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N-VINYLPYRROLIDONE — BASED INTERPENETRATING
POLYMERIC NETWORKS INCORPORATING
FUNCTIONALIZED CARBON NANOFIBERS
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Interpenetrating polymeric networks containing poly(N-vinyl-2-pyrrolidone-
co-2-acrylamido-2-methyl-1-propane sulfonic acid) and polyvinyl alcohol reinforced
with different concentrations of pristine carbon nanofibers (CNFs) or poly(ethylene
glycol) — functionalized carbon nanofibers were prepared by photopolymerization.
The synthesized hydrogels were characterized by Fourier-transform infrared
spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric
analysis (TGA), swelling investigations, mechanical tests to evaluate the influence of
the CNFs and their functionalization on the properties of the hydrogels.
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1. Introduction

Interpenetrating polymeric networks (IPNs) are new-generation materials
that can be used for a broad range of applications. The term interpenetrating
polymer network (IPN) refers to a material composed of two or more networks that
are partially interconnected on a molecular level without a covalent bond between
them [1]. Still, they cannot be disconnected without breaking chemical bonds since
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they are interlaced [1]. IPNs offer many advantages compared to single-network
crosslinked polymers, including broadly tunable physical characteristics, thermal
stability, and chemical resistance [2-4]. The reinforcement of IPN with distinct
nanofillers has been shown to provide additional strength [5, 6]. Wang et al. [7]
reported “super-tough double networks (DNs)” reinforced with nanofiller with
remarkable mechanical resistance. Nanoscale fillers have the significant advantage
that a small quantity of filler is sufficient to cause substantial improvement of
necessary properties due to the high surface to volume ratio of the nanoparticles.
However, the obtaining of a good/uniform distribution of nanofillers is critical [8].
Conversely, the nanoparticles dispersion can be enhanced by further
functionalization of their surfaces which can allow covalent bonds to be formed
with the polymer template. Numerous benefits from the simultaneous incorporation
of nanofiller and IPNs in a one-step synthesis were reported in the literature [9-11].

Significant attention has been given to the water interaction characteristics
of the IPNs, specifically water intake or the adsorbed water effects on the properties
of the polymeric network [8], for applications related to the biomedical field, wound
dressing, tissue engineering, etc. For instance, the use of a monomer like2-
acrylamido-2-methyl-1-propane sulfonic acid (AMPSA) may guarantee high water
absorption. The AMPSA-based hydrogels usually reach high hydration levels
because the sulfonic acid functional groups in AMPSA are extremely hydrophilic
[12]. Moreover, due to its structural resemblance to glycosaminoglycan (a
component of the extracellular matrix and a key player in wound healing), the
literature has described AMPSA as a presumably biomimetic monomer [13]. N-
Vinylpyrrolidone (NVP) - based polymers are also well-recognized for their
biocompatibility[14]. Because of the exceptional wettability of poly(N-vinyl-2-
pyrrolidone), NVP has recently been used as one of the components in the
manufacture of contact lenses [14]. Polyvinyl alcohol (PVA) is a hydrophilic
polymer widely used for its excellent film-forming properties and exceptional
mechanical strength. Due to their biocompatibility and biodegradability, PVA-
based IPN hydrogels are commonly used in biomedical applications, medical
devices, etc. [15, 16]. Poly(ethylene glycol) is another widely-used polymer in the
biomedical field since it is harmless, biodegradable, biocompatible, and
nonantigenic to human tissues [13]. Carbon allotropes, such as carbon nanotubes
(CNTs) or carbon nanofibers (CNFs) have been investigated and successfully
utilized as reinforcing agents for IPNs in several biomedical applications, including
biosensors [17], drug delivery [18], scaffolds [19], etc.

Numerous scientists have investigated the characteristics of PVA-NVP-
based materials: Lu et al. [20] reported poly(vinyl alcohol)/poly(vinyl pyrrolidone)
- based IPN membranes; Kim et al. [21] described the construction of
interpenetrating polymer network (IPN) hydrogels employing poly(vinyl alcohol)
and 1-vinyl-2-pyrrolidone networks obtained by photopolymerization using 2,2-
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dimethoxy-2-phenylacetophenone as a photoinitiator ~ and N,N-
methylenebisacrylamide as a crosslinker. Yet, few studies have approached PVA-
NVP-AMPSA ternary blends for composite IPNs, and even fewer studies have
utilized carbon nanofibers in these sorts of IPNs.

This study aimed to examine the effect of CNFs and their functionalization
on the mechanical and physical properties of IPNs comprising poly(N-vinyl-2-
pyrrolidone-co-2-acrylamido-2-methyl-1-propane sulfonic acid) and polyvinyl
alcohol. IPN matrices were reinforced with various concentrations of pristine CNF
or polyethylene glycol-functionalized CNFs. This research required the
development and characterization of novel PVA-NVP-AMPSA-CNF-PEG
formulations that afforded innovative IPNs with remarkable mechanical properties.
To the best of our knowledge, no such material has been found to date in the
literature. The improved mechanical characteristics of herein reported
nanocomposites, combined with their high hydrophilicity, justifies their possible
application in different areas such as biomedical devices, decontamination
materials, etc.

2. Materials and Methods

a. Materials

Carbon nanofibers (CNF, carbon nanofibers graphitized, platelets (conical),
>98% carbon basis, D x L - 100 nm x 20-200 um, Sigma Aldrich), thionyl chloride
(SOClI2, ReagentPlus®, >99%, Sigma Aldrich), sulfuric acid (H2SO4, ACS reagent,
95.0-98.0%, Sigma Aldrich), nitric acid (HNOs, ACS reagent, 70%, Sigma
Aldrich), Poly(ethylene glycol) (PEG400, average M, 400 Da, Sigma Aldrich),
Poly(vinyl alcohol) (PVA, average Mw 85,000-124,000, 87-89% hydrolyzed,
Sigma Aldrich), 2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPSA, 99%,
Sigma Aldrich), N,N’-methylenebisacrylamide (MBA, 99%, Sigma Aldrich),
tetrahydrofuran (THF, >99.9%, Sigma Aldrich), 2-hydroxy-4'-(2-hydroxyethoxy)-
2-methylpropiophenone (Ph-In, 98%, Sigma-Aldrich), were used as received. 1-
Vinyl-2-pyrrolidone (NVP, sodium hydroxide as an inhibitor, >99%, Sigma
Aldrich) was distilled and stored at 4°C before the synthesis steps.

b. Methods
if. Functionalization of CNF

The CNFs were functionalized in three steps, similar to the ones described
in ref. [22] for MWCNTSs. Briefly, 1 g of pristine CNFs were dispersed in a 50 mL
mixture of H2SO4 (98%) / HNOs (68%) 3:1 (v/v) via sonication for 12 h. The
mixture was further diluted with water, followed by filtration on a PTFE membrane,
and washed several times with deionized water. The resulting CNF-COOH were
dried overnight in a vacuum oven at 80°C. The next step consisted of the reaction
between CNF-COOH and thionyl chloride (SOCI,) to form acyl chlorides on the
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surface of the CNFs. For this step, CNF-COOH were dispersed in SOCI, and
maintained under magnetic stirring at 65°C for 24 h. After that, the dispersion was
repeatedly washed with THF, filtered on a PTFE membrane, and dried overnight at
30°C.The last step consisted of attaching the PEG400 chains to the surface of the
acyl chloride-functionalized CNFs. For this purpose, the dried acyl chloride-
functionalized CNFs were dispersed in PEG400 and maintained under continuous
stirring for 48 h at 120°C. The resultant dispersion containing the CNFs
functionalized with poly(ethylene glycol) chains (CNF-PEG400) was washed with
THF and filtered on a PTFE membrane, followed by drying at 40°C for 48 h. The
above-described steps are illustrated in Fig. 1.

. H,S0,/ HNO, l_<oH socl, ._< HO : V {\A}
o

CNF - COOH CNF - C(=0)Cl CNF - PEG400

Fig. 1. CNF functionalization steps

ii. Synthesis of nanocomposite IPNs films

The IPN films were obtained through photopolymerization using a UV lamp
(low-pressure Hg UV lamp, Aem = 254 nm), in rectangular (silicone rubber-sealed)
glass molds (12 x 12 x 0.2 cm). For the blank sample (Bk), the monomers (3.33g
NPV and 1.35g AMPSA), the crosslinker (0.1g MBA), and the photoinitiator
(0.018g Ph-In) were dissolved in freshly prepared 5g of PVA aqueous solution
(5wt.%). For the nanocomposite IPN formulations (0.05% CNF, 0.1% CNF, 0.2%
CNF, 0.05% CNF-PEG400, 0.1% CNF-PEG400, 0.2% CNF-PEG400), the
appropriate amounts of CNFs/CNF — PEG400 (according to Table 1) were firstly
dispersed via ultrasonication in the freshly prepared 5g of PVA aqueous solution (5
wt.%), subsequently continued by the addition of the monomers (3.33g NPV and
1.35g AMPSA), the crosslinker (0.1g MBA), and the photoinitiator (0.018g Ph-
In). The complete curing of the IPN films was observed after approximately 40
minutes of UV exposure. Sample codes of the IPN films obtained are detailed in

Table 1.
Table 1
IPNs nanofiller composition

Sample code CNF, | CNF - PEG400,
wt.% wt.%
Bk -

0.05% CNF 0.05

0.1% CNF 0.10

0.2% CNF 0.20 -
0.05% CNF-PEG400 - 0.05
0.1% CNF-PEG400 - 0.10
0.2% CNF-PEG400 - 0.20
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c. Characterizations

SEM analysis CNF-PEG400 was performed using a ZEISS Sigma®© 500 VP
instrument at 1 keV, InlensSE detector, magnifications up to 100k. SEM imaging
of the lyophilized nanocomposite films was executed on a Hitachi TM4000plus II
instrument, 15kV. Before SEM investigations, the samples were gold-sputtered (a
thin layer ~5nm) with a Sputter Coater Q150R ES Plus (Quorum). The thermal
properties of the materials were assessed on a Netzsch TG 209 F3 Tarsus
equipment, with a 10°C/min heating rate, temperature range: 25°C— 900°C, 20
mL/min nitrogen flow rate, on samples weighting 4 mg, in an alumina (Al2O3)
crucible. FT-IR analysis was performed on a Spectrum Two FTIR spectrometer
(PerkinElmer)with a MIRacleTM Single Reflection ATR-PIKE Technologies at 4
cm! resolution, summing 32 scans in the 4000-600 cm™! region. The swelling
ability of the composite IPNs was estimated according to refs.[23-25]. Thus, the
swelling degree of IPNs was determined using the gravimetric technique, which
involved immersing samples in DI water until they reached a constant weight at 37
°C. These swelling investigations were performed in duplicate, and the mean values
for each sample were reported. Uniaxial compressive tests were performed at
2mm/min, utilizing compression clamps (d40mm) on a DMA 850 from TA
Instruments. Five fully swollen disc specimens from each sample were subjected to
compression on a stress ramp, and mean values were reported. The DMA 850
instrument was also used in “shear-sandwich” clamping mode to measure the
frequency-dependent shear modulus, at a constant strain of 1%, on a logarithmic
increase of frequency from 0.1 to 10Hz.

3. Results

The first analytical investigations aimed to characterize the functionalized
carbon nanofibers (CNF-PEG400). SEM images in Fig. 2 revealed the existence of
PEG on the surface of the CNFs. Moreover, it can be observed that the
functionalization procedure did not alter the overall morphology of the CNFs.
However, it seems that some CNFs were shortened, probably due to the
H2SO4/HNO3 treatment combined with prolonged ultrasonication.
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Fig. 2. SEM images of CNF-PEG400 at different magnifications (a-c); pristine CNFs (d)

TGA analysis offered information on the thermal stability and degree of
functionalization of the PEG400 modified CNFs compared to the pristine CNFs.
The results obtained are comparatively illustrated in Fig. 3. The weight loss steps
visible on the TGA and DTG plots of CNF-PEG400 sample are caused by the
adsorbed water release (3% corresponding to the temperature range 25-150°C) and
by the decomposition of the PEG chains (with Tmax 328°C) which accounts for
approximatively 22% [26]. In contrast, pristine CNFs displayed good thermal
stability until 550-600°C.
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Fig. 3. TGA (A) and DTG (B) analyses of non-functionalized CNFs and CNF-PEG400

The subsequent step in this study consisted of employing various
concentrations of pristine CNF or CNF-PEG400 as nanofillers for obtaining a series
of composite IPNs, by employing the afore mentioned procedure to evaluate their
properties, and to compare their reinforcing abilities.

The chemical composition of the synthesized materials was investigated
using FT-IR analysis. FT-IR spectrum of CNF-PEG400 (Fig. 4.a) comprises the
C=0 stretching characteristic peak at 1706 cm™. Analogous adsorption bands were
visible in the FT-IR spectra for all IPNs synthesized in this study; consequently, the
FT-IR spectrum of Bk was selected for display (Fig. 4.b). The two broad
overlapping peaks from 3400 and 3315 cm™could be assigned to vn-n and vo-n
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stretching vibrations, respectively. The hydrophilic amide carbonyl group N-C=0
from NVP is visible at 1645cm™. At 1040 cm™, the C-N stretching vibration (vc-n)
is detectable. S=O stretching from AMPSA can be attributed to the absorption
bands around 1387 cm™.
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Fig. 4. FT-IR spectra: (a) CNF and CNF-PEG400; (b) Bk sample

The photograph of IPNs (in equilibrium swollen state) from Fig. 5.a reveals
a clear difference between the quality of dispersion of CNF vs. CNF-PEG400. As
expected, the functionalization of the CNFs with PEG400 ensured a much more
homogenous distribution of the nanofiller inside the polymeric matrix. The first
parameter investigated for the nanocomposite IPNs was the degree of swelling in
water. The swelling degree is mainly influenced by: crosslinking density, nanofiller
concentration, and polymer-solvent interaction[27].

Bk —‘o‘@%
158 "15‘ g 0.05% CNF —‘%},’
Bk

* 9 0 oreor

&( 0.05% CNF-PEG400 —'%"’e
0.2% CNF 0.1% CNF 0.05% CNF

0.1% CNF-PEG400 5 Za
. ‘ T T

0.2% CNF-PEG400
2 40 60
0.2% 0.1% .05% )
CNF-PEG400  CNF-PEG400  CNF-PEG400 Swelling degree (g/g)

-
%

.

Fig. 5. (a) Xerogels and equilibrated-swollen state IPNs; (b) Equilibrium swelling degree of IPNs
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From Fig. 5.b, it can be observed that the swelling degree was noticeably
influenced by the nanofiller concentration. Consequently, the swelling degree
decreased with the increase of CNF concentration.

The morphology of the resulting composite IPNs can be visualized in Fig.
6. Thus, the SEM images of the lyophilized IPNs revealed distinct morphologies
depending on the nanofiller content. As shown in Fig. 6, the pores have a much
more regular, homogeneous geometry as the nanofiller concentration increases. The
samples containing pristine CNF displayed a distinct morphology due to the less
effective dispersion in the polymeric matrix, which might have caused CNF
aggregation in some areas.
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Fig. 6. SEM images of the lyophilized IPNs

Fig. 7 illustrates the results obtained for uniaxial compressive and
frequency-dependent shear tests. Shear measurements facilitated the interpretation
of the viscoelastic nature of the synthesized IPNs, as well as the effect of the
nanofiller on their strength when subjected to shear forces. The storage modulus
plots (Fig.7.a) indicate that the higher values of G', brought by the presence of the
CNF-PEG400 in the polymeric matrix, suggest that these nanofillers induced a
higher strengthening effect of the IPNs than pristine CNFs.
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Moreover, at concentrations of nanofiller higher than 0.1%, it has been
observed that this stiffening effect is slightly reduced, probably due to the less
homogenous dispersion inside the IPNs at higher CNF or CNF-PEG concentrations.
The same trends can be observed from the compressive stress-strain curves
(Fig.7.b). Thus, the introduction of pristine CNFs led to a slight improvement in
mechanical resistance. Still, this mechanical resistance should also be correlated
with their lower water uptake capacity. Finally, the positive influence of CNF-PEG
nanofiller in terms of the mechanical resistance of the resulting IPNs is much more
noticeable. Thus, this investigation confirmed that the functionalization of the
CNFs with PEG400 ensured an improved dispersion of the nanofiller within the
IPN. Consequently, the homogenous dispersion of the nanofiller induced higher
mechanical resistance to compressive loading. However, it seems that at CNF-
PEG400 concentrations higher than 0.1 wt.%, the toughness of the equilibrium-
swelled IPNs slightly decreased, probably because of their less efficient dispersion
in the polymeric matrix.

6. Conclusions

This research started with the functionalization of the CNFs with PEG400.
TGA and SEM analyses confirmed the chemical attachment of PEG chains on the
surface of the carbon nanofibers. Further, this paper describes the synthesis and
characterization of seven distinct types of IPNs: three containing different
concentrations of pristine CNF, the other three different concentrations of CNF-
PEG, and one blank sample. All six composite samples comprised the same
polymeric matrix configuration as the blank sample, based on poly (N-vinyl-2-
pyrrolidone-co-2-acrylamido-2-methyl-1-propane sulfonic acid) and polyvinyl
alcohol. The investigations demonstrated the positive effect of CNFs on the
mechanical and physical properties of IPNs. In this case, remarkably higher
mechanical resistance, a 5-fold stress resistance increase compared to the blank
formulation, was achieved at a 0.1 % (weight %) CNF-PEG400 content. Finally,
the improved mechanical properties of herein-reported novel IPNs formulations
(PVA-NVP-AMPSA-CNF-PEG) and their high hydrophilicity recommend them
for various biomedical technologies, water treatment, etc.
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