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1. Introduction

Consider the multiobjective fractional subset programming problem
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where A" is the n-fold product of the o-algebra A of subsets of a given set
X, F;,Gyi € p={1,2,...,p}, and Hj, j € ¢ = {1,2,...,q}, are real-valued
functions defined on A™, and G;(S) > 0, for all i € p and S € A™ such that
H;(S) £0, j€qLet F={S € A" : H;(S) £ 0, j € q} be the set of all
feasible solutions to (P). We further assume that F is nonempty.

For any vectors © = (x1,22,...,%m), ¥ = (Y1,¥2,--.,Ym) € R™, we
denote = = y iff x; S y; for each i € M = {1,2,...,m}; z <y iff z; < y; for
eachi € M and x # y; v <y iff x; < y; for each i € M. We write that x € R
iff z20.

In Problem (P) minimality is taken in terms of efficient solutions as
defined below.

A feasible solution SY € F is said to be an efficient solution to (P), if
there is no other S € F such that

A

<F1<s> By(S) Fp<s>>

(Fl(SO) F(S) (Y )
G1(S)" Ga(S) 7 Gp(9) ‘

G1(S%) Go(5%)" 7 Gp(59)

The analysis of optimization problems with set functions has been the
subject of much interest in the recent past due to many applications in elec-
trical insulator design, optimal distribution of crops subject to rainfall in the
given region, shape optimization, fluid flow, optimal plasma confinement and
statistics.

The first general theory for optimizing set functions was developed by
Morris [6] who defined the notions of local convexity, global convexity and first
order differentiability for set functions. Also, he established optimality con-
ditions and Lagrangian duality relations for a general nonlinear programming
problem involving set functions. Further, Morris discussed some algorithms for
numerical solution of these problems. The difficulty of optimization problems
on a measure space, as pointed out by Morris, lies in the poorly structured
feasible domain which is not convex, not open and, actually nowhere dense.
The optimality and duality results of Morris were generalized by Corley [1] for
problems with n-set functions.

Preda and Stancu-Minasian [7] defined classes of n-set functions called d-
type-1, d-quasi type-1, d-pseudo type-I, d-quasi-pseudo type-I, d-pseudo-quasi
type-1 and established some optimality and Wolfe duality results for a multi-
objective programming problem involving such functions.

Preda et al. [9] introduced the classes of n-set functions called (p, p)-
V-univex type-1, (p, p')-quasi V-univex type I, (p, p')-pseudo V-univex type-
L, (p, p’)-quasipseudo V-univex type-I and (p, p')-pseudoquasi V-univex type-
I and studied optimality conditions and generalized Mond-Weir duality for
multiobjective programming problem.
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Mishra [4] defined some types of generalized convexity (F, p, 0, 0)-V type-
L, (&, p,0,0)-V-pseudo-quasi type-1, (&, p, o, 8)-V-quasi-pseudo type-1) and es-
tablished optimality and duality results for a multiobjective programming
problem involving such functions.

Mishra et al. [5] defined new classes of n-set functions, called (p, o/, d)-
strong pseudo-quasi-type-I, (p, p/, d)-weak strictly pseudo-quasi-type-I, (p, o/, d)-
weak strictly pseudo-type-1, (p, o/, d)-weak quasi-strictly-pseudo-type-I func-
tions and for a multiobjective programming problem established optimality
and Mond-Weir duality results.

Preda, Stancu-Minasian and Koller [8] presented some optimality and
duality results for a multiobjective programming problem involving generalized
d-type-1 vector-valued n-set functions. Stancu [10] extended these results to
the case of fractional programming.

Jayswal and Stancu-Minasian [2,3] introduced new classes of generalized
convex n-set functions called d-weak strictly pseudo-quasi type I univex, d-
strong pseudo-quasi type-I univex and d-weak strictly pseudo type-I univex
functions. Sufficient optimality conditions and duality results were obtained for
a multiobjective subset programming problems involving aforesaid functions.

A good account of optimality conditions and duality for programming
problems involving set and n-set functions can be found in the paper of Stancu-
Minasian and Preda [12] and the references therein.

Zalmai [18] introduced a new class of generalized convex n-set functions,
called (&, a, p, ) — V-convex functions, and presented numerous sets of para-
metric and semiparametric sufficient efficiency conditions for Problem (P).
The function F was assumed to be a sublinear function in the third argument.
Stancu and Stancu-Minasian [15] considered some types of generalized convex-
ity and discussed new global semiparametric sufficient efficiency conditions for
a multiobjective fractional programming problem involving n-set functions.

Stancu-Minasian and Paraschiv [11] presented global semiparametric suf-
ficient efficiency conditions for Problem (P) using the class of (F,b, ¢, p, 0)-
univex n-set functions, defined in Zalmai [17], assuming that F is a convex
function in the third argument. The class of convex functions is more general
than the class of sublinear functions.

Stancu-Minasian and Stancu [14] presented new global semiparametric
sufficient efficiency conditions for Problem (P) using the same class of functions
defined by Zalmai [17], using a partition of ¢ and assuming that F is a convex
function in the third argument. -

Stancu-Minasian and Stancu [13] introduced a new class of (F,b, ¢, p, 0)-
type I univex n-set functions, according to a partition {I,J}, where JF is a
convex function in the third argument. For problem (P) a general dual model
is presented and duality results are obtained using aforesaid class of functions.

In this paper we present efficiency conditions for Problem (P), using the
same class of (F, b, ¢, p, 0)-type-I-univex n-set functions introduced in [13], and
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using a partition of g. In our approach, we also suppose that F is a convex
function in the third argument.

2. Definitions and Preliminaries

Let (X, A, 1) be a finite atomless measure space with L, (X, A, i) sepa-
rable, and let d be the pseudometric on A™ defined by
1/2

d(R,S) = [Z p? (RiASy) ,

k=1

where R = (Ry,+, R,) and S = (Sy,,5,) € A" and A denotes the symmetric
difference.
Thus, (A", d) is a pseudometric space. For h € L1(X, A, ) and T € A,

the integral /hdu is denoted by (h,xr), where xyr € Loo(X, A, u) is the

T
indicator (characteristic) function of T

Definition 2.1. (Morris[6]) A function F': A — R is said to be differentiable
at S* € A if there exist DF(S*) € Li(X, A, 1), called the derivative of F at
S* and Vyp : A x A — R such that

F(S) = F(57) + (DF(5%), xs — xs=) + Vr(5,57),
for each S € A, where Vi(S,S*) is o(d(S, S*)), that is,
o Vr(S,S%)
d(s,5%)—0 d(S, S*)

Definition 2.2. (Corley[1]) A function G : A" — R is said to have a partial
derivative at S* = (S7,...,5%) € A™ with respect to its i-th argument, if the
function F(S;) = G(ST,--, 551,55, Sii1,--, Sy) has derivative DF(S}),i € n =
{1,2,...,n}.

We define D;G(S*) := DF(S}) and write DF(S*) = (D1 F(S*),--, D, F'(S%)).

Definition 2.3. (Corley[1]) A function G : A™ — R is said to be differentiable
at S* if there exist DF(S*) and Wg : A" x A" — R such that

=0.

G(S) = G(S) + 3 (DiG(S"), xs: = xs;) + WalS, ),

where We(S, S*) is o(d(S, S*)) for all S € A™.

In [13], Stancu-Minasian and Stancu introduced a new class of (F, b, ¢, p, 0)-
type I univex n-set functions according to a partition {I, J}. We recall here
these definitions in the particular case where the set I has a single element.

In what follows we consider F: A" x A" xR — R and F': A" — R and
G : A" — R? two differentiable functions. Let a function b : A" x A" - R, a
function 6 : A" x A" — A" x A" such that S # S* = 0(S5,5*) # (0,0), the
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functions ¢; : R — R,7 € {0} U J and let ¢ = (¢o, ¢;),j € J, where J is an
index set. Let pp and p; be real numbers and let p = (po, pj), jeJ,

Definition 2.4. (Stancu-Minasian and Stancu [13]) For each j € J the pair
of functions (F,G;) is said to be (F,b, ¢, p,0)-pseudo quasi univex type-I at
S* e A" if for all S € A™ the implications

F(8,8756(S, S )DF(S8")) 2 —pod*(0(S, S*)) => ¢ (F(S) — F(S%)) 2 0,
(

1)
and
$;(—G;(S)) £ 0= F(5,5%b(S, S*)DG;(S*)) £ —p;d*(6(S,5%)), j€J
(2.2)
both hold.

If the second (implied) inequality in (2.1) is strict (S # S*), then we say
that (F,G;) is (F,b, ¢, p, 0)-strictly pseudo quasi univex type-I at S* € A",

Definition 2.5. (Stancu-Minasian and Stancu [13]) For each j € J the pair
of functions (F,G;) is said to be (F,b, ¢, p,0)-quasi pseudo univexr type-I at
S* e A" if for all S € A™ the implications

00 (F(S) — F(S%)) £ 0= F(S, S b(S, ) DF(5")) < —pod(8(S, 5*)).

(2.3)
and
F(S, %5 B(S, §)DG(S7)) Z —psd?(8(S..5)) —> & (=G4(S7) Z 0,5 € J
2.4
both hold. 24

If the first (implied) inequality in (2.3) is strict (S # S*), and the second
(implied) inequality in (2.4) is strict (S # S*), then we say that (F,G;) is
(F, b, ¢, p, 0)-prestrictly quasi strictly pseudo univex type-I at S* € A™.

Definition 2.6. (Stancu-Minasian and Stancu [13]) For each j € J the
pair of functions (F,G;) is said to be (F,b, ¢, p, 0)-quasi quasi univez type-I at
S* e A" if for all S € A™ the implications

¢o (F(S) = F(5%)) 0= F(S,5%0(S,S)DF(S")) < —pod*(0(S, 5)),

(2.5)
and
$;(—G;(S)) £ 0= F(8,5%b(S, S*)DG;(S)) £ —p;d*(6(S,5%)), j€J
(2.6)
both hold.

If the first (implied) inequality in (2.5) is strict (S # S*), then we say
that (F,G;) is (F,b, ¢, p, 0)-prestrictly quasi quasi univex type-I at S* € A".
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Definition 2.7. For each j € J the pair of functions (F,G;) is said to be
(F, b, 0, p,0)-pseudo pseudo univexr type-I at S* € A" if for all S € A™ the
implications

F(S, (S, SVDF(S") Z —pod(8(S. 5)) = o (F(S) — F(S*)) 2 0,
(2.7)

and

F(S,8%b(5,8*)DG;(S*)) 2 —p;d*(0(S, %)) = ¢; (—=G4(S")) 2 0,j € J
2.8)
both hold. (

If the second (implied) inequality in (2.7) and (2.8) is strict (S # S*),
then we say that (F,G;) is (3,0, ¢, p, 0)-strictly pseudo strictly pseudo univex
type-I at S* € A™.

3. Generalized sufficient efficiency criteria

For Problem (P), Zalmai ([18], Theorem 2.1) gave necessary conditions
of efficiency. In [17], Zalmai presented for Problem (P) numerous sets of global
semiparametric sufficient efficiency conditions under generalized (F,b, ¢, p, 6)-
univexity assumptions, assuming that F is a sublinear function.

In this section we formulate and discuss several families of generalized
sufficiency results for (P) with the help of a partitioning scheme on the index
set ¢ and assuming that J is a convex function in the third argument.

" Let {Jo, J1, ..., Jm} be a partition of the index set ¢; thus .J, C g for each

re€{0,1,2,...,m}, J.NJ; =0 for each r # s, and U‘]T = ¢. In addition, we

r=0
shall make use of the functions Q (-, S,u,v) : A — R and A(-,v): A" - R
defined for fixed S, u,v by

QT, S, u,v) Zul (S)F(T) — F;(S)Gi(T)] + ZUJ'HJ(T)

j€Jdo

v) =Y vH;(T), t € mU{0}.

J€Jt

Let m = |m|, my = |my|, ma = |my,|, where {m,, m,} is a partition of

Let S* € F and assume that F;, G;, i € p, and H;, j € ¢, are differen-
p
tiable at S*, and that there exist u* € U = {u ERP:u>0,> u = 1} and

i=1



Efficiency in multiobjective fractional programming with generalized (&, b, ¢, p, 6)-type I univex n-set functions 77

v* € RY such that
9(5, S*:b(S, 5%) {Zu (S YDF;(S*) — F(S*)DG;(S*)] +
(3.1)
+Z viDH, s*)}> >0,5€F,

j=1
viH;(S*) =0, j€q, (3.2)
where F (S, 5%;-) : LT(X, A, u) — R is a convex function.

Theorem 3.1. Let S* € F and assume that Fi, G;, i € p, and H;, j € q,
are differentiable at S*, and there exist u* € U and v* € RL such that (3.1)

and (8.2) hold. Furthermore, we assume that any one of the following sets of
hypotheses is satisfied:

(a) (i) Foreacht=0,1,...,m,(2Q(-,S* u*,v*); 2mA(-,v*)) is (F,b, ¢, pi, 0)-
strictly pseudo quasi univex type-1 at the point S*, ¢q is increasing and ¢,(0) =
0 for eacht—O,l,...

) 7

(i) o+ - zptzo

(b) (i) For eacht =0, 1, coo,my (29, 8%, ut vY); 2mA (-, v")) is (F, b, ¢, pr, 0)-
prestrictly quasi strictly pseudo univex type-1 at the point S*, ¢g is strictly
increasing and ¢ (0 ) =0 for eacht =0,1,...

(ii)po + — Zpt > 0;

(¢) (i) Foreacht = 0, 1, coe,my (29, S ut, v*); 2mA (<, v")) s (F, 0, b, pr, 0) -
prestrictly quasi quast univer- type -1 at the point S*, ¢qg is strictly increasing
and ¢(0) =0 for eachth,l,...

(it) po + — Zpt>0

(d) (i) Foreacht € {O}Uml, (3Q(-, S*, u*, v*); 3my Ay (-, v")) is (F, b, ¢y, pr, 0)-
prestrictly quasi strictly pseudo univez-type-1 at the point S*,

and for each t € {0} Ums, (3Q(-, S*, u*, v*); 3maAy(+,v%)) is (F, b, ¢y, p1, 0)- pre-
strictly quasi quasi univez-type-1 at the point S*, ¢q is strictly increasing and
$:(0) = 0, for eacht = 0,1,...,m, where {m, my} is a partition of m, m, # 0,
my = |m1| and my # 0, ma = |m2|

1 1
(1) ﬂ0+—2pt+—2pt > 0; where my + my = m;

tEm1 t6m2

Then S* is an efficient solution to (P).

7

Y 7

Proof. (a) Suppose to the contrary that S* is not an efficient solution to (P).
Then there exists S € F such that G;(S*)Fi(S) — Fi(S*)Gi(S) £ 0, 4 € p, and
Gi(S*)F(S) — F(S*)Gi(S) < 0 for some I € p.
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Since u* > 0, these inequalities yield

Zu (S) — F(S")G4(S)] < 0.

Because U;Hj(g) < 0 for each j € g, S,8* € F, it follows from these
inequalities and (3.2) that

+) U;Hj(S)] <0=

j€Jdo

- [.Z 0} [GUS"VE(S") — F(S)GH(5)] + 3 i H(57) | =

Jj€Jdo
= 2Q(S*, S*, u*,v").
From the properties of ¢ (¢q is increasing and ¢o (0) = 0), we see that
b0 (292(S, 8%, u*,v*) — 2Q(S*, 5", u*,v*)) < 0. (3.3)

From (3.2), it follows that 2mA(S*,v*) = 0, for each t = 1,2,...,m. It
follows that —2mA;(S*,v*) = 0, ¢t = 1,2,...,m, and from the properties of

o, t=1,...,m, (¢:(0) =0foreacht =0,1,...,m) we have ¢; (—2mA;(S*,v*)) =

0,t=1,2,...,mie ¢ (—2mAy(S* v*)) =20,t=1,2,...,m, and

¢ (—2mA(S*,v*)) £0,t=1,2,...,m. (3.4)
From (3.3) and (3.4) and assumption (i), we deduce that

F <§, S*:b(S, 5%)2 {Zu i(ST)DE(S7) = Fi(S)DGi(S™)] +
(3.5)
—I—ZU;TDH](S*)}) < —pod?*(0(S, 57)),

Jj€Jo

and

F (S S*:b(S, %) QmZv DH; ( S*)) —ped?(0(S,5%)) for each t = 1,2,...,m
JeJt
_ (3.6)
The convexity of F (S, 5%;-) and (3.6) imply that

F (S*, S*;b(S,57)2 i > ?};DHJ-(S*)> =

t=1 jeJ¢
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t=1 JE€Jt
1 . .
<—>Y'7F ( ,S*:b(S, S*)ZmZijh@(S*)) <
mi= JEJt
1 m
S D A0S,
ie.,
1 «— .
F (S S*:b(S,5%)2 ZZU DH;(S%) > < == pd’(0(5,5%). (37
t=1 jeJi m t=1
Now, using (3.1), the convexity of F (5, 5%;-), (3.5) and (3.7), we obtain

0<TF (s,s* (S,5%) {Zzu i(S*)DF;(S*) — Fi(S*)DG,(S*)] +

> 20rDH;(S") }) +F (s, S*:b(S, 5%)2 i > U;DHj(s*)) <

j€Jo t=1 jeJy
_ 1 & _
< —pd*(0(S,5%) = — > pd(6(S,5)),
t=1

which contradicts (a) (ii).
Therefore, we conclude that S* is an efficient solution to (P).
(b) The proof is similar to that of part (a) in which inequality (3.3) is
replaced by
do (2Q(S, S*, u*, v*) — 2Q(S*, 5, u*,v*)) <0, (3.8)
inequality (3.5) is replaced by inequality

?(5,8* b(S, 5%)2 {Zu i(S)DE(S™) = Fi(S")DGi(S™)] +

(3.9)
+y U;DHJ»(S*)D < —pod*(0(S, 5Y)),

Jj€Jo

and inequality (3.6) is replaced by inequality

F (S, S*b(S, S*)szU;DHj(S*>> < —pd*(0(S,S*)), fort =1,...,m.
JjEJt
(3.10)
(c¢) The proof is similar to that of part (a).
(d) Proceeding as in the cases (a)-(c) we have

do (3Q(S, S*, u*, v*) — 3Q(S*, 5, u*,v*)) < 0. (3.11)
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From (3.2), it follows that 3m;A;(S*,v*) = 0, for all t € m, and 3myA,(S*,v*) =
0, for all t € m,. It follows that —3mA(S*,v*) =0, t = 1,2,...,m, and
for all t € m; and —3mgA,(S*,v*) = 0, for all t € m,. From the prop-
erties of ¢, t € m; U m,, we have ¢ (—3miA(S*,v*)) = 0,t € my; and
O (—3ma\(S*,v*)) = 0,1 € my i.e. ¢ (—3miA(S*,v*)) 2 0,t € m,, and

¢t (—3m1At(S*, U*)) é 07t € my, (312)
and ¢; (—3maA; (S*,v*)) 2 0,t € m, and
o (—3may (S*,0%)) £ 0,t € m,. (3.13)

From (3.11), (3.12) and (3.13) and assumption (d) (i), we deduce that

9(5,5* b(S, 5%)3 {Zu i(ST)DE(S™) = Fi(S")DGi(S™)] +

(3.14)
+> v}‘DHj(S*)}> < —pod?(0(S, 5)),
F (s, S b(S, 5%)3my ZU;DHj(S*)> < —pd*(0(5, 5%)), (3.15)
JjE€Jt
and
F <s S b(S, 5% 3mQZU*DH s*)> < —pd*(0(S, 5%)). (3.16)

Now proceeding as in the proof of parts a)-b) inequalities (3.15) and
(3.16) imply that,

ff( b(S,5%)3 ) > wiDH;( 5*) <——Zptd2 (5,5%) (3.17)

tem, jeJi t€m1

9( b(S,5%)3 ) > wiDH;( 5*) <——Zptd2 (S,5%). (3.18)

temg jEJ; t6m2
Using (3.1), the convexity of F(S,5%;+), (3.14), (3.17) and (3.18) we obtain
0= F(S,5%b(S,5%) {I_,3u; [Gi(S*)DF,(S*) — F;(S*)DG;(5)] +
+ 3 3U;DH]~(S*)}) +F (s, S*:b(5,5%)3 ) ZU;DHj(s*)) +

j€Jo tem, jeJ;

+F (s, S*b(S,5%)3 ) ZijHAS*)) <

temy jEJy
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< —pod*(6(S,57)) — mil > pd*(6(5,5%) — m% > pd*(6(5,5%))

tem, temy

which contradicts the inequality (d) (ii). O

Note that Theorem 3.1. contains a number of special cases that can be
easily identified by appropriate choices of the partitioning sets Jy, Ji, ..., Jpn.

Corollary 3.1. Let S* € F and assume that F;, G;, @ € p, and Hj, j € g,
are differentiable at S*, and there exist u* € U and v* € R% such that (5.1)
and (3.2) hold. Furthermore, we assume that any one of the following sets of
hypotheses is satisfied:

(a) (i) Foreacht=0,1,...,m, (2 éu;k (Gi(S*)F;(-) — F;(S*)Gi(")]; 2mv,§kHt(-))

is (F,b, ¢, pr, 0)-strictly pseudo quasi univex type-I at the point S*, ¢o is in-
creasing and ¢.(0) = 0 for each t =0,1,...,m;

3 1
(i) po+— > i 20
t=1

(b) (i) For eacht =0,1,...,m, (2;@ (Gi(S*)Fi(-) — Fi(S*)Gi (V)] ; QmeHt(-)>

is (F,b, ¢, pi, 0)- prestrictly quasi strictly pseudo univex type-I1 at the point
S*, ¢ is strictly increasing and ¢.(0) = 0 for each t =0,1,...,m;

. 1 &
(i) po + — > pz0;
t=1

(c) (i) For eacht =0,1,...,m, (221@* (Gi(S*)F;(+) — Fi(S*)Gy()] ;2mv;‘Ht(-)) is

(F, b, by, pr, 0)-prestrictly quasi quasi univex-type-1 at the point S*, ¢q is strictly
increasing and ¢,(0) =0 for each t =0,1,...,m;

3 1
(ii) pO+EZpt > 0;
t=1

p
(d) (i) Foreacht € {0}Um,, (3 doul [Gi(SH)Fi(-) — Fi(S*)Gi(Y)]; 3mlv;k[-[t(~)>
i=1
is (F, b, ¢y, pi, 0)-prestrictly quasi strictly pseudo univez-type-1 at the point S*,
P
and for each t € {0}Um,, (3 Soul [Gi(SH)Fi(+) — Fi(S*)Gi(Y)]; SmQU;th(-)) is
i=1

(F, b, by, pr, 0)-prestrictly quasi quasi univez-type-I at the point S*, ¢q is strictly
increasing and ¢;(0) = 0, for each t = 0,1, ..., m, where {m,, my} is a parti-
tion of m, my # 0, my = [my| and my # 0, My = |m,|;
1 1
it — — 2> 0; where my + my = m;
()Po+mlzpt+m2zpt_ ; 1+ my ;

temq temy

Then S* is an efficient solution to (P).
Proof. Let m = q,Jo =0 and J, = {t},t =1,2,...,¢ in Theorem 3.1. O
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Corollary 3.2. Let S* € F and assume that F;, G;, @ € p, and Hj, j € g,
are differentiable at S*, and there exist u* € U and v* € R% such that (5.1)
and (3.2) hold. Furthermore, we assume that any one of the following sets of
hypotheses is satisfied:

(a)(i) Foreacht=0,1,...,m, <2 éuf (Gi(S*)F;(-) — F;(S*)Gi(9)]; QmAt(-,v*))

is (&, b, ¢, pr, 0)-strictly pseudo quasi univex type-I at the point S*, ¢g is in-
creasing and ¢.(0) = 0 for each t =0,1,...,m;

3 1
(ii) po+— > i 20
t=1

(b) (i) For eacht =0,1,...,m, (2 iu}‘ (Gi(S*)F;(-) — Fi(S*)Gi(4)] 5 2mA(-, v))

is (F,0, ¢4, pt, 0)-prestrictly quasi ;tm'ctly pseudo uniwez type-I at the point
S*, o is strictly increasing and ¢,(0) = 0 for each t =0,1,...,m;

. 1 &
(i) po + — > pz0;
t=1

(c) (i) For eacht =0,1,...,m, (221@* [Gi(S*)Ei(+) — Fy(S*)Gi(4)] ;2mAt(-,v)) is

(F, b, ¢y, pr, 0)-prestrictly quasi quasg univex-type-1 at the point S*, ¢q is strictly
increasing and ¢,(0) =0 for each t =0,1,...,m;

) 1
(ii) pO+EZpt > 0;
t=1

p
(d) (i) Foreacht € {0}Um,, (3 Soul [Gi(SH)Fi(+) — Fi(S*)Gi(Y)]; 3m1At(',v))
i=1
is (F, b, ¢y, pi, 0)-prestrictly quasi strictly pseudo univez-type-1 at the point S*,
P
and for each t € {0} U my, (3 Sour [Gi(SH)Fi(+) — Fi(S*)Gi(Y)]; 3m2At(',v)>
i=1

is (F, b, ¢y, pr, 0)-prestrictly quasi quasi univezr-type-I at the point S*, | ¢g is
strictly increasing and ¢(0) = 0, for each t = 0,1,...,m, where {m,,my} is
a partition of m, my; # 0, my = |my| and my # 0, mqy = |my| ;
1 1
i) po + — + — 2> 0; where my + mg = m;
(ii) po mlzpt mgzpt_ 1 2

tem, temy

Then S* is an efficient solution to (P).
Proof. Let Jy = () in Theorem 3.1. O

4. Conclusions

In this paper we have obtained sufficient efficiency conditions for a multi-
objective fractional programming problem involving (&, b, ¢, p, 0)-type I-univex
n-set functions, where J is a convex function in the third argument.
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