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Cybersecurity has an immense impact on society as it enables the digital protection 

of individuals and enterprises against an increasing number of online threats. 

Moreover, the rate at which attackers discover and exploit critical vulnerabilities 

outperforms the vendors’ capabilities to respond accordingly and provide security 

patches. As such, open-source intelligence data (OSINT) has become a valuable 

resource, from which details on zero-day vulnerabilities can be retrieved and timely 

actions can be taken before the patches become available. In this paper we propose a 

method to automatically label articles on vulnerabilities and cyberattacks from 

trusted sources. Using Named Entity Recognition, we extract essential information 

about new vulnerabilities, such as the exploit’s public release and the environment in 

which the attack’s exploitation is possible. Our balanced dataset contains 1095 

samples out of which 250 entries are from cybersecurity articles; the rest of the 

articles were crawled and annotated from the U.S. Government’s Vulnerability 

Database, whereas automated text augmentation techniques were also considered. 

Our model built on top of spaCy obtained an overall performance of 75% recall on 

the Exploit Available task. When considering the Attack Vector metric, the model 

achieved the following recalls: Network 72%, Local 78%, and Physical 92%. 
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1. Introduction 

In recent years, the accelerated digitalization process resulted in an 

intensifying number of vulnerabilities and cyber-attacks. A fitting example is the 

67 percent increase in security breaches over a range of five years [1], whereas  

most attacks are people-based and lead to information leakage. Moreover, Talalaev 

[2] highlighted that 73 percent of cybercriminals consider traditional antivirus 

security to be irrelevant when distributing their Trojans or hijacking internet 

connected devices. 

In terms of preventing data breaches, early notifications on urgent patches, 

as well as information to mitigate the risk of exposure, should be a top priority. 

However, the average delay in applying patches by employees in a company is 102 

days [3]. This alarming protection gap is a result of misinformation and lack of 

concern on the abundant patches and updates released by the software vendors. 

Nevertheless, the ever-changing threat landscape greatly impacts users trying to 

protect themselves against attackers. 

Discovered by security researchers or bug bounty hunters, vulnerabilities 

are commonly published and discussed on the Internet. Therefore, important 

articles and in-depth reports are written and issued on niche magazines by 

cybersecurity analysts and reporters, thus providing support until vendors release 

corresponding security patches. 

Our research aims to aggregate data from trusted cybersecurity news 

platforms (i.e., a central OSINT source) and to automatically extract information 

regarding vulnerabilities exploited in the wild as zero-days. . The dataset used for 

this project has 1000 manually labeled cybersecurity and can be downloaded from 

here 8. Moreover, the enlarged sequence labeled dataset with the EVE feature can 

be downloaded from here.9 

We summarize our core contributions as follows: 

• Employing a dataset focused on two particular vulnerability characteristics, 

particularly the exploit’s public release and the attack vector (i.e., the 

attack’s operating environment), which were manually labeled and 

converted to IOB format. 

• Expanding the manually collected dataset with samples from the National 

Vulnerability Database of the U.S. government and applying pre-trained 

contextual embedding with BERT for data augmentation to prevent 

overfitting behavior. 

• Building a Named Entity Recognition model from spaCy v3 in conjunction 

with the afore-mentioned custom named entities to extract the key 

 
8 https://yggdrasil.codaintelligence.com/dataset.xlsx 
9 https://yggdrasil.codaintelligence.com/dataset-spacy.xlsx  

https://yggdrasil.codaintelligence.com/dataset.xlsx
https://yggdrasil.codaintelligence.com/dataset-spacy.xlsx
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characteristics based on sequence labeling. 

• Obtaining qualitative outcomes in the field of zero-day attacks, such as the 

Attack Vector vulnerability metric with recall over 90% and the detection 

of proof-of-concepts for early exploits with recall over 75%. 

The next section describes the current state of the fields of cybersecurity 

with the focus on early detection of vulnerabilities, followed by Natural Language 

Processing with data augmentation and sequence labeling. The third section 

presents the method in which the datasets used in our experiments are presented, as 

well as the applied algorithms. The results are analyzed in the fourth section, 

whereas the fifth presents conclusions and future experiments, together with 

envisioned improvements. 

2. State of the Art 

This section introduces state-of-the-art methods for the early detection of 

vulnerabilities, followed by relevant Natural Language Processing (NLP) 

techniques, namely data augmentation to enhance our dataset, and named entity 

recognition for labeling text segments. 

 

2.1 Early Detection of Vulnerabilities 

Detection techniques for software vulnerabilities are widely discussed in the 

scientific literature. For example, Mittal et al. [4] and Queiroz et al. [5] correlated 

user-generated data from social media posts with the identification of new 

vulnerabilities. Social networks represent a valuable OSINT source, where details 

about software or hardware-related vulnerabilities are discussed even before being 

officially disclosed by the vendors. 

Moholth et al. [6] used Reactive Programming as a method to extract 

vulnerability-relevant tweets. Their experiment relied on filtering data with human 

involvement to ensure that the conclusions were correct. Moreover, a certain set of 

keywords was considered as not all tweets described a recent issue actively 

exploited in the wild. New critical flaws (i.e., zero-days vulnerabilities) were 

identified using a large number of retweets within a short time interval. 

Another approach on identifying vulnerabilities that are likely to be 

exploited was presented by Tavabi et al. [7] who considered a neural language 

model whose input texts were extracted from the dark web and deep web, as well 

as security blog posts. The examination of dark web posts separated the available 

information relevant to the cybersecurity field from posts on illegal activities, such 

as the drug trafficking and the resale of stolen merchandise. The experiment 

included a Skip-Gram model with Negative Sampling. A further classification task 

for exploit prediction was carried out with a SVM classifier with Radial Basis 

Function kernel, which produced the best results for detecting the high-severity 
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flaws, with an F1 score of .80. 

Collecting Twitter posts for vulnerability detection is a widely considered 

perspective. As there can be millions of tweets describing past and recent cyber-

attacks, Trabelsi et al. [8] proposed a machine learning component named SMASH 

(Social Media Analysis for Security on HANA) to be integrated in a security 

management platform. The two mentioned tasks focus on detecting zero-day 

exploits in tweet posts, as well as on separating new CVE assignations from CVE 

updates. Irrelevant terms were removed, and bag-of-words representations were 

considered when applying a clustering algorithm. In their experiment, Linux kernel 

vulnerabilities about zero-day exploits were assessed. The correlation between their 

findings and the delay in CVE Update detection argues that software developers 

and companies are in general one step behind vulnerability discovery, thus exposing 

their products to malicious actors. 

 

2.2. Natural Language Specific Tasks 

Data augmentation in NLP is a more sensitive task in comparison to the 

same strategy applied in other machine learning subfields, such as computer vision. 

Given precise disciplines like biology or cybersecurity, a single word might affect 

the meaning of the entire phrase. As a result, careful testing of the text augmentation 

techniques [9], such as synonym replacement, random swap, random insertion, and 

random deletion, is recommended. 

Using pre-trained embeddings when augmenting text is a widely employed 

approach to preserve the context of the input sentence. Contextual embeddings 

prove to be reliable sources of preventing language models from overfitting. The 

Bidirectional Encoder Representations from Transformers (BERT) [10] provided 

state-of-the-art results for a variety of NLP tasks, while outperforming classic 

sequential models. BERT was trained on a large plain text corpus (about 3300 

million words) from two popular sources: English Wikipedia and BookCorpus [11]. 

BERT as a contextual word embedding augmenter was applied on datasets from a 

variety of scientific fields [12]. Moreover, the cased model keeps the text’s original 

accents and marks, allowing a Named Entity Recognition [13] model to benefit 

during training. Other BERT-based experiments, such as fine-tuning BERT in the 

result of a conditional version for text augmentation [14], were conducted with 

promising outcomes. 
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Named Entity Recognition (NER). NLP techniques were frequently used 

to identify sequences that reference a specific entity. Bidirectional long-short term 

memory with conditional random field layer on top (BiLSTM-CRF) proved to be 

beneficial in a variety of real-life situations, including geoscience entity detection 

[15] or social media message recognition [16]. N-grams and Convolutional Neural 

Networks were also used in experiments from the biomedical field [17]. 

The most frequently used format in terms of labeling data for Named Entity 

Recognition tasks is the IOB scheme in which chunks of texts are labelled as: 

beginning (B-tag), center (i.e., I-tag inside), and the outside component (O-tag). In 

various experiments from the cybersecurity domain, Conditional Random Field 

classifiers [18] benefitted from this approach. Another successful labeling strategy 

consists of annotating data with customized relational labels based on their 

importance in a cyber-attack, which aids in sentence classification and malware-

related token prediction [19]. 

Other approaches for detecting typical tokens in a text, such as the name of 

a person or a city, consider pre-trained models from spaCy10. SpaCy [20] is an open-

source Python library that supports various NLP tasks. SpaCy is known for its 

processing speed in parsing large-scale data and it offers pretrained language 

models for more than 15 languages. SpaCy implements a state-of-the-art 

architecture for NER based on Bloom embeddings [21] and residual CNNs [22]. 

‘Tok2vec’ is an independent layer from spaCy that can be shared between 

components. It is frequently applied in conjunction with another component, such 

as ‘ner’, and is set as the first layer to generate suitable dynamic vectors. The built-

in spaCy components ‘tagger’ and ‘parser’ do not share their features with the ‘ner’ 

component. As a result, they are often disabled during training for custom NER 

models. The named entity recognition system includes several NLP Transformer 

models, out of which roBERTa [23], an optimized BERT implementation, was 

considered in our experiments as part of the spaCy version 3 NER pipeline. 

3. Method 

Our overarching aim is to detect software and hardware vulnerabilities from 

OSINT news. As such, our method extracts specific relevant references to zero-day 

attacks called EVEs (Early Vulnerability Exposures). First, we required a dataset 

on exploitable vulnerabilities and cyber-attacks. Starting from an initial corpus of 

articles introducing vulnerabilities [24], we introduce two new datasets created for 

the task at hand, namely the EVE and NVD-CVE corpora. Afterwards, text 

augmentation techniques were applied to extend our datasets, followed by machine 

learning models trained on the security-relevant data. 

 

 
10 https://spacy.io/  

https://spacy.io/
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3.1 Initial Corpus of Articles Introducing Vulnerabilities 

Cybersecurity reporters from trusted websites provide useful information 

for our task. However, articles need to be filtered out since part of them consider 

events outside our scope of vulnerability identification – for example, bug bounty 

programs, hacked government websites, or data breaches for certain systems 

without mentioning the actual exploited vulnerability. 

A dataset containing 1000 manually labeled cybersecurity articles was 

gathered by Iorga et al. [24] with the aim of performing text classification on 

whether an article introduces a new vulnerability or not. The articles were extracted 

from four cybersecurity news platforms, namely: The HackerNews11, Ars 

Technica12, Security Affairs13, Threatpost14. The selected article provided insights 

into the most recent critical vulnerabilities or easy-to-exploit injection flaws. 

The scraping of the articles was performed using Newspaper [25]. 

Additional features were considered to ensure a rigorous text analysis and a precise 

labeling. The following annotations were also collected, if mentioned in text: the 

CVE-ID [26] (i.e., the identifier corresponding to a Common Vulnerability and 

Exposure), its CVSS (i.e., Common Vulnerability Scoring System) score [27], 

affected product and version, patched version, or mentioned related products. The 

final version of this dataset consisted of 596 security-relevant articles and 404 

security irrelevant articles. 

 

3.2 EVE Corpus 

The time lag between crucial moments, such as vulnerability discovery, 

CVE assignation, patch release, and CVE publish date, is of utmost importance. 

Even though relevant articles were filtered from the security irrelevant ones, a 

further division was necessary. As such, we introduce the EVE (Early Vulnerability 

Exposure) corpus which focuses on zero-day exploits, i.e., cyberattacks with and 

without patched versions available from the affected vendors, with no published 

CVE. Out of the 596 relevant articles, 250 EVE articles were manually selected and 

annotated by one cybersecurity expert.  

Two new annotations were considered for each article: Exploit Available 

and Attack Vector. The annotation of examples focused on labeling only the most 

relevant and shortest sequences; thus, the chunk's first token had to be in strong 

relation to the annotated metric. 

First, the Exploit Available annotation consist of labeling text spans where 

proof-of-concepts (PoC – e.g., video demonstration, or GitHub exploit code) were 

mentioned. References to security blog posts containing details about the unpatched 

flaw or detailed explanations about working PoC exploits were categorized as 

 
11 https://thehackernews.com/  
12 https://arstechnica.com/  
13 https://securityaffairs.co/wordpress/  
14 https://threatpost.com/  

https://thehackernews.com/
https://arstechnica.com/
https://securityaffairs.co/wordpress/
https://threatpost.com/
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relevant for this feature. In some cases, a comprehensive description of the exploit 

technique was provided by the security writer of the article. The annotated articles 

with Exploit Available represent 22.4% of the EVE articles (see Table 1 for training 

set samples). 
Table 1 

Annotated samples for Exploit Available Task 

Annotated sample 

(Exploit available text span) 

Exploit 

available 

“… an anonymous hacker with an online alias "SandboxEscaper" today released 

proof-of-concept (PoC) exploit code for a new zero-day vulnerability…” 

YES 

“… a security researcher today publicly disclosed details and proof-of-concept 

exploits for two 'unpatched' zero-day vulnerabilities …” 

YES 

“Researchers illustrated and demonstrated four attack scenarios, as explained 

below …” 

YES 

“Researchers have no plans to release the proof-of-concept code for these attacks 

….” 

NO 

 

Second, the annotation for Attack Vector consists of four different classes, 

together with the corresponding relevant text spans. This annotation relates to the 

exploitability metric from the CVSS v3 score. This vulnerability metric highlights 

the context in which the vulnerability was already exploited in the wild or 

potentially exploited. The four categories are: 

• ‘NETWORK’: the article mentions that the attacker had full remote 

control over the system or device. The vulnerability was remotely 

exploitable also in cases of flaws linked to a browser component, such as 

plugins, browser, extensions, or add-ons. 

• ‘ADJACENT’: the attacker was connected to the same network. 

• ‘PHYSICAL’: the article explicitly mentions that the attacker required 

physical access to the targeted machine. Part of attacks included the use of 

peripheral devices, such as USB drives. 

• ‘LOCAL’: the attacker accesses the targeted system locally by using 

scripts from the console or the keyboard. 

Table 2 introduces examples for each Attack Vector type, alongside the 

EVE corpus summary statistics for the Attack Vector. Due to insufficient samples, 

the security articles describing ‘Adjacent’ attacks were not taken into consideration 

into the subsequent machine learning approaches. 

 
Table 2 

Annotated samples for Attack Vector NER Task 

Attack Vector 

type 

Annotated sample 

(Attack vector text span) 

Total 

samples  

Network “… one of which could allow remote hackers to take complete 

control …” 

202 
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Attack Vector 

type 

Annotated sample 

(Attack vector text span) 

Total 

samples  

Physical “Although exploiting the issue requires physical access, 

Sintonen explained …” 

15 

Local “… could allow a local attacker to gain and run code with 

administrative system privileges on the targeted machines …” 

6 

Adjacent “… could have allowed an attacker, connected to the same 

network as the victim … “ 

3 

 

All NER experiments required the conversion of the original texts into 

inside–outside–beginning (IOB) tagged texts, as the entities had variable length. 

Entity tokens refer in this particular case to relevant sequences related to the chosen 

vulnerability features, namely Exploit Available and Attack Vector. The Attack 

Vector entities represent only 10% of the tokens, whereas the Exploit Available text 

spans cover only 3% of all the tokens from a news article, thus making the NER 

approaches very challenging. 

As a result, further experiments considered a trimmed dataset containing 

only the sentences with labeled entities (‘OnlyTagSent’) and disregarding all other 

sentences from the news article. 

 

3.3. NVD-CVE Corpus 

Given the limitation of the EVE dataset that is neither large nor diverse 

enough, more annotations were collected from multiple sources related to 

cybersecurity attacks. As such, vulnerability data feeds from the National 

Vulnerability Database15 of the U.S. government were used. It is worth mentioning 

that the exploitability metrics of each discovered vulnerability since 2002 are 

offered and published in a JSON format, having the advantage of already being 

correctly annotated. This additional dataset was highly imbalanced with 800 

Network, 200 Local, and 150 Physical examples and was collected by the same 

expert as in the previous stage. 

 

3.4. `Text augmentation on the NVD-CVE corpus 

For the spaCy experiment described later on in detail, a text augmentation 

approach was chosen for the Local and Physical Attack Vector types, particularly 

for the training examples belonging to the NVD data feed with the aim of having a 

balanced dataset. These Attack Vector types have a reduced number of examples 

both in the EVE corpus and in the NVD data feed. A first attempt considered 

NLPAug16 for synonym replacement. However, this approach damaged highly 

specific cyber-security terms (e.g., ‘buffer overflow vulnerability’ – ‘cowcatcher 

overflow vulnerability’, ‘attacker with physical access’ – ‘assailant with forcible 

 
15 https://nvd.nist.gov/vuln/data-feeds  
16 https://github.com/makcedward/nlpaug  

https://nvd.nist.gov/vuln/data-feeds
https://github.com/makcedward/nlpaug
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access’) and was therefore abandoned. 

A second experiment was conducted using TextAttack17 [28], more 

specifically an Embedding Augmenter in Command-Line Interface to change a 

specific number of words per input. This approach encountered the same issue with 

the security vocabulary (e.g., ‘Cross-site scripting (XSS) vulnerability’ – ‘Cross-

site scripting (XSS) fragility’). 

The final and successful solution was a word-level augmentation with 

insertion. A pre-trained contextual embedding with BERT was used for a 

semantically suitable insertion in the original paragraphs (e.g., ‘root login may 

allow upon a reboot’ - ‘unauthenticated root commit login may also allow upon a 

quick reboot’. The augmented contextual BERT texts implied the NVD-CVE Local 

and Physical examples were added to the training set. The goal after sampling was 

to obtain a balanced dataset (noted as EVE +NVD-CVE +Augmented), which in the 

end contained 395 Network, 400 Local, and 300 Physical examples. 

The evaluation metrics of Precision, Recall and F1-score are presented for 

all experiments. We emphasize the importance of Recall, as our focus is to 

maximize the number of correctly detected sequences that represent a vulnerability. 

Our overarching goal is to build a framework that can be used in the decision-

making process of a cybersecurity expert. 

 

3.5 Sequence Labeling / BiLTSM? 

Bidirectional word-level Long-Short Term Memory (BiLSTM) networks 

were built with Tensorflow and Keras instead of a standard LSTM, because these 

networks consider the previous and post information after a specific sequence. The 

input vocabulary required a tokenizer for words and their corresponding tags (IOB 

scheme). The model architecture implied an embeddings layer, a BiLSTM layer 

with a dropout rate of 0.2, and a time distributed layer applied on Dense layers with 

ReLU activation corresponding to each IOB tag (see Fig. 1 for architecture). No 

pre-trained embeddings were chosen due to the small-scaled preliminary dataset. 

In terms of hyperparameters, the configuration implied an Adam optimizer 

with a learning rate of 0.005, the model was trained for 20 epochs with a batch size 

of 32. The performance on the training data was measured with categorical cross-

entropy as a loss function. 

 

 
17 https://github.com/QData/TextAttack  

https://github.com/QData/TextAttack
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Fig. 1. BiLSTM network architecture. 

 

3.6 spaCy 

Our second approach for the NER tasks considered a custom NER model 

built using spaCy v3. The spaCy’s underlying model architecture is not detailed 

publicly, but it considers an embedding strategy with subword features and Bloom 

Embeddings Input data was transposed into the required spaCy v3 training format 

with IOB tags, while dropping sentence and document indexes. Essentially, the 

Language class, the Vocab, and the Doc object are the three most important data 

structures in spaCy. The Language class is responsible for parsing text and 

converting it into a Doc object, being stored as an ‘nlp’ variable. The Doc object 

owns the token sequence along with all the annotations. With the aim of 

guaranteeing a unique truth source, the Vocab object unifies strings, word vectors, 

and lexical properties. 

Due to the fact that spaCy ‘ner’ component inside the ‘nlp’ pipe provides 

default entities related to persons, organizations, time expressions or monetary 

values, we employ a custom Named Entity Recognition model with custom entity 

types for each EVE feature. the.Therefore, the specific new entity labels were added 

before setting up the pipeline and the entity recognizer. The model started from an 

English spaCy trained pipeline optimized for CPU, updated in spaCy version 3 and 

the custom entity labels were added to the entity recognizer. The initial NLP spaCy 

processing pipeline contained additional pipeline components, such as "tok2vec" or 

"tagger", that did not affect the NER component; as such, they were disabled during 

the training process. No static values were used in the spaCy training configuration. 

In terms of hyperparameters, the NER model was trained for 20 epochs on shuffled 

data to reduce the bias generated by the order of the training examples with 

compounding batch sizes from 4 to 32, a spaCy optimizer, and a dropout rate of 

0.2. 
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4. Results 

4.1 Bi-LSTM 

The first experiments with the BiLSTM network exhibited problems in 

identifying the text spans which describe the EVE tasks in cybersecurity articles: 

references to a published proof-of-concept exploit video and to an attack vector 

metric. For the machine learning approaches, the datasets were divided statically 

into two subsets: train and test data with a split percentage of 80% and 20%, which 

were later used as a benchmark for the spaCy approach. 

The model’s performance in the Exploit Available task was evaluated on 

the entire corpus. The classification report from Table 3 indicates that the model 

clearly overfits the data because the O value, outside-chunk entity, represents 

99,6% out of the total entities. It was interpreted as a clear overfitting behavior, 

because most of the sentences were not relevant for our task 

 
Table 3 

Classification performance on the entire Exploit corpus 

Named entity Precision Recall F1 Score 

B-exploitAvailable .00 .00 .00 

I-exploitAvailable .00 .00 .00 

O 1.00 1.00 1.00 

 

The cybersecurity articles were excessively long, and the named entities 

were sparse. As a result, due to the poor performance of the first trial, experiments 

continued with shortened versions of the EVE features. The Bi-LSTM model was 

further trained on the corresponding Exploit Available dataset type, ‘OnlyTagSent’ 

dataset. Considering that this corpus contained 15.5% named entity tokens, the 

model showed a high overfitting condition after 20 epochs (see the classification 

report in Table 4). The model only extracted outside chunk entities (i.e., 'O') in the 

same way it did in the previous trial.  

 
Table 4 

Classification performance for Exploit Available 'OnlyTagSent' with Bi-LSTM 

Named entity Precision Recall F1 Score 

B-exploitAvailable .00 .00 .00 

I-exploitAvailable .00 .00 .00 

O .93 1.00 .96 

 

Next, the experiments for determining the Attack Vector features were 

conducted only on ‘OnlyTagSent’ corpus, given the weak performance of the Bi-

LSTM approach on identifying the Exploit Available labels; however, the Bi-

LSTM model exhibited overfitting as presented in the classification report from 

Table 5. 
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Table 5 
Classification performance for Attack Vector ‘OnlyTagSent’ with Bi-LSTM 

Named entity Precision Recall F1 Score 

B-Network .01 .02 .01 

I-Network .10 .01 .03 

B-Local .00 .00 .00 

I-Local .00 .00 .00 

B-Physical .00 .00 .00 

I-Physical .00 .00 .00 

O .97 .99 .98 

 

Considering the presented cases, this approach was abandoned in favour of 

the state-of-the-art Named Entity Recognition tool, spaCy. Further alteration and 

improvements of the cybersecurity datasets were specifically conducted for this 

machine learning approach. 

 

4.2 spaCy 

Experiments were conducted with variations of both datasets (i.e., trimmed 

versions or diverse augmentations); however, the most promising results with the 

spaCy version 3 model are represented by the trimmed version (‘OnlyTagSent’) for 

the Exploit Available feature and the augmented corpus for Attack Vector. The 

evaluation was conducted using the spaCy scorer. 

Table 6 introduces the results with our spaCy model obtained when testing 

with new article sentences from the ‘OnlyTagSent’ EVE dataset. No NVD-CVE 

data was added since the exploit’s release is not related to the CVSS score and thus 

could not be extracted from the National Vulnerability Database. 
Table 6 

spaCy evaluation on the EVE corpus 

Named entity Precision Recall F1 Score 

B-exploitAvailable .642 .750 .692 

I-exploitAvailable .625 .409 .495 

 

Table 7 introduces the results of our spaCy model on both the EVE+NVD-

CVE corpus), followed by the performance of the balanced model with 

augmentation (see Table 8). The poor performance on the first dataset is argued by 

the high imbalance between the classes. 
Table 7 

spaCy evaluation on EVE+NVD-CVE corpus 

Named entity Precision Recall F1 Score 

B-Network .224 .083 .122 

I-Network .059 .125 .206 

B-Local .750 .333 .461 

I-Local .760 .308 .439 

B-Physical .571 .461 .510 

I-Physical .896 .594 .715 
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Table 8 
spaCy evaluation on the EVE +NVD-CVE +Augmented corpus 

Named entity Precision Recall F1 Score 

B-Network .670 .724 .696 

I-Network .718 .658 .686 

B-Local .537 .773 .634 

I-Local .641 .784 .705 

B-Physical .918 .730 .813 

I-Physical .881 .928 .904 

 

4.3 Sample Use Cases 

When tested on new articles from ZDNet18 outside the EVE corpus, the 

spaCy model identified quite well the Exploit Available entities. Table 9 highlights 

three samples, the latter having no ‘ExploitAvailable’ named entity and being 

correctly identified as such. 
Table 9 

spaCy model evaluation on new entries 

Test samples 
“'Here's How the Attack Works? The attack involves exploitation of three vulnerabilities via 

iTunes and the App Store's iOS Notify function.” 

“'Nelson later released proof-of concept code for the first Steam zero-day, and also criticized 

Valve and HackerOne for their abysmall handling of his bug report.” 

“Security researchers and regular Steam users alike are mad because Valve refused to 

acknowledge the reported issue as a security flaw, and declined to patch it.” 

 

Tests were performed on newly gathered paragraphs from security articles 

recently. The test samples annotated by spaCy are presented in Table 10. The 

Network test samples indicate that additional tokens were erroneously tagged, as 

the recall for the beginning chunk is approximately .72. Both test samples for 

Physical denote adequate identifications, with a minor incorrect labeling with the 

Local category in the first examples. The Local class has the best overall recall and 

correctly labels multiple sequences in the last example. 

5. Conclusions and future work 

This paper introduces a method to automatically label articles on 

vulnerabilities and cyberattacks from trusted sources, while focusing on the 

exploit’s public release and the attack vector.  

Experiments with two different approaches were considered. The 

bidirectional word-level LSTM model showed poor results for both tasks, whereas 

our custom model built using spaCy with Bloom embeddings [21] and residual 

CNNs [22] achieved promising results. Besides the EVE corpus with annotated 

 
18 https://www.zdnet.com/  

https://www.zdnet.com/
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cybersecurity articles, the NVD data feeds with the CVEs from 2017 to 2021 were 

added into the final corpus. Text augmentation techniques with contextualized word 

embeddings from BERT were employed for two of the three Attack Vector classes 

(i.e., Physical and Local) to ensure a balanced dataset. 

As a future development, cybersecurity information should be crawled and 

annotated from other sources such as exploit kits sold on the Dark Web, blogs of 

cybersecurity experts, or the Google Hacking Database. Additional references for 

other exploitability metrics from the CVSS v3 score should be retrieved using NER 

models - for instance, the User Interaction (e.g., “requires user interaction”, “victim 

needs to open the malicious iWork file”) and Privileges Required (e.g., “attacker 

requires no privileges”, “non-privileged user can initiate”). In terms of follow-up 

processing, we envision creating a dashboard with a newsfeed in which articles can 

be filtered depending on user needs and on the owned infrastructure. 

Table 10 
Samples and spaCy output 

Type Test sample 
Network “Lastly, an extension named Rainbow Fart was ascertained to have a zip slip 

vulnerability, which allows an adversary to overwrite arbitrary files on a 

victim's machine and gain remote code execution.” 

Network “The disclosure of the CODESYS flaws comes close on the heels of similar 

issues that were addressed in Siemens SIMATIC S7-1200 and S7-1500 PLCs 

that could be exploited by attackers to remotely gain access to protected areas of 

the memory and achieve unrestricted and undetected code execution.” 

Network “The vulnerability exists because the software lacks proper authentication 

controls to information accessible from the web UI. An attacker could exploit 

this vulnerability by sending a malicious HTTP request to the web UI of an 

affected device.” 

Physical and 

Local 

“The USB Mass Storage Class driver in Microsoft Windows Vista SP2, 

Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, 

Windows Server 2012 Gold and R2, Windows RT 8.1, and Windows 10 Gold 

and 1511 allows physically proximate attackers to execute arbitrary code by 

inserting a crafted USB device, aka "USB Mass Storage Elevation of Privilege 

Vulnerability.” 

Physical ”Setup Wizard in Android 5.1.x before LMY49H and 6.x before 2016-03-01 

allows physically proximate attackers to bypass the Factory Reset Protection 

protection mechanism and delete data via unspecified vectors, aka internal bug 

25955042.” 

Local ” Avamar Data Store (ADS) and Avamar Virtual Edition (AVE) in EMC 

Avamar Server before 7.3.0-233 allow local users to obtain root privileges by 

leveraging admin access and entering a sudo command.” 

Local “An elevation of privilege vulnerability in Mediaserver in Android 4.x before 

4.4.4, 5.0.x before 5.0.2, 5.1.x before 5.1.1, 6.x before 2016-11-01, and 7.0 

before 2016-11-01 could enable a local malicious application to execute 

arbitrary code within the context of a privileged process. This issue is rated as 

High because it could be used to gain local access to elevated capabilities, which 

are not normally accessible to a third-party application.” 
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