U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 2, 2015 ISSN 2286-3540

DISTRIBUTED DATABASE OPTIMIZATIONS WITH NoSQL
MEMBERS

George Dan POPA*

Distributed database complexity, as well as wide usability area, raised
diverse problems concerning data coherence, accessibility and performance. NoSQL
(Not only SQL) databases provide solutions for some of these problems, completing
or total replacing relational databases in specific situations.

This paper presents functional setups for two NoSQL databases, Infinispan
and MongoDB, presenting an optimal architecture and obtained results.

Keywords: distributed databases, Infinispan, MongoDB, performance
1. Introduction

Distributed databases have conquered the world of data warehousing, due
to the complex requirements of current day applications and increasing data
quantity. However, there aren’t only advantages in using a distributed
environment, but new challenges, too, in connecting all members, collaboration,
data coherence, availability, performance and much more. Some of these issues
have been addressed by additional data nodes, load balancers, proxy servers, but
more problems remain unsolved due to the low scalability or data formats.

NoSQL (Not only SQL) databases represent the data storing systems that,
unlike relational databases, don’t necessarily have relational properties between
stored objects. Even if such properties may exist at certain levels, they don’t play
key roles in the system management. One of the most important NoSQL database
purpose is to obtain superior horizontal and vertical scalability, overcoming
relational database limitations in storing large and complex information.

Storing mechanisms of NoSQL databases are as many as the number of
the technologies used: object oriented, XML or JSON documents, grid, graph or
key — value pairs. All these formats allow us to choose the best fit solution for
each demand, in order to closely match the serving application data format.

Having these new technologies available, the challenge of building a
consistent and efficient distributed database is system configuration. Through
proper configuration, we can achieve a more scalable and usable database system
for external applications, than using only relational database members.

! PhD student, Faculty of Automatic Control and Computers, University POLITEHNICA of
Bucharest, Romania, e-mail: george.popa@yahoo.com

56 George Dan Popa

Due to the fact that each configuration is custom for each client
application, after developing several specific database systems and analyzing their
performance, the aim of this paper is to define an optimal architecture for every
distributed environment containing NoSQL members.

2. Distributed database system and test data

Our working environment consists of a distributed database system set up
for hosting Romanian-language Wikipedia database. Wikipedia encyclopedia is a
collection of user provided articles, containing text, links and multimedia files.
Each article’s history and contributors information is saved into Wikipedia
database, making it large enough to require special management server

configurations.
Table 1
Main tables description of Wikipedia database

Table Number of records Size Description

Main page table,
page 933,386 306 MB includes articles,

templates and stubs.

.. Page history table,
revision 7,818,593 178 MB stores each of the

page’s revisions.

Table containing

pagelinks 4,023,378 16 MB redirects and external
links.
text 7,818,593 6.4 GB Text used in any of
the page’s revisions.
user 254,299 58 MB Authorised users
table.
image 21,516 54GB Multimedia files.

As listed in Table 1, some of the database’s tables have a large number of
rows, while others occupy large disk space. In the same time, some tables are read
and write often, such as user, while others are read-only and rarely accessed, an
example is image table. These tables have been separated on the two members of
the distributed database, MySQL hosting the multimedia and other large tables,
while Oracle database the frequently accessed tables [1]. This database
segmentation was designed in order to benefit from each of the element’s features
and obtain optimum overall performance [2].

Distributed database optimizations with NoSQL members 57

While this testing environment was setup using a centralized Java
management application [3], other environments were also configured for
performance comparison, build using commercial distributed database solutions:
SyncML [4] and Sybase Replication Server [5].

a
:E > Java

!

¥ HIBER

Wt

{

|
4\

Fig. 1. Centralized database management system with Oracle and MySQL members.

For performance testing, we have used specialized automated test tools,
such as JMeter, autobench and httperf, while JProfiler was used to investigate
Java application behavior and monitor system resources [6]. The metrics used for
comparison are:

e Throughput — number of successful responses returned to the
clients;

e Execution time — medium execution time for each of the successful
operation;

e Concurrency — number of active connections, representing the
number of clients making simultaneous requests;

e Utilization — measures asset performance, determined by usage
time reported at total available time.

Each individual test simulates usual user operation of a Wikipedia page,
inserting a record in page table, three records in pagelinks table, five records in
revision and text tables, all in the Oracle database. In the same time, three binary
files, measuring 200 kB each, are inserted into MySQL database. These
operations are doubled by reading the same amount of data, from the same tables.

After running series of 1000 automated tests, but under different
concurrency level, starting from 1 and ending at 100 concurrent requests, the
results were aggregated and visual displayed in chart, representing execution time
by concurrency level, for each of the distributed system:

58 George Dan Popa

Medium execution time depending on concurrency level
- Centralized distributed system, Oracle and MySQL -

14000

12000

—+— SyncML
10000

Sybase
—— Replication
Server

8000 —

QOracle
6000 and

MysQL

Medium execution time(ms)

4000

2000

[
m e
"u"'!' -
T T

] 20 40 &0 80 100 120

Number of concurrent connexions

Fig. 2. Tests results for centralized Oracle and MySQL system, along with SyncML and Sybase
Replication Server.

As shown in chart, out test environment with relational databases is
showing major performance drawbacks, comparing to SyncML and Sybase
Replication Server. More than this, the increase of the concurrency level leads to
exponential increase of the execution time, showing both concurrent threads
bottleneck and memory leak on Java management application.

3. Storing large tables in MongoDB

MySQL relational database has shown performance penalties for tables
having millions of records, or large record size. Searching for a solution to allow
better scalability, for both records count and size, we have found MongoDB, a
NoSQL database [7]. It stores data in JSON or XML formats, with practical
unlimited space usage. The good scalability feature is possible due to the lack of
some relational features: stored objects don’t need to have the same data type or
complexity, or joining data collections is not possible.

Distributed database optimizations with NoSQL members 59

We have replaced MySQL database member from our testing distributed
system with a MongoDB element, having the same data collections structure as
MySQL tables. Running the automated tests described in the previous chapter, we
got better results in this case, eliminating the exponential increasing execution
time. However the test environment kept lower performance (in both execution
time and throughput) and more optimizations are needed.

Medium execution time depending on concurrency level
- Centralized distributed system, Oracle and MongoDB -

7000

6000 —

=4 SyncML

3000

Sybase
—— Replication
Server

4000

Oracle
and
MongoDB

3000

Medium execution time{ms)

2000

1000

o 20 40 60 80 100 120

Number of concurrent connexions

Fig. 3. Tests results for centralized Oracle and MongoDB system, along with SyncML and Sybase
Replication Server.

Beyond its specific features and advantages, some of the MongoDB’s
missing relational characteristics may induce significant drawbacks in the
system’s functionality and performance. We are referring now at the join
operations and transactions.

Hibernate OGM has achieved some levels of join operations, particularly
unidirectional and bidirectional relationships for MongoDB associations. As a
work around for transactions, Hibernate OGM offers transaction demarcations to
trigger the flush operation on commit [8]. All the logical transaction operations
are queued before written to disk and a user programmed flush to disk is triggered
to simulate the transaction commit. Rollback cannot be achieved, as database
previous state is not saved after changes are persisted.

60 George Dan Popa

Due to these inconveniences, we have moved any of the missing features
implementation to the middle tier (Java management application). At application
level, we are handling operation order and monitoring their result. While inside a
logical transaction, consisting of several operations on multiple MongoDB
collections, if one of the operation fails, then it is retried a limited number of
times. If successful, we continue to execute the next operations. Otherwise, the
next operations are canceled, but the previous operations changes remain persisted
in database, leaving it in an inconsistent state. For example, we have stored an
entry in the page collection, but associated text and image entries failed to be
saved, breaking the logical transaction’s atomicity. In that case we would have
empty pages displayed to the user.

The order of the insert, update and delete operations can help us in solving
these problems, in our example saving the associated text and image entries first,
and then the page record. There are no limitations with foreign keys, as they are
missing in MongoDB. In this way, any database inconsistency would be
transparent to the end user, as the orphan text and image records cannot be
accessed by the user.

Note that in our isolated environment, database inconsistencies did not
occur, but some of the operations needed to be retried due to the timeouts induced
by the highly concurrent requests.

The distributed environment requires join operations both inside each of
the database member and at logical database level. Relational databases can
handle joins for all their stored tables, retrieving in a single query data from
multiple tables. At logical database level (distributed system) and inside NoSQL
member MongoDB, joins are performed at Java application level. At least one
query is necessary for each table / data collection involved, and then filter the
results based on their identifiers and connection tables. The multiple queries and
storing a large data quantity in Java heap memory for rows matching, have lead to
some performance penalties using the join operation over NoSQL database
members.

4. Decentralized system with Infinispan grid

The centralized architecture of the distributed system has proven its
limitations in accepting highly concurrent requests. To overcome this bottleneck,
we have distributed the Java management application, to run as an agent on every
database member host machine. The Java agent is now handling notification
requests from the Web server and can execute them if the necessary resources are
on the local machine, else will redirect them to the proper agent.

Distributed database optimizations with NoSQL members 61

LN
a0

\“ \‘\
W firispan B fispan s nfinispan

Infinispan Grid

Fig. 4. Decentralized database management system with Infinispan and MongoDB members.

A new layer of communication is introduced between member machines,
that may induce performance overhead, but the highly concurrent requests are
split among them, thus increasing parallel computations.

Infinispan is a new NoSQL database, known for high scalability and
availability [9]. Designed to work in system memory, rather than storing data on
hard drive, it achieves very good access times for concurrent environment.
Whenever new available space is required to work with larger stored data, a new
segment can be added to the Infinispan grid, without size limitations. However,
due to the fact that it operates in memory (recommended), the average cost per
size unit is much higher than usual databases. Thus we have configured Infinispan
grid to handle only the smallest database tables in size, but with most frequent
accesses. In our test database, these tables are page, revision, pagelinks and user.
The other two important tables, text and image, remained to be stored by
MongoDB database member.

Infinispan Data Grid is very elastic in adding or removing grid nodes
required by the application, without any data loss. Even if all nodes are removed
from the grid, data is persisted on disk, using its persistent CacheStore, in order to
be restored on future nodes. There are two main usages for clustering Infinispan
nodes: data replication and distribution. We have used its data distributed feature,
to extend its storage capacity for our needs.

62 George Dan Popa

As Infinispan works best if data is cached in memory, extending the
Infinispan grid with additional nodes makes sense only if the nodes are distributed
over separate physical machines. We have used the Infinispan CacheManager
class to configure and synchronize the grid’s members, thus making it transparent
to the upper layers of our application, seen as a single data source. Each of the
Infinispan grid’s nodes is configured to store records of any of the tables assigned
to Infinispan, implementing horizontal segmentation. We took advantage of the
key — value pair data format Infinispan uses, in order to directly store Java objects
into the database, without the need to use any serialization or persistence library
such as Hibernate. Similar to other NoSQL databases, Infinispan does not provide
the join functionality, so any complex query, involving multiple tables is split
between distributed members. In those cases where the queries were independent,
we achieved parallel computation in every grid’s member, returning results to the
Web server faster than a single database.

Our application needs required up to three separate Infinispan nodes,
based on each of the machine’s available memory, to ensure the fact that no data
needs to be stored on disk. The Java management agent, located on one of the
Infinispan nodes, connected the Infinispan grid with the rest of the distributed
system and the Web server. Even if most of the application requests are sent over
the local network, they are still served faster by the Infinispan grid cache, than
usual disk based databases.

We have used Infinispan TransactionManager to implement transactional
operations against the data store and achieve ACID features, thus ensuring
database consistency.

Our automated test and diagnose tools showed that no memory leaks
occurred when distributing the management system onto separate machines, or
distributing the Infinispan grid. The Web server in front of the distributed system
worked as a load balancer, dispatching new requests to the most responsive
member, including the server affinity feature for successful results. Joining results
operation, from all distributed database members was made at application level, in
a similar manner as the centralized system.

Results presented in the chart below (Fig. 5) show that our test
environment, consisting in an Infinispan grid and MongoDB members, performs
comparable to the commercial systems SyncML and Sybase Replication Server.
Even if for some concurrency levels it had the longest response time, for others it
achieved the best results.

Distributed database optimizations with NoSQL members 63

Medium execution time depending on concurrency level
- Decentralized distributed system, Infinispan and MongoDB -

4500

4000 A
3500 .
NV =4 SyncML
3000
'-'l‘ Sybase
2500 J 4

—— Replication
Server

2000
Infinispan
and

1500 MongoDB

Medium execution time{ms)

1000

D T T T T T T 1
a 20 40 60 80 100 120

Number of concurrent connexions

Fig. 5. Tests results for decentralized Infinispan and MongoDB system, along SyncML and Sybase
Replication Server.

More optimizations are possible after investigating the user behavior in a
real world environment, such as changing the table segmentation criteria, caching
results for repetitive requests or finding new storing technology for specific usage
[10].

6. Conclusions

The key to obtain the best results do not necessarily consist in getting the
latest technology or the best available hardware, but in system configuration
among the database members. As we tested various system combinations before
reaching an optimal architecture as a competitive distributed database, some
guidelines had been used:

e Database table segmentation must respect data usage, in order to avoid
joins or data correlation on separate members.

64 George Dan Popa

e Horizontal segmentation, or sharding, is possible when necessary, but
must be implemented using the same technology, such as Infinispan grid.

e Complex queries that involve multiple distributed members, must be split
into sub-queries at application level (Web server), thus freeing the Java
management applications from subsequent tasks and joining results.

e Use of technological heterogeneity (such as Infinispan grid or MongoDB)
must take in consideration their specific features and application
requirements (frequent accesses or large data sets, respectively).

We have demonstrated that using these principles and further tuning the
database system, we can achieve comparable and better results than commercial
expensive solutions, build for general use. NoSQL databases market share has a
high potential and have been proved to be a good replacement for relational
databases in specific situations.

REFERENCES

[1] A. Boicea, A. Crivat, F. Radulescu, G. D. Popa, Performance Evaluation and Tuning in an
Oracle DBMS, DAAAM 2010, Vienna;

[2] A. Boicea, C. Magdalina, D. C. lonescu, F. Radulescu, G. D. Popa, An Architecture for
Distributed Databases on Workstations, DAAAM 2011, Vienna;

[3] G. D. Popa, Heterogeneous Database Integration Using Hibernate Mapping Files, DAAAM
2011, Vienna;

[4] J. Suryanarayana, Heterogeneous database replication with SyncML, IBM Technical Library,
2005;

[5] R. H. Wiebener, Synchronizing Data Among Heterogeneous Databases, Sybase Adaptive
Server Library, 2010;

[6] A. V. Pita, S. L. Roberts, Performance of distributed database application models using Java
RMI, IEEE International Computing and Communications, 1998;

[7] *** MongoDB, Inc., The MongoDB 2.4 Manual, http://docs.mongodb.org/manual/, 2013;

[8] *** JBoss Community, Hibernate OGM 4.0 Documentation,
http://docs.jboss.org/hibernate/ogm/4.0/reference/en-US/html/ogm-datastore-providers.html

[9] *** Red Hat, Inc., Infinispan Documentation, http://infinispan.org/documentation/, 2013;

[10] M. Shafique, M. S. Al-Shishtawi, A methodology for integrating heterogeneous databases
using a global schema, CHT '07 The Sixth IASTED International Conference on
Communications, Internet, and Information Technology, 2007.

