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NON-UNIFORM HAAR WAVELETS METHOD FOR SOLVING LINEAR 
STOCHASTIC ITO - VOLTERRA INTEGRAL EQUATIONS
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In this paper, a non-uniform Haar wavelets method is developed to nu-

merically solve stochastic Volterra integral equations. By using collocation points, the

non-uniform Haar wavelet coefficients are obtained. Moreover, numerical examples are
given to show the accuracy and efficiency of the proposed method.
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1. Introduction

Many problems in finance, mechanics, biology, medical, social sciences and other dis-
ciplines can be modeled by stochastic integral equations (SIEs). Given the wide range of
applications of SIEs, solving these type of equations is a great importance. Clearly, obtain-
ing the analytic solution of SIEs is often either complicated or impossible. Therefore, the
development of numerical methods for solving these types of equations is inevitable. Hence,
many authors have proposed several numerical approaches for solving these equations. In
[11], authors applied triangular functions for solving SIEs. Asgari et al. suggested stochas-
tic operational matrix based on Bernstein polynomials for obtaining numerical solution of
nonlinear SIEs [12]. Cheraghi et al. [2], used new basis functions for solving linear stochas-
tic Volterra integral equations. Authors in [1] used stochastic operational matrix based on
Haar wavelets for obtaining numerical solution of nonlinear SIEs. To see another methods
for solving SIEs, one can refer to [3, 5, 6, 8, 10, 13, 14, 15, 16].

The orthogonal basis function such as uniform Haar functions and non-uniform Haar func-
tions are used to estimate the solution of SIEs, that by using these orthogonal functions the
SIEs reduced to a linear or nonlinear system of algebraic equations which can be solved by
using known methods. Some of advantage of applying wavelet functions is their efficiency
and simple applicability. The conventional form of the uniform Haar wavelet approach is
applicable for the range of the argument x ∈ [0, 1], besides it is assumed that this interval
is distributed into subintervals of equal length. If we want to raise the exactness of the
results, we must increase the number of the grid points. In the course of the solution, we
have to invert some matrices, but by increasing the number of calculation points these ma-
trices become nearly singular and therefore the inverse matrices cannot be evaluated with
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necessary accuracy. One possibility to find a way out of these difficulties is to make use of
the non-uniform Haar method for which the length of the subintervals is unequal. This idea
was proposed in [4].
In this paper, non-uniform Haar functions will be used to solve the following linear stochas-
tic Volterra integral equation

Y (x) = Y0(x) + λ1

∫ x

0

f1(s, x)Y (s)ds+ λ2

∫ x

0

f2(s, x)Y (s)dB(s), (1.1)

where Y0(x), f1(s, x) and f2(s, x) for s, x ∈ [0, 1) are given stochastic processes defined
on the same probability space (Ω, F, P ), λ1, λ2 are known parameters, and Y (x) is the
unknown. Additionally, B(x) and

∫ x
0
f2(s, x)Y (s)dB(s) are a Brownian motion process

and the Ito integral, respectively. We first describe non-uniform Haar wavelets and their
properties. Then by using non-uniform Haar wavelet, we offer a numerical method for
approximate solution of SIEs. Error analysis and convergence of the proposed method are
also investigated. Illustrative examples are included to demonstrate the applicability and
validity of the technique.
This article is organized as follows: In Section 2 basic properties of the non-uniform Haar
wavelets are described. In Section 3 function approximation is described. In Section 4 a
new computational method is proposed for solving stochastic Volterra integral equation (1).
Error analysis in Section 5 was given. Also, numerical examples are presented in Section 6.
Finally in Section 7 the conclusion is given.

2. Non-uniform Haar wavelets

The following analysis is based on the paper [4]. Non-uniform Haar wavelets are
characterized by two numbers: the dilation parameter j = 0, 1, ..., J (J is maximal level
of resolution) and the translation parameter k = 0, 1, ..., n − 1, where the integer n = 2j .
The number of wavelet is identified as i = n + k + 1. Also the maximal value is i = 2N ,
where N = 2J . We divide the interval [0, 1] into 2N subinterval of unequal lengths with
the division points 0 = x̃(0) < x̃(1) < ... < x̃(2N) = 1. Consider the following non-uniform
Haar wavelet family {Hi}i∈N

Hi(x) =

 1, ϑ1(i) ≤ x ≤ ϑ2(i),
−pi, ϑ2(i) ≤ x ≤ ϑ3(i),

0, elsewhere,
(2.1)

where

ϑ1(i) = x̃(2kξ), ϑ2(i) = x̃((2k + 1)ξ),

ϑ3(i) = x̃((2k + 2)ξ), ξ = N/n.

With the requirement ∫ 1

0

Hi(x)dx = 0,

we have

pi =
ϑ2(i)− ϑ1(i)

ϑ3(i)− ϑ2(i)
. (2.2)

Clearly, these equations hold when i > 2. For the case i = 1 and i = 2, we have ϑ1(1) = 0,

ϑ2(1) = ϑ3(1) = 1, ϑ1(2) = 0, ϑ2(2) = x̃(2N)
2 , ϑ3(2) = 1. Then, for i = 1 the corresponding

scaling function in interval [0, 1] is :

H1(x) =

{
1, 0 ≤ x ≤ 1,
0, elsewhere.
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The Haar wavelets are piecewise orthogonal∫ 1

0

Hr(x)Hs(x)dx =

{
2−j , r = s,
0, r 6= s.

Similarly, the non-uniform Haar wavelets in [0, 1] are piecewise orthogonal∫ 1

0

Hi(x)Hj(x)dx =

{
δi, i = j,
0, i 6= j,

(2.3)

with

δi = pi(ϑ3(i)− ϑ1(i)). (2.4)

3. Function approximation

Each square integrable function Y (x) an [0, 1] can be expanded in terms of the non-
uniform Haar wavelets as

Y (x) = q1H1(x) +

∞∑
j=0

2j−1∑
k=0

q2j+k+1H2j+k+1(x), x ∈ [0, 1], (3.1)

with coefficients qi given by

q1 =
1

δ1

∫ 1

0

Y (x)H1(x)dx, qi =
1

δi

∫ 1

0

Y (x)Hi(x)dx,

where i = 2j + k + 1, j ≥ 0 and 0 ≤ k < 2j , such that the square error Υ as

Υ =

∫ 1

0

(
Y (x)−

n∑
i=1

qiHi(x)

)2

dx, j ∈ N ∪ {0}, n = 2j ,

is minimized. By using Eq. (2), the non-uniform Haar coefficients qi can be rewritten as

qi =
1

δi

(∫ ϑ2(i)

ϑ1(i)

Y (x)dx− pi
∫ ϑ3(i)

ϑ2(i)

Y (x)dx

)
,

where j, k = 0, 1, 2, ..., and 0 ≤ k < 2j . Usually the series expansion of Eq. (6) contains
infinite terms. If Y (x) is piecewise constant or can be approximated as piecewise constant
on each subinterval, then Y (x) will be terminated at n finite terms. This means

Y (x) ∼= q1H1(x) +

J∑
j=0

2j−1∑
k=0

q2j+k+1H2j+k+1(x)

= qTH(x), x ∈ [0, 1],

where

qT = [q1, q2, q3, ............, q2N ],

H(x) = [H1(x), H2(x), H3(x), ........., H2N (x)]T .

A two-variable function f(s, x) ∈ L2[0, 1) × L2[0, 1) can be approximated with respect to
the non-uniform Haar wavelets as

f(s, x) ≈ HT (s)FH(x),

where H(x) is the non-uniform Haar wavelets vector and F = fi,j is the n× n non-uniform
Haar wavelet coefficients matrix with (i, j)-th element given by

fi,j =
1

δi
2

∫ 1

0

∫ 1

0

f(s, x)Hi(x)Hj(s)dxds, i, j = 1, 2, ..., 2N.
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4. Stochastic non-uniform Haar wavelets

We choose the division points on [0, L] as follows. Let us denote the length of the
u-th subinterval by ∆xu = xu − xu−1, u = 1, 2, ..., 2N . We assume that ∆xu+1 = r∆xu,
where r > 1 is constant. If we sum the lengths of these subintervals, we have

∆x1(1 + r + r2 + ...+ r2N−1) = L,

or

∆x1 = L
r − 1

r2N − 1
.

Since

x̃(u) = ∆x1

(
1 + r + ...+ ru−1

)
= ∆x1

ru − 1

r − 1
, u = 1, 2, ..., 2N, (4.1)

we have obtained the grid points as

x̃(u) = L
ru − 1

r2N − 1
, u = 1, 2, ..., 2N. (4.2)

Let us consider a 8th-order system. By using the grid points defined in Eq. (8), if r = 2 the
first eight bases non-uniform Haar functions are given by

H1(x) =

{
1, 0 ≤ x < 1,

0, elsewhere,
H2(x) =


1, 0 ≤ x < 1

2 ,

−1, 1
2 ≤ x < 1,

0, elsewhere,

H3(x) =


1, 0 ≤ x ≤ 3

255 ,

− 1
4 ,

3
255 ≤ x ≤

15
255 ,

0, elsewhere,

H4(x) =


1, 15

255 ≤ x ≤
63
255 ,

− 1
4 ,

63
255 ≤ x ≤ 1,

0, elsewhere,

H5(x) =


1, 0 ≤ x ≤ 1

255 ,

− 1
2 ,

1
255 ≤ x ≤

3
255 ,

0, elsewhere,

H6(x) =


1, 3

255 ≤ x ≤
7

255 ,

− 1
2 ,

7
255 ≤ x ≤

15
255 ,

0, elsewhere,

H7(x) =


1, 15

255 ≤ x ≤
31
255 ,

− 1
2 ,

31
255 ≤ x ≤

63
255 ,

0, elsewhere,

H8(x) =


1, 63

255 ≤ x ≤
127
255 ,

− 1
2 ,

127
255 ≤ x ≤ 1,

0, elsewhere.

For instance, the non-uniform Haar coefficients are given in the 8× 8 square matrix

H(x) =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 −1
1 1 − 1

4 − 1
4 0 0 0 0

0 0 0 0 1 1 − 1
4 − 1

4
1 − 1

2 0 0 0 0 0 0
0 0 1 − 1

2 0 0 0 0
0 0 0 0 1 − 1

2 0 0
0 0 0 0 0 0 1 − 1

2


.

On the other hand, we know that each function Y (x), square integrable on [0, 1], can be
approximated by

Y (x) '
2N∑
i=1

qiHi(x). (4.3)
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Next we refer to Eq. (1) and consider the collocation points

xl =
x(l − 1) + x(l)

2
, l = 1, 2, 3, ..., 2N.

We obtain

Y (xl) = Y0(xl) + λ1

∫ xl

0

f1(s, xl)Y (s)ds+ λ2

∫ xl

0

f2(s, xl)Y (s)dB(s).

By substituting approximation (9) of Y (x) in the above equation, we deduce

2N∑
i=1

qiHi(xl) = Y0(xl) +
2N∑
i=1

qiλ1

∫ xl

0
f1(s, xl)Hi(s)ds

+
2N∑
i=1

qiλ2

∫ xl

0
f2(s, xl)Hi(s)dB(s),

or
2N∑
i=0

qi[Hi(xl)− λ1Iil − λ2I
S
il] = Y0(xl), l = 0, 1, 2, ..., 2N, (4.4)

where

Iil =

∫ xl

0

f1(s, xl)Hi(s)ds, I
S
il =

∫ xl

0

f2(s, xl)Hi(s)dB(s).

We express the integrals Iil and ISil as:

Iil =


∫ xl

ϑ1(i)
f1(s, xl)ds, ϑ1(i) ≤ xl < ϑ2(i),∫ ϑ2(i)

ϑ1(i)
f1(s, xl)ds− pi

∫ xl

ϑ2(i)
f1(s, xl)ds, ϑ2(i) ≤ xl < ϑ3(i),∫ ϑ2(i)

ϑ1(i)
f1(s, xl)ds− pi

∫ ϑ3(i)

ϑ2(i)
f1(s, xl)ds, ϑ3(i) ≤ xl < 1,

0, xl < ϑ1(i),

and

ISil =


∫ xl

ϑ1(i)
f2(s, xl)dB(s), ϑ1(i) ≤ xl < ϑ2(i),∫ ϑ2(i)

ϑ1(i)
f2(s, xl)dB(s)− pi

∫ xl

ϑ2(i)
f2(s, xl)dB(s), ϑ2(i) ≤ xl < ϑ3(i),∫ ϑ2(i)

ϑ1(i)
f2(s, xl)dB(s)− pi

∫ ϑ3(i)

ϑ2(i)
f2(s, xl)dB(s), ϑ3(i) ≤ xl < 1,

0, xl < ϑ1(i),

By solving Eq. (10), the coefficients qi are calculated. By inserting them in Eq. (9) the
numerical solution Y (x) is obtained.

5. Error analysis

In this section, we investigate the convergence and perform the error analysis of the
proposed method in the previous section for solving stochastic Volterra integral equations.
To this purpose we need the following theorems.

Theorem 5.1. Suppose that g(x) ∈ L2[0, 1) is an arbitrary function with bounded first
derivative, |g′(x)| ≤ D, and consider the error function

em(x) = g(x)−
m−1∑
i=0

giHi(x),

where i = 2j + k + 1, m = 2J+1, J > 0, and

gi =
1

δi

∫ 1

0

Hi(x)g(x) =
1

δi

(∫ ϑ2(i)

ϑ1(i)

g(x)dx− pi
∫ ϑ3(i)

ϑ2(i)

g(x)dx

)
.
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Then, we have

‖em‖2 = O(
1

m
).

Proof. By the definition of em(x), we can write

‖em‖22 =

∫ 1

0

(
g(x)−

m−1∑
i=0

giHi(x)

)2

dx

=

∫ 1

0

( ∞∑
i=m

giHi(x)

)2

dx =

∞∑
i=m

g2
i

∫ 1

0

H2
i (x)dx.

By the mean value theorem for integrals, there are α1 ∈ (ϑ1(i), ϑ2(i)), α2 ∈ (ϑ2(i), ϑ3(i)),
such that

gi =
1

δi
(g(α1)(ϑ2(i)− ϑ1(i))− pig(α2)(ϑ3(i)− ϑ2(i)))

=
1

δi

(
g(α1)(ϑ2(i)− ϑ1(i))− ϑ2(i)− ϑ1(i)

ϑ3(i)− ϑ2(i)
g(α2)(ϑ3(i)− ϑ2(i))

)
=

1

δi
((ϑ2(i)− ϑ1(i))(g(α1)− g(α2)) =

1

δi
((ϑ2(i)− ϑ1(i))(α1 − α2)g′(α)) , α ∈ (α1, α2).

From Eq. (4) and definitions of α1, α2, it follows that

‖em‖22 =

∞∑
i=m

1

δi
2

(
(ϑ2(i)− ϑ1(i))

2
(α1 − α2)

2
(g′(α))

2
)
δi

≤
∞∑
i=m

1

δi

(
(ϑ2(i)− ϑ1(i))

2
(ϑ3(i)− ϑ1(i))

2
D2
)
. (5.1)

Now, by definitions of ϑ1(i), ϑ2(i), ϑ3(i), and Eq. (7) we have

ϑ1(i) =
2kN

n
∆x1,

ϑ2(i) =
(2k + 1)N

n
∆x1,

and

ϑ3(i) =
(2k + 2)N

n
∆x1,

therefore, we get

ϑ2(i)− ϑ1(i) =
N∆x1

n
, (5.2)

ϑ3(i)− ϑ1(i) =
2N∆x1

n
, (5.3)

and ϑ3(i)− ϑ2(i) = N∆x1

n . Since ϑ2(i)− ϑ1(i) ≤ ϑ3(i)− ϑ1(i), we have

‖em‖22 ≤ D
2
∞∑
i=m

1

δi

(
(ϑ3(i)− ϑ1(i))

4
)
. (5.4)

Now, by using Eqs. (3) and (5), we get

1

δi
=

ϑ3(i)− ϑ2(i)

(ϑ2(i)− ϑ1(i))(ϑ3(i)− ϑ1(i))
. (5.5)

With ϑ3(i)− ϑ2(i) ≤ ϑ3(i)− ϑ1(i) and Eq. (12) in Eq. (15), we can write

1

δi
≤ 1

ϑ2(i)− ϑ1(i)
=

1
N(∆x1)

n

=
1

N(∆x1)
2j

. (5.6)
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Using Eqs. (13) and (14), Eq. (16) implies

‖em‖22 ≤ D
2
∞∑

j=J+1

2j−1∑
k=0

2N3(∆x1)
3

(2j)
3

= 2D2N3(∆x1)
3
∞∑

j=J+1

1

(2j)
3 × 2j = 2D2N3(∆x1)

3
∞∑

j=J+1

1

(2j)
2 ,

that is,

‖em‖22 ≤
8D2N3(∆x1)

3

3

(
1

2J+1

)2

= A

(
1

2J+1

)2

, (5.7)

where A = 8D2N3(∆x1)3

3 . Since m = 2J+1, we have ‖em‖2 = O( 1
m ). �

Theorem 5.2. Suppose that g(s, x) ∈ L2[0, 1)2 is a function with bounded partial derivative,∣∣∣ ∂2g
∂s∂x

∣∣∣ < V , and let em be defined by em(s, x) = g(s, x) −
m−1∑
i=0

m−1∑
l=0

gi,lHi(s)Hl(x), where

i = 2j1 +k+1, l = 2j2 +k+1, m = 2J+1, J > 0, and gi,l = 1
δi2

∫ 1

0

∫ 1

0
Hi(s)Hl(x)g(s, x)dsdx.

Then, we have ‖em‖2 = O( 1
m2 ).

Proof. We can write

‖em‖22 =

∫ 1

0

∫ 1

0

(
g(s, x)−

m−1∑
i=0

m−1∑
l=0

gi,lHi(s)Hl(x)

)2

dsdx

=

∫ 1

0

∫ 1

0

( ∞∑
i=m

∞∑
l=m

gi,lHi(s)Hl(x)

)2

dsdx =

∞∑
i=m

∞∑
l=m

∫ 1

0

∫ 1

0

(
g2
i,lH

2
i (s)H2

l (x)
)
dsdx.

From the non-uniform wavelet definition, the mean value theorem and Theorem 5.1, there
exist α, α1, α2, and β, β1, β2 such that

gi,l =
1

δi
2

∫ 1

0

Hi(s)

(∫ 1

0

Hl(x)g(s, x)dx

)
ds

=
1

δi
2

∫ 1

0

Hi(s)

(
(ϑ2(l)− ϑ1(l)) (β1 − β2)

∂g(s, β)

∂x

)
ds

=
1

δi
2 (ϑ2(l)− ϑ1(l)) (β1 − β2)

∫ 1

0

(
Hi(s)

∂g(s, β)

∂x

)
ds

=
1

δi
2 (ϑ2(l)− ϑ1(l)) (β1 − β2) (ϑ2(i)− ϑ1(i)) (α1 − α2)

∂2g(α, β)

∂s∂x
.

So, we obtain

‖em‖22 =

∞∑
i=m

∞∑
l=m

1

δi
4 (ϑ2(l)− ϑ1(l))

2
(β1 − β2)

2
(ϑ2(i)− ϑ1(i))

2
(α1 − α2)

2

∣∣∣∣∂2g(α, β)

∂s∂x

∣∣∣∣2δi2
≤ V 2

∞∑
i=m

∞∑
l=m

1

δi
2 (ϑ2(i)− ϑ1(i))

2
(α1 − α2)

2
(ϑ2(l)− ϑ1(l))

2
(β1 − β2)

2
,

and with Eq. (17), we get ‖em‖22 ≤ V 2A2 × 1
m4 = C

m4 , C = V 2A2. In the other words, we

have ‖em‖2 = O( 1
m2 ). �
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Lemma 5.1. For any x > 0, we have P (M(t) ≥ x) = 2√
2π

∫∞
x√
t

e−
z2

2 dz = 2
(

1− ϕ( x√
t
)
)
,

where M(t) = sup
0≤s≤t

B(s), and ϕ is the cumulative standard normal distribution function.

So, for x ≥ 4 we have sup
0≤t≤1

B(t) <∞, with probability one.

Proof. See [7] �

Theorem 5.3. Suppose that Y (x) is the exact solution of Eq. (1), and Ŷ (x) is the non-
uniform Haar wavelet series approximate solution (9) of Eq. (1). Moreover, assume that
1) ‖Y ‖2 ≤ Φ,
2) ‖fi‖2 ≤ θi, i = 1, 2,

3)

(
λ1

(
θ1 +

√
C1

m2

)
+ λ2 sup

x∈[0,1)

|B(x)|
(
θ2 +

√
C2

m2

))
< 1,

where the functions f1, f2 and the parameters λ1, λ2 are considered in Eq. (1), and C1, C2

are based on definition of C at Theorem 5.2. Then,

∥∥∥Y − Ŷ ∥∥∥
2
≤

√
A
m + λ1

√
C1

m2 Φ + λ2 sup
x∈[0,1)

|B(x)|
√
C2

m2 Φ

1−

(
λ1

(
θ1 +

√
C1

m2

)
+ λ2 sup

x∈[0,1)

|B(x)|
(
θ2 +

√
C2

m2

)) .
Proof. From Eq. (1) we have

Y (x)− Ŷ (x) = Y0(x)− Ŷ0(x) + λ1

∫ x

0

(
f1(s, x)Y (s)− f̂1(s, x)Ŷ (s)

)
ds

+ λ2

∫ x

0

(
f2(s, x)Y (s)− f̂2(s, x)Ŷ (s)

)
dB(s),

so, by the mean value theorem we obtain∥∥∥Y − Ŷ ∥∥∥
2
≤
∥∥∥Y0 − Ŷ0

∥∥∥
2

+ λ1x
∥∥∥f1.Y − f̂1.Ŷ

∥∥∥
2

+ λ2B(x)
∥∥∥f2.Y − f̂2.Ŷ

∥∥∥
2
.

Using the assumptions 1) and 2) and Theorem 5.2 we get∥∥∥f1.Y − f̂1.Ŷ
∥∥∥

2
≤ ‖f1‖2

∥∥∥Y − Ŷ ∥∥∥
2

+
∥∥∥f1 − f̂1

∥∥∥
2

(∥∥∥Y − Ŷ ∥∥∥
2

+ ‖Y ‖2
)

(5.8)

≤ θ1

∥∥∥Y − Ŷ ∥∥∥
2

+

√
C1

m2

(∥∥∥Y − Ŷ ∥∥∥
2

+ Φ
)
.

Also we have ∥∥∥f2.Y − f̂2Ŷ
∥∥∥

2
≤ θ2

∥∥∥Y − Ŷ ∥∥∥
2

+

√
C2

m2

(∥∥∥Y − Ŷ ∥∥∥
2

+ Φ
)
. (5.9)

By using Eqs. (19) and (20) in Eq. (18) and Theorem 5.1 we obtain∥∥∥Y − Ŷ ∥∥∥
2
≤
√
A

m
+ λ1x

(
θ1

∥∥∥Y − Ŷ ∥∥∥
2

+

√
C1

m2

(∥∥∥Y − Ŷ ∥∥∥
2

+ Φ
))

+ λ2B(x)

(
θ2

∥∥∥Y − Ŷ ∥∥∥
2

+

√
C2

m2

(∥∥∥Y − Ŷ ∥∥∥
3

+ Φ
))

.
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By taking sup we can write

∥∥∥Y − Ŷ ∥∥∥
2
≤
√
A

m
+ λ1 sup

x∈[0,1)

x

((
θ1 +

√
C1

m2

)
sup

x∈[0,1)

∥∥∥Y − Ŷ ∥∥∥
2

+

√
C1

m2
Φ

)

+ λ2 sup
x∈[0,1)

|B(x)|

((
θ2 +

√
C2

m2

)
sup

x∈[0,1)

∥∥∥Y − Ŷ ∥∥∥
2

+

√
C2

m2
Φ

)
,

so

∥∥∥Y − Ŷ ∥∥∥
2
≤

√
A
m + λ1

√
C1

m2 Φ + λ2 sup
x∈[0,1)

|B(x)|
√
C2

m2 Φ

1−

(
λ1

(
θ1 +

√
C1

m2

)
+ λ2 sup

x∈[0,1)

|B(x)|
(
θ2 +

√
C2

m2

)) ,

and Lemma 5.1 proves the desired result. �

6. Numerical examples

In this section, we consider numerical examples to illustrate the efficiency and reli-
ability of the non-uniform Haar wavelets in solving stochastic Volterra integral equations.
Here we have: X̄E is the Error’s mean, X̄A is the mean of analytical solution, X̄N is the
mean of the numerical solution and 95% confidence interval for Error’s mean is calculated.
Also L and U are the confidence interval lower and upper bounds, respectively.
Example 6.1. We consider the following stochastic Volterra integral equation Y (x) = − 1

8−∫ x
0
s
4Y (s)ds−

∫ x
0

1
40Y (s)dB(s). Its analytical solution is Y (x) = − 1

8 exp(− 1
40B(x)−x

2

8 −
x

3200 ).
For r = 2, the results are shown in Table 1. A comparison between the numerical solutions
given by the non-uniform Haar wavelet method (NHWM) and the uniform Haar wavelet
method (UHWM) are shown in Table 2.

——————– Table 1: The result of Example 1. ——————–

x X̄E X̄A X̄N 95% confidence interval for X̄E

L U

0 0 -0.1250 -0.1250 0 0
0.1 0.0018 -0.1249 -0.1267 0.0017 0.0019
0.2 0.0025 -0.1241 -0.1216 0.0003 0.0046
0.3 0.0021 -0.1243 -0.1243 0.0020 0.0021
0.4 0.0021 -0.1273 -0.1252 -0.0004 0.0047
0.5 0.0058 -0.1245 -0.1187 0.0050 0.0065
0.6 0.0090 -0.1244 -0.1154 0.0087 0.0093
0.7 0.0083 -0.1262 -0.1179 0.0079 0.0087
0.8 0.0082 -0.1204 -0.1122 0.0077 0.0087
0.9 0.0086 -0.1232 -0.1147 0.0078 0.0094

Table 2: Comparison of Error’s mean and length of the confidence interval (LCI) for
NHWM with UHWM.
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Fig. 1. Error’s mean, analytical and approximate solutions for J = 2.

x Method X̄E LCI

0.1 NHWM 0.0018 0.0002
UHWM 0.0104 0.0028

0.3 NHWM 0.0021 0.0004
UHWM 0.0103 0.0063

0.5 NHWM 0.0058 0.0015
UHWM 0.0098 0.0030

0.7 NHWM 0.0083 0.0007
UHWM 0.0091 0.0011

Example 6.2. [16]We consider the following stochastic Volterra integral equation

Y (x) = 1 +
∫ x

0
s2Y (s)ds+

∫ x
0
sY (s)dB(s). Its solution is Y (x) = exp

(
x3

6 +
∫ x

0
sdB(s)

)
.

For r = 2, the results are shown in Table 3. A comparison between the numerical solutions
given by the non-uniform Haar wavelet method (NHWM) and methot of used [16] Haar
Block pulse operational matrix (HBOM) are shown in Table 4.

——————– Table 3: The result of Example 2. ——————–

x X̄E X̄A X̄N 95% confidence interval for X̄E

L U

0.1 0.0051 0.9112 0.0962 0 0.0102
0.2 0.0073 0.1061 0.1125 0.0014 0.0132
0.3 0.0153 0.0851 0.0912 0.0065 0.0242
0.4 0.0146 0.0800 0.0873 0.0035 0.0258
0.5 0.0125 0.0726 0.0767 0.0046 0.0204
0.6 0.0158 0.0857 0.0933 0.0054 0.0261
0.7 0.0173 0.0869 0.1009 -0.0014 0.0362
0.8 0.0213 0.0918 0.1130 -0.0044 0.0471
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Fig. 2. Error’s mean, analytical and approximate solutions for J = 2.

Table 4: Comparison of Error’s mean for NHWM with HBOM.

x Method X̄E n

0.1 NHWM 0.00512551 23

HBOM 0.00584517 24

0.3 NHWM 0.01538704 23

HBOM 0.03623059 24

0.5 NHWM 0.01253040 23

HBOM 0.02501065 24

0.7 NHWM 0.01737967 23

HBOM 0.13708159 24

A review of Table 4. shows that the numerical results of the NHWM are better than the
numerical results of the HBOM. Obviously, with respect to n, the computational complexity
of our method is less than the computational complexity of the HBOM which demonstrate
the validity of this method.

7. Conclusion

In this paper, we have successfully used the non-uniform Haar wavelet orthogonal
basis functions to approximate the solution of the stochastic Volterra integral equation.
The error analysis and the numerical examples confirm that the method is highly accurate.
The typical convergence rate of the method is O( 1

m2 ). We can also use this method for
solving stochastic Fredholm or Volterra-Fredholm integral equations.
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2(1980), 187-245.

[11] M. Khodabin, K. Maleknojad, and H. Shckarabi, Application of triangular functions to numerical solu-

tion of stochastic volterra integral equations, IAENG International Journal of Applied Mathematics.,
43(2013), No. 1, 187-245.

[12] M. Asgari, E. Hashemizadeh, M. Khodabin and K. Maleknejad , Numerical solution of nonlinear sto-

chastic integral equation by stochastic operational matrix based on Bernstein polynomials, Bull. Math.
Soc. Sci. Math Roumanie., 27(2014),No. 105, 3-12.

[13] M. Khodabin, K. Maleknojad, and H. Shckarabi, Modified block pulse functions for numerical solution

of stochastic Volterra integral equations, Journal of Applied Mathematics., 2014(2014).
[14] F. Mirzaee, A. Hamzeh,, A computational method for solving nonlinear stochastic Volterra integral

equations, Journal of Computational and Applied Mathematics., 306(2016), 166-178.
[15] R. Zeghdane, Numerical solution of stochastic integral equations by using Bernoulli operational ma-

trix,Mathematics and Computers in Simulation., 165(2019), 238-254.

[16] F. Mohammadi, Numerical solution of stochastic Itô-Volterra Integral Equations using Haar wavelets,
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