold (2.01); values exceeding the red line represent factors
which have a significant contribution to the model [52]. factors intersecting this
line are respectively f, f*Vc and ap.

Pareto Chart of the Standardized Effects
(response = Ra; a = 0,05)

nmbv
s
|3

0 2 4 6 8 10 2 14 16
Standardized Effect

Fig. 7. Surface roughness vs depth of cut

3.2.2. Surface Roughness regression analysis and comparison between
predicted and measured values

In machining, (Ra) is the arithmetic mean of the irregularities. The
relationship between it and the independent machining variables (f, Vc and ap) is
usually given empirically. RSM enabled us to determine this relationship.
Equation (6) expresses the mathematical model developed by Minitab software in
the form of a polynomial regression equation, obtained by using multiple
regression and fitting the experimental data collected during testing. The terms (f),
(Vc), and (ap) represent the individual linear effects of each parameter on Ra,
while (f.Vc), (flap) and (Vc.ap) represent their interactions, showing how the
combination of two parameters affects (Ra). The constant 1.37 adjusts the model
to fit the experimental data.

Ra=1.37—1.02f—0.0045V.— 0.1714,— 1.36/ — 0.000001 V">
+0.07204%,+ 0.02040f - V.+ 0.031f - A,+ 0.00007V, - A, (2)
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The regression model shows a strong fit with R? = 0.9416. This value,
being close to unity, means that 94.16% of the variability of (R,) is explained by
the model, and only 5.84% remains unexplained. Consequently, the fit of the
established model to the data is very satisfactory and has a strong predictive
capability. In order to study the validity, precision and reliability of the model, it
is necessary to establish a comparison between the experimental roughness values
measured and those predicted by the mathematical model obtained. The results
given in Table 6 enable us to compare these values by calculating the error (AR,),
where we note that the deviation is very small (between 107! and 1072). The same
comparison can be made by viewing the histogram illustrated in figure 8, The
difference in heights observed directly on the histogram shows once again that the
deviation is very small. Consequently, the model is considered valid, and can be
used to predict R, as a function of these same independent variables under
untested conditions. The comparison between experimental and predicted Ra
values shows that the prediction errors are generally low, mostly below 10%, with
a minimum error of 0.027% and a maximum of 14,63%. This indicates a good
agreement between the experimental results and the RSM model. The slight
deviations observed may be attributed to experimental uncertainties, tool wear, or
unmodeled process dynamics. Overall, the results validate the predictive accuracy
of the proposed model for surface roughness optimization.

Table 6
Synthesis of comparison between measured and predicted Ra values.
. Ra Th Ra Exp ARa Error
f[mm/rev] | Vc[m/min] | Ap [mm] [um] [um] [um] (%)
1 0.590775 0.64 0.049225 | 7,6914
175 2 0.649575 0.68 0.030425 | 4,4743
0.05 2.5 0.732975 0.72 0.012975 | 1,8021
’ 1 0.57195 0.67 0.09805 | 14,6343
180 2 0.6311 0.68 0.0489 7,1912
2.5 0.714675 0.73 0.015325 | 2,0993
175 2 0.722631 0.75 0.027369 | 3,6492
2.5 0.806496 0.79 0.016496 | 2,0881
0.08 1 0.583576 0.65 0.066424 | 10,2191
200 2 0.645056 0.67 0.024944 | 3,7230
2.5 0.729796 0.73 0.000204 | 0,0279
180 2 0.7566 0.76 0.0034 0,4474
2.5 0.84095 0.89 0.04905 5,5112
0.1 1 0.6405 0.7 0.0595 8,5000
200 2 0.7026 0.73 0.0274 3,7534
2.5 0.78765 0.88 0.09235 | 10,4943
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Ap [mm]

Fig. 8. Comparison of measured and predicted Ra values

3.2.3. Response surface plots

In order to study the impact of different variables on the Ra, to facilitate
analysis of its variation and to bring greater clarity to the data, 3D response
surface and contour plots (Figures 9 and 10) were generated using Minitab
3.2.4. 3D response surface

The relationship between each pair of variables on Ra is shown in Figure
(11). (A) shows how (Ra) changes as a function of (f) and (Vc), (B) shows the
change as a function of (f) and (ap), and (C) as a function of (Vc) and (ap).
Figures (A) and (B) show that (Ra) increases with increasing feed rate. in (A), the
inclination is pronounced, indicating that (Ra) is strongly affected by (f and Vc).
In (B), the surface appears flatter, indicating a weak interaction between f and ap,
while (C) shows only a slight curvature, meaning Vc and ap have limited impact.

Overall, Ra reaches its lowest values when f and ap are small and Ve is high.

Ra [um]

Hold values
Ap [mm] 175

02 o0  [mm/rev]

[ Hold Value
(Yetifmia] ;212,5 B

s ] 24
260 20
050
e s LA 16 Ap [mm]
200 Ve [m/min] T =
180 ® on 08

032 g

Hold Value
f [mm/rev] 0.215 C

.08 1
Raum] .,

24
20
% Ap [mm]

WO

Ve [m/min]

Fig. 9. 3D interaction of response surface plots of surface roughness Ra



186 Hanane Merzouk, Mohamed Rahou, Fethi, Sebaa, Rafik Medjahed

3.2.5. Contour plot

The contour lines show the variations of Ra, as the areas are darker, the Ra
values are higher. The contour plots shown in the figure 10 reveal a peak in Ra (>
1.50 pm) at a Vc of around 250m/min, f =0.38mm/rev and ap = 2.5mm. Ra is
minimal (< 0.50pum) at Vc > 210m/min, £ < 0.05mm/rev and at ap < 1.75mm. The
contour diagram of the (Vc*f) interaction shows both close and distant contour
lines, meaning that factors interact in a complex way, creating several of the
roughness zones. The (ap*f) plot shows evenly spaced contours, suggesting minor
and regular variations dominated by one factor. Finally, the interaction between
(ap) and (Vc) shows two distinct zones separated by a contour line, suggesting
that the two factors interact to produce binary roughness results (high or low), but
the overall Ra variation remains small.

Ve f

Ra

< 050 hold Values

050 - 075
moms- 100 G 228
W 100 - 125
W 125 - 150
[ ] > 150

Ve 2125
Ap 175

10 1,0 -rp—
180 192 204 216 228 240 0,08 012 0,16 0,20 0,24 0,28 032 036

Fig. 10. Contour Plot of Ra

3.2.6. Optimization of cutting conditions for surface roughness Ra

The optimization diagram (Figure 11) indicates that the optimal surface
roughness value Ra = 0.3318 um, predicted by RSM, was obtained for f = 0.05
mm/rev, V¢ = 250 m/min, and ap = 1 mm. Although no experiments were
performed at exactly this cutting speed, the predictive model was validated with
an average prediction error of 7.08% and a coefficient of determination R? =
0.9416, demonstrating its reliability. Moreover, the experimental trend between
175 and 200 m/min confirmed that Ra decreases as V¢ increases. At 200 m/min,
Ra = 0.37um, which corresponds to the predicted decrease in Ra (0.3318 pm) at
250 m/min. Therefore, the optimized result is considered valid within the model’s
accuracy.
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Fig. 11. Optimal parameters obtained with Minitab’s response optimization module.
3. Conclusion

Average surface roughness (Ra) is a quantity influenced by several factors,
and in the absence of a universal formula to express it, RSM combined with
ANOVA enable us to determine which parameter significantly influences the
output, and to develop a mathematical model describing the relationship between
independent factors and response empirically as in the problem posed. In this
experiment, three cutting parameters are considered as independent variables:
cutting depth (ap), cutting speed (Vc) and feed rate (f). And it is the average
surface roughness (Ra) that is chosen as the output variable to evaluate the surface
quality of AlSil3 aluminum alloy in dry turning. The study carried out led to the
following conclusions:

* By analyzing the influence of each cutting parameter on roughness (Ra) using
ANOVA, we deduced that among the three selected input parameters (f, Vc and
ap), feed rate had the greatest influence with a percentage contribution of 27.91%.
This was followed by interaction (f.Vc) with 3.1%, and finally cutting depth with
0.95%. The same conclusions were drawn from the response surface plots.

* From the graphical, numerical and response surface plotting approaches, it was
concluded that the best surface roughness is obtained for low feed rates and high
cutting speed values.

* The RSM was used to develop a mathematical model describing the influence of
cutting parameters (f, Vc and ap) on the average surface roughness (Ra), which
showed satisfactory agreement with measured values.

* As the regression equation obtained using RSM was essentially designed to
predict response (Ra), it can be utilized to predict Ra under untested conditions.

* RSM was also utilized to optimize the cutting parameters, and the optimum
values of these parameters to obtain a minimum surface roughness (Ra) of
0.3318um are: Ve =250 m/min, f=0.05 mm/rev and ap = 1 mm.
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* The results obtained are in line with previously published results in the same
field of research, confirming the effectiveness of regression analysis in modelling
average surface roughness during dry turning of AlSi13.
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