
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 2, 2022 ISSN 2286-3540

EXTRACTING EXPLOITS AND ATTACK VECTORS FROM

CYBERSECURITY NEWS USING NLP

Cristian SANDESCU1, Alexandra DINISOR2, Cristina-Veronica VLADESCU3,

Octavian GRIGORESCU4, Dragos CORLATESCU5, Mihai DASCALU6,

Razvan RUGHINIS7

Cybersecurity has an immense impact on society as it enables the digital protection

of individuals and enterprises against an increasing number of online threats.

Moreover, the rate at which attackers discover and exploit critical vulnerabilities

outperforms the vendors’ capabilities to respond accordingly and provide security

patches. As such, open-source intelligence data (OSINT) has become a valuable

resource, from which details on zero-day vulnerabilities can be retrieved and timely

actions can be taken before the patches become available. In this paper we propose a

method to automatically label articles on vulnerabilities and cyberattacks from

trusted sources. Using Named Entity Recognition, we extract essential information

about new vulnerabilities, such as the exploit’s public release and the environment in

which the attack’s exploitation is possible. Our balanced dataset contains 1095

samples out of which 250 entries are from cybersecurity articles; the rest of the

articles were crawled and annotated from the U.S. Government’s Vulnerability

Database, whereas automated text augmentation techniques were also considered.

Our model built on top of spaCy obtained an overall performance of 75% recall on

the Exploit Available task. When considering the Attack Vector metric, the model

achieved the following recalls: Network 72%, Local 78%, and Physical 92%.

Keywords: Zero-days Attack, Exploit, Attack Vector, Entity Labeling, spaCy

1 PhD student, Dept. of Software Development, CODA Intelligence SRL, Romania, e-mail:

cristian.sandescu@codaintelligence.com
2 MSc student, Dept. of Informatics, Technical University of Munich, Germany,

e-mail: alexandra.dinisor@tum.de
3 MSc student, Dept. of Computer Science, University POLITEHNICA of Bucharest, Romania,

e-mail: cristiana.vladescu@stud.acs.upb.ro
4 PhD student, Software Development, CODA Intelligence SRL, Romania, e-mail,

e-mail: octavian.grigorescu@codaintelligence.com
5 PhD student, Dept. of Computer Science, University POLITEHNICA of Bucharest, Romania,

e-mail: dragos.corlatescu@upb.ro
6 Prof, Dept. of Computer Science, University POLITEHNICA of Bucharest, Romania,

e-mail: mihai.dascalu@upb.ro
7 Prof, Dept. of Computer Science, University POLITEHNICA of Bucharest, Romania,

e-mail: razvan.rughinis@upb.ro

64 Cristian Sandescu & co

1. Introduction

In recent years, the accelerated digitalization process resulted in an

intensifying number of vulnerabilities and cyber-attacks. A fitting example is the

67 percent increase in security breaches over a range of five years [1], whereas

most attacks are people-based and lead to information leakage. Moreover, Talalaev

[2] highlighted that 73 percent of cybercriminals consider traditional antivirus

security to be irrelevant when distributing their Trojans or hijacking internet

connected devices.

In terms of preventing data breaches, early notifications on urgent patches,

as well as information to mitigate the risk of exposure, should be a top priority.

However, the average delay in applying patches by employees in a company is 102

days [3]. This alarming protection gap is a result of misinformation and lack of

concern on the abundant patches and updates released by the software vendors.

Nevertheless, the ever-changing threat landscape greatly impacts users trying to

protect themselves against attackers.

Discovered by security researchers or bug bounty hunters, vulnerabilities

are commonly published and discussed on the Internet. Therefore, important

articles and in-depth reports are written and issued on niche magazines by

cybersecurity analysts and reporters, thus providing support until vendors release

corresponding security patches.

Our research aims to aggregate data from trusted cybersecurity news

platforms (i.e., a central OSINT source) and to automatically extract information

regarding vulnerabilities exploited in the wild as zero-days. . The dataset used for

this project has 1000 manually labeled cybersecurity and can be downloaded from

here 8. Moreover, the enlarged sequence labeled dataset with the EVE feature can

be downloaded from here.9

We summarize our core contributions as follows:

• Employing a dataset focused on two particular vulnerability characteristics,

particularly the exploit’s public release and the attack vector (i.e., the

attack’s operating environment), which were manually labeled and

converted to IOB format.

• Expanding the manually collected dataset with samples from the National

Vulnerability Database of the U.S. government and applying pre-trained

contextual embedding with BERT for data augmentation to prevent

overfitting behavior.

• Building a Named Entity Recognition model from spaCy v3 in conjunction

with the afore-mentioned custom named entities to extract the key

8 https://yggdrasil.codaintelligence.com/dataset.xlsx
9 https://yggdrasil.codaintelligence.com/dataset-spacy.xlsx

https://yggdrasil.codaintelligence.com/dataset.xlsx
https://yggdrasil.codaintelligence.com/dataset-spacy.xlsx

Extracting exploits and attack vectors from cybersecurity news using NLP 65

characteristics based on sequence labeling.

• Obtaining qualitative outcomes in the field of zero-day attacks, such as the

Attack Vector vulnerability metric with recall over 90% and the detection

of proof-of-concepts for early exploits with recall over 75%.

The next section describes the current state of the fields of cybersecurity

with the focus on early detection of vulnerabilities, followed by Natural Language

Processing with data augmentation and sequence labeling. The third section

presents the method in which the datasets used in our experiments are presented, as

well as the applied algorithms. The results are analyzed in the fourth section,

whereas the fifth presents conclusions and future experiments, together with

envisioned improvements.

2. State of the Art

This section introduces state-of-the-art methods for the early detection of

vulnerabilities, followed by relevant Natural Language Processing (NLP)

techniques, namely data augmentation to enhance our dataset, and named entity

recognition for labeling text segments.

2.1 Early Detection of Vulnerabilities

Detection techniques for software vulnerabilities are widely discussed in the

scientific literature. For example, Mittal et al. [4] and Queiroz et al. [5] correlated

user-generated data from social media posts with the identification of new

vulnerabilities. Social networks represent a valuable OSINT source, where details

about software or hardware-related vulnerabilities are discussed even before being

officially disclosed by the vendors.

Moholth et al. [6] used Reactive Programming as a method to extract

vulnerability-relevant tweets. Their experiment relied on filtering data with human

involvement to ensure that the conclusions were correct. Moreover, a certain set of

keywords was considered as not all tweets described a recent issue actively

exploited in the wild. New critical flaws (i.e., zero-days vulnerabilities) were

identified using a large number of retweets within a short time interval.

Another approach on identifying vulnerabilities that are likely to be

exploited was presented by Tavabi et al. [7] who considered a neural language

model whose input texts were extracted from the dark web and deep web, as well

as security blog posts. The examination of dark web posts separated the available

information relevant to the cybersecurity field from posts on illegal activities, such

as the drug trafficking and the resale of stolen merchandise. The experiment

included a Skip-Gram model with Negative Sampling. A further classification task

for exploit prediction was carried out with a SVM classifier with Radial Basis

Function kernel, which produced the best results for detecting the high-severity

66 Cristian Sandescu & co

flaws, with an F1 score of .80.

Collecting Twitter posts for vulnerability detection is a widely considered

perspective. As there can be millions of tweets describing past and recent cyber-

attacks, Trabelsi et al. [8] proposed a machine learning component named SMASH

(Social Media Analysis for Security on HANA) to be integrated in a security

management platform. The two mentioned tasks focus on detecting zero-day

exploits in tweet posts, as well as on separating new CVE assignations from CVE

updates. Irrelevant terms were removed, and bag-of-words representations were

considered when applying a clustering algorithm. In their experiment, Linux kernel

vulnerabilities about zero-day exploits were assessed. The correlation between their

findings and the delay in CVE Update detection argues that software developers

and companies are in general one step behind vulnerability discovery, thus exposing

their products to malicious actors.

2.2. Natural Language Specific Tasks

Data augmentation in NLP is a more sensitive task in comparison to the

same strategy applied in other machine learning subfields, such as computer vision.

Given precise disciplines like biology or cybersecurity, a single word might affect

the meaning of the entire phrase. As a result, careful testing of the text augmentation

techniques [9], such as synonym replacement, random swap, random insertion, and

random deletion, is recommended.

Using pre-trained embeddings when augmenting text is a widely employed

approach to preserve the context of the input sentence. Contextual embeddings

prove to be reliable sources of preventing language models from overfitting. The

Bidirectional Encoder Representations from Transformers (BERT) [10] provided

state-of-the-art results for a variety of NLP tasks, while outperforming classic

sequential models. BERT was trained on a large plain text corpus (about 3300

million words) from two popular sources: English Wikipedia and BookCorpus [11].

BERT as a contextual word embedding augmenter was applied on datasets from a

variety of scientific fields [12]. Moreover, the cased model keeps the text’s original

accents and marks, allowing a Named Entity Recognition [13] model to benefit

during training. Other BERT-based experiments, such as fine-tuning BERT in the

result of a conditional version for text augmentation [14], were conducted with

promising outcomes.

Extracting exploits and attack vectors from cybersecurity news using NLP 67

Named Entity Recognition (NER). NLP techniques were frequently used

to identify sequences that reference a specific entity. Bidirectional long-short term

memory with conditional random field layer on top (BiLSTM-CRF) proved to be

beneficial in a variety of real-life situations, including geoscience entity detection

[15] or social media message recognition [16]. N-grams and Convolutional Neural

Networks were also used in experiments from the biomedical field [17].

The most frequently used format in terms of labeling data for Named Entity

Recognition tasks is the IOB scheme in which chunks of texts are labelled as:

beginning (B-tag), center (i.e., I-tag inside), and the outside component (O-tag). In

various experiments from the cybersecurity domain, Conditional Random Field

classifiers [18] benefitted from this approach. Another successful labeling strategy

consists of annotating data with customized relational labels based on their

importance in a cyber-attack, which aids in sentence classification and malware-

related token prediction [19].

Other approaches for detecting typical tokens in a text, such as the name of

a person or a city, consider pre-trained models from spaCy10. SpaCy [20] is an open-

source Python library that supports various NLP tasks. SpaCy is known for its

processing speed in parsing large-scale data and it offers pretrained language

models for more than 15 languages. SpaCy implements a state-of-the-art

architecture for NER based on Bloom embeddings [21] and residual CNNs [22].

‘Tok2vec’ is an independent layer from spaCy that can be shared between

components. It is frequently applied in conjunction with another component, such

as ‘ner’, and is set as the first layer to generate suitable dynamic vectors. The built-

in spaCy components ‘tagger’ and ‘parser’ do not share their features with the ‘ner’

component. As a result, they are often disabled during training for custom NER

models. The named entity recognition system includes several NLP Transformer

models, out of which roBERTa [23], an optimized BERT implementation, was

considered in our experiments as part of the spaCy version 3 NER pipeline.

3. Method

Our overarching aim is to detect software and hardware vulnerabilities from

OSINT news. As such, our method extracts specific relevant references to zero-day

attacks called EVEs (Early Vulnerability Exposures). First, we required a dataset

on exploitable vulnerabilities and cyber-attacks. Starting from an initial corpus of

articles introducing vulnerabilities [24], we introduce two new datasets created for

the task at hand, namely the EVE and NVD-CVE corpora. Afterwards, text

augmentation techniques were applied to extend our datasets, followed by machine

learning models trained on the security-relevant data.

10 https://spacy.io/

https://spacy.io/

68 Cristian Sandescu & co

3.1 Initial Corpus of Articles Introducing Vulnerabilities

Cybersecurity reporters from trusted websites provide useful information

for our task. However, articles need to be filtered out since part of them consider

events outside our scope of vulnerability identification – for example, bug bounty

programs, hacked government websites, or data breaches for certain systems

without mentioning the actual exploited vulnerability.

A dataset containing 1000 manually labeled cybersecurity articles was

gathered by Iorga et al. [24] with the aim of performing text classification on

whether an article introduces a new vulnerability or not. The articles were extracted

from four cybersecurity news platforms, namely: The HackerNews11, Ars

Technica12, Security Affairs13, Threatpost14. The selected article provided insights

into the most recent critical vulnerabilities or easy-to-exploit injection flaws.

The scraping of the articles was performed using Newspaper [25].

Additional features were considered to ensure a rigorous text analysis and a precise

labeling. The following annotations were also collected, if mentioned in text: the

CVE-ID [26] (i.e., the identifier corresponding to a Common Vulnerability and

Exposure), its CVSS (i.e., Common Vulnerability Scoring System) score [27],

affected product and version, patched version, or mentioned related products. The

final version of this dataset consisted of 596 security-relevant articles and 404

security irrelevant articles.

3.2 EVE Corpus

The time lag between crucial moments, such as vulnerability discovery,

CVE assignation, patch release, and CVE publish date, is of utmost importance.

Even though relevant articles were filtered from the security irrelevant ones, a

further division was necessary. As such, we introduce the EVE (Early Vulnerability

Exposure) corpus which focuses on zero-day exploits, i.e., cyberattacks with and

without patched versions available from the affected vendors, with no published

CVE. Out of the 596 relevant articles, 250 EVE articles were manually selected and

annotated by one cybersecurity expert.

Two new annotations were considered for each article: Exploit Available

and Attack Vector. The annotation of examples focused on labeling only the most

relevant and shortest sequences; thus, the chunk's first token had to be in strong

relation to the annotated metric.

First, the Exploit Available annotation consist of labeling text spans where

proof-of-concepts (PoC – e.g., video demonstration, or GitHub exploit code) were

mentioned. References to security blog posts containing details about the unpatched

flaw or detailed explanations about working PoC exploits were categorized as

11 https://thehackernews.com/
12 https://arstechnica.com/
13 https://securityaffairs.co/wordpress/
14 https://threatpost.com/

https://thehackernews.com/
https://arstechnica.com/
https://securityaffairs.co/wordpress/
https://threatpost.com/

Extracting exploits and attack vectors from cybersecurity news using NLP 69

relevant for this feature. In some cases, a comprehensive description of the exploit

technique was provided by the security writer of the article. The annotated articles

with Exploit Available represent 22.4% of the EVE articles (see Table 1 for training

set samples).
Table 1

Annotated samples for Exploit Available Task

Annotated sample

(Exploit available text span)

Exploit

available

“… an anonymous hacker with an online alias "SandboxEscaper" today released

proof-of-concept (PoC) exploit code for a new zero-day vulnerability…”

YES

“… a security researcher today publicly disclosed details and proof-of-concept

exploits for two 'unpatched' zero-day vulnerabilities …”

YES

“Researchers illustrated and demonstrated four attack scenarios, as explained

below …”

YES

“Researchers have no plans to release the proof-of-concept code for these attacks

….”

NO

Second, the annotation for Attack Vector consists of four different classes,

together with the corresponding relevant text spans. This annotation relates to the

exploitability metric from the CVSS v3 score. This vulnerability metric highlights

the context in which the vulnerability was already exploited in the wild or

potentially exploited. The four categories are:

• ‘NETWORK’: the article mentions that the attacker had full remote

control over the system or device. The vulnerability was remotely

exploitable also in cases of flaws linked to a browser component, such as

plugins, browser, extensions, or add-ons.

• ‘ADJACENT’: the attacker was connected to the same network.

• ‘PHYSICAL’: the article explicitly mentions that the attacker required

physical access to the targeted machine. Part of attacks included the use of

peripheral devices, such as USB drives.

• ‘LOCAL’: the attacker accesses the targeted system locally by using

scripts from the console or the keyboard.

Table 2 introduces examples for each Attack Vector type, alongside the

EVE corpus summary statistics for the Attack Vector. Due to insufficient samples,

the security articles describing ‘Adjacent’ attacks were not taken into consideration

into the subsequent machine learning approaches.

Table 2

Annotated samples for Attack Vector NER Task

Attack Vector

type

Annotated sample

(Attack vector text span)

Total

samples

Network “… one of which could allow remote hackers to take complete

control …”

202

70 Cristian Sandescu & co

Attack Vector

type

Annotated sample

(Attack vector text span)

Total

samples

Physical “Although exploiting the issue requires physical access,

Sintonen explained …”

15

Local “… could allow a local attacker to gain and run code with

administrative system privileges on the targeted machines …”

6

Adjacent “… could have allowed an attacker, connected to the same

network as the victim … “

3

All NER experiments required the conversion of the original texts into

inside–outside–beginning (IOB) tagged texts, as the entities had variable length.

Entity tokens refer in this particular case to relevant sequences related to the chosen

vulnerability features, namely Exploit Available and Attack Vector. The Attack

Vector entities represent only 10% of the tokens, whereas the Exploit Available text

spans cover only 3% of all the tokens from a news article, thus making the NER

approaches very challenging.

As a result, further experiments considered a trimmed dataset containing

only the sentences with labeled entities (‘OnlyTagSent’) and disregarding all other

sentences from the news article.

3.3. NVD-CVE Corpus

Given the limitation of the EVE dataset that is neither large nor diverse

enough, more annotations were collected from multiple sources related to

cybersecurity attacks. As such, vulnerability data feeds from the National

Vulnerability Database15 of the U.S. government were used. It is worth mentioning

that the exploitability metrics of each discovered vulnerability since 2002 are

offered and published in a JSON format, having the advantage of already being

correctly annotated. This additional dataset was highly imbalanced with 800

Network, 200 Local, and 150 Physical examples and was collected by the same

expert as in the previous stage.

3.4. `Text augmentation on the NVD-CVE corpus

For the spaCy experiment described later on in detail, a text augmentation

approach was chosen for the Local and Physical Attack Vector types, particularly

for the training examples belonging to the NVD data feed with the aim of having a

balanced dataset. These Attack Vector types have a reduced number of examples

both in the EVE corpus and in the NVD data feed. A first attempt considered

NLPAug16 for synonym replacement. However, this approach damaged highly

specific cyber-security terms (e.g., ‘buffer overflow vulnerability’ – ‘cowcatcher

overflow vulnerability’, ‘attacker with physical access’ – ‘assailant with forcible

15 https://nvd.nist.gov/vuln/data-feeds
16 https://github.com/makcedward/nlpaug

https://nvd.nist.gov/vuln/data-feeds
https://github.com/makcedward/nlpaug

Extracting exploits and attack vectors from cybersecurity news using NLP 71

access’) and was therefore abandoned.

A second experiment was conducted using TextAttack17 [28], more

specifically an Embedding Augmenter in Command-Line Interface to change a

specific number of words per input. This approach encountered the same issue with

the security vocabulary (e.g., ‘Cross-site scripting (XSS) vulnerability’ – ‘Cross-

site scripting (XSS) fragility’).

The final and successful solution was a word-level augmentation with

insertion. A pre-trained contextual embedding with BERT was used for a

semantically suitable insertion in the original paragraphs (e.g., ‘root login may

allow upon a reboot’ - ‘unauthenticated root commit login may also allow upon a

quick reboot’. The augmented contextual BERT texts implied the NVD-CVE Local

and Physical examples were added to the training set. The goal after sampling was

to obtain a balanced dataset (noted as EVE +NVD-CVE +Augmented), which in the

end contained 395 Network, 400 Local, and 300 Physical examples.

The evaluation metrics of Precision, Recall and F1-score are presented for

all experiments. We emphasize the importance of Recall, as our focus is to

maximize the number of correctly detected sequences that represent a vulnerability.

Our overarching goal is to build a framework that can be used in the decision-

making process of a cybersecurity expert.

3.5 Sequence Labeling / BiLTSM?

Bidirectional word-level Long-Short Term Memory (BiLSTM) networks

were built with Tensorflow and Keras instead of a standard LSTM, because these

networks consider the previous and post information after a specific sequence. The

input vocabulary required a tokenizer for words and their corresponding tags (IOB

scheme). The model architecture implied an embeddings layer, a BiLSTM layer

with a dropout rate of 0.2, and a time distributed layer applied on Dense layers with

ReLU activation corresponding to each IOB tag (see Fig. 1 for architecture). No

pre-trained embeddings were chosen due to the small-scaled preliminary dataset.

In terms of hyperparameters, the configuration implied an Adam optimizer

with a learning rate of 0.005, the model was trained for 20 epochs with a batch size

of 32. The performance on the training data was measured with categorical cross-

entropy as a loss function.

17 https://github.com/QData/TextAttack

https://github.com/QData/TextAttack

72 Cristian Sandescu & co

Fig. 1. BiLSTM network architecture.

3.6 spaCy

Our second approach for the NER tasks considered a custom NER model

built using spaCy v3. The spaCy’s underlying model architecture is not detailed

publicly, but it considers an embedding strategy with subword features and Bloom

Embeddings Input data was transposed into the required spaCy v3 training format

with IOB tags, while dropping sentence and document indexes. Essentially, the

Language class, the Vocab, and the Doc object are the three most important data

structures in spaCy. The Language class is responsible for parsing text and

converting it into a Doc object, being stored as an ‘nlp’ variable. The Doc object

owns the token sequence along with all the annotations. With the aim of

guaranteeing a unique truth source, the Vocab object unifies strings, word vectors,

and lexical properties.

Due to the fact that spaCy ‘ner’ component inside the ‘nlp’ pipe provides

default entities related to persons, organizations, time expressions or monetary

values, we employ a custom Named Entity Recognition model with custom entity

types for each EVE feature. the.Therefore, the specific new entity labels were added

before setting up the pipeline and the entity recognizer. The model started from an

English spaCy trained pipeline optimized for CPU, updated in spaCy version 3 and

the custom entity labels were added to the entity recognizer. The initial NLP spaCy

processing pipeline contained additional pipeline components, such as "tok2vec" or

"tagger", that did not affect the NER component; as such, they were disabled during

the training process. No static values were used in the spaCy training configuration.

In terms of hyperparameters, the NER model was trained for 20 epochs on shuffled

data to reduce the bias generated by the order of the training examples with

compounding batch sizes from 4 to 32, a spaCy optimizer, and a dropout rate of

0.2.

Extracting exploits and attack vectors from cybersecurity news using NLP 73

4. Results

4.1 Bi-LSTM

The first experiments with the BiLSTM network exhibited problems in

identifying the text spans which describe the EVE tasks in cybersecurity articles:

references to a published proof-of-concept exploit video and to an attack vector

metric. For the machine learning approaches, the datasets were divided statically

into two subsets: train and test data with a split percentage of 80% and 20%, which

were later used as a benchmark for the spaCy approach.

The model’s performance in the Exploit Available task was evaluated on

the entire corpus. The classification report from Table 3 indicates that the model

clearly overfits the data because the O value, outside-chunk entity, represents

99,6% out of the total entities. It was interpreted as a clear overfitting behavior,

because most of the sentences were not relevant for our task

Table 3

Classification performance on the entire Exploit corpus

Named entity Precision Recall F1 Score

B-exploitAvailable .00 .00 .00

I-exploitAvailable .00 .00 .00

O 1.00 1.00 1.00

The cybersecurity articles were excessively long, and the named entities

were sparse. As a result, due to the poor performance of the first trial, experiments

continued with shortened versions of the EVE features. The Bi-LSTM model was

further trained on the corresponding Exploit Available dataset type, ‘OnlyTagSent’

dataset. Considering that this corpus contained 15.5% named entity tokens, the

model showed a high overfitting condition after 20 epochs (see the classification

report in Table 4). The model only extracted outside chunk entities (i.e., 'O') in the

same way it did in the previous trial.

Table 4

Classification performance for Exploit Available 'OnlyTagSent' with Bi-LSTM

Named entity Precision Recall F1 Score

B-exploitAvailable .00 .00 .00

I-exploitAvailable .00 .00 .00

O .93 1.00 .96

Next, the experiments for determining the Attack Vector features were

conducted only on ‘OnlyTagSent’ corpus, given the weak performance of the Bi-

LSTM approach on identifying the Exploit Available labels; however, the Bi-

LSTM model exhibited overfitting as presented in the classification report from

Table 5.

74 Cristian Sandescu & co

Table 5
Classification performance for Attack Vector ‘OnlyTagSent’ with Bi-LSTM

Named entity Precision Recall F1 Score

B-Network .01 .02 .01

I-Network .10 .01 .03

B-Local .00 .00 .00

I-Local .00 .00 .00

B-Physical .00 .00 .00

I-Physical .00 .00 .00

O .97 .99 .98

Considering the presented cases, this approach was abandoned in favour of

the state-of-the-art Named Entity Recognition tool, spaCy. Further alteration and

improvements of the cybersecurity datasets were specifically conducted for this

machine learning approach.

4.2 spaCy

Experiments were conducted with variations of both datasets (i.e., trimmed

versions or diverse augmentations); however, the most promising results with the

spaCy version 3 model are represented by the trimmed version (‘OnlyTagSent’) for

the Exploit Available feature and the augmented corpus for Attack Vector. The

evaluation was conducted using the spaCy scorer.

Table 6 introduces the results with our spaCy model obtained when testing

with new article sentences from the ‘OnlyTagSent’ EVE dataset. No NVD-CVE

data was added since the exploit’s release is not related to the CVSS score and thus

could not be extracted from the National Vulnerability Database.
Table 6

spaCy evaluation on the EVE corpus

Named entity Precision Recall F1 Score

B-exploitAvailable .642 .750 .692

I-exploitAvailable .625 .409 .495

Table 7 introduces the results of our spaCy model on both the EVE+NVD-

CVE corpus), followed by the performance of the balanced model with

augmentation (see Table 8). The poor performance on the first dataset is argued by

the high imbalance between the classes.
Table 7

spaCy evaluation on EVE+NVD-CVE corpus

Named entity Precision Recall F1 Score

B-Network .224 .083 .122

I-Network .059 .125 .206

B-Local .750 .333 .461

I-Local .760 .308 .439

B-Physical .571 .461 .510

I-Physical .896 .594 .715

Extracting exploits and attack vectors from cybersecurity news using NLP 75

Table 8
spaCy evaluation on the EVE +NVD-CVE +Augmented corpus

Named entity Precision Recall F1 Score

B-Network .670 .724 .696

I-Network .718 .658 .686

B-Local .537 .773 .634

I-Local .641 .784 .705

B-Physical .918 .730 .813

I-Physical .881 .928 .904

4.3 Sample Use Cases

When tested on new articles from ZDNet18 outside the EVE corpus, the

spaCy model identified quite well the Exploit Available entities. Table 9 highlights

three samples, the latter having no ‘ExploitAvailable’ named entity and being

correctly identified as such.
Table 9

spaCy model evaluation on new entries

Test samples
“'Here's How the Attack Works? The attack involves exploitation of three vulnerabilities via

iTunes and the App Store's iOS Notify function.”

“'Nelson later released proof-of concept code for the first Steam zero-day, and also criticized

Valve and HackerOne for their abysmall handling of his bug report.”

“Security researchers and regular Steam users alike are mad because Valve refused to

acknowledge the reported issue as a security flaw, and declined to patch it.”

Tests were performed on newly gathered paragraphs from security articles

recently. The test samples annotated by spaCy are presented in Table 10. The

Network test samples indicate that additional tokens were erroneously tagged, as

the recall for the beginning chunk is approximately .72. Both test samples for

Physical denote adequate identifications, with a minor incorrect labeling with the

Local category in the first examples. The Local class has the best overall recall and

correctly labels multiple sequences in the last example.

5. Conclusions and future work

This paper introduces a method to automatically label articles on

vulnerabilities and cyberattacks from trusted sources, while focusing on the

exploit’s public release and the attack vector.

Experiments with two different approaches were considered. The

bidirectional word-level LSTM model showed poor results for both tasks, whereas

our custom model built using spaCy with Bloom embeddings [21] and residual

CNNs [22] achieved promising results. Besides the EVE corpus with annotated

18 https://www.zdnet.com/

https://www.zdnet.com/

76 Cristian Sandescu & co

cybersecurity articles, the NVD data feeds with the CVEs from 2017 to 2021 were

added into the final corpus. Text augmentation techniques with contextualized word

embeddings from BERT were employed for two of the three Attack Vector classes

(i.e., Physical and Local) to ensure a balanced dataset.

As a future development, cybersecurity information should be crawled and

annotated from other sources such as exploit kits sold on the Dark Web, blogs of

cybersecurity experts, or the Google Hacking Database. Additional references for

other exploitability metrics from the CVSS v3 score should be retrieved using NER

models - for instance, the User Interaction (e.g., “requires user interaction”, “victim

needs to open the malicious iWork file”) and Privileges Required (e.g., “attacker

requires no privileges”, “non-privileged user can initiate”). In terms of follow-up

processing, we envision creating a dashboard with a newsfeed in which articles can

be filtered depending on user needs and on the owned infrastructure.

Table 10
Samples and spaCy output

Type Test sample
Network “Lastly, an extension named Rainbow Fart was ascertained to have a zip slip

vulnerability, which allows an adversary to overwrite arbitrary files on a

victim's machine and gain remote code execution.”

Network “The disclosure of the CODESYS flaws comes close on the heels of similar

issues that were addressed in Siemens SIMATIC S7-1200 and S7-1500 PLCs

that could be exploited by attackers to remotely gain access to protected areas of

the memory and achieve unrestricted and undetected code execution.”

Network “The vulnerability exists because the software lacks proper authentication

controls to information accessible from the web UI. An attacker could exploit

this vulnerability by sending a malicious HTTP request to the web UI of an

affected device.”

Physical and

Local

“The USB Mass Storage Class driver in Microsoft Windows Vista SP2,

Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1,

Windows Server 2012 Gold and R2, Windows RT 8.1, and Windows 10 Gold

and 1511 allows physically proximate attackers to execute arbitrary code by

inserting a crafted USB device, aka "USB Mass Storage Elevation of Privilege

Vulnerability.”

Physical ”Setup Wizard in Android 5.1.x before LMY49H and 6.x before 2016-03-01

allows physically proximate attackers to bypass the Factory Reset Protection

protection mechanism and delete data via unspecified vectors, aka internal bug

25955042.”

Local ” Avamar Data Store (ADS) and Avamar Virtual Edition (AVE) in EMC

Avamar Server before 7.3.0-233 allow local users to obtain root privileges by

leveraging admin access and entering a sudo command.”

Local “An elevation of privilege vulnerability in Mediaserver in Android 4.x before

4.4.4, 5.0.x before 5.0.2, 5.1.x before 5.1.1, 6.x before 2016-11-01, and 7.0

before 2016-11-01 could enable a local malicious application to execute

arbitrary code within the context of a privileged process. This issue is rated as

High because it could be used to gain local access to elevated capabilities, which

are not normally accessible to a third-party application.”

Extracting exploits and attack vectors from cybersecurity news using NLP 77

Acknowledgment

This work was supported by a grant of the Romanian National Authority for

Scientific Research and Innovation, CNCS – UEFISCDI, project number

2PTE⁄2020, YGGDRASIL – “Automated System for Early Detection of Cyber

Security Vulnerabilities” and by the internal UPB program Proof of Concept.

R E F E R E N C E S

[1]. K. Bissel, R. M. Lasalle and P. D. CIN, “Ninth Annual Cost of Cybercrime Study“, 2019.

[2]. A. Talalaev, “Website Hacking Statistics You Should Know in 2021“, https://patchstack.com/,

2021.

[3]. Barkly, “Study Reveals 64% of Organizations Experienced Successful Endpoint Attack in

2018“, https://www.businesswire.com/, 2018.

[4]. S. Mittal, P. K. Das, V. Mulwad, A. Joshi and T. Finin, “Cybertwitter: Using twitter to generate

alerts for cybersecurity threats and vulnerabilities“, in proceedings of the 2016 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM), San Francisco, CA, USA, IEEE, pp. 860–867, 2016.

[5]. A. L. Queiroz, S. Mckeever and B. Keegan, “Eavesdropping hackers: Detecting software

vulnerability communication on social media using text mining“, in proceedings of the The

Fourth International Conference on Cyber-Technologies and Cyber-Systems, pp. 41-48,

2019.

[6]. O. C. Moholth, R. Juric and K. M. McClenaghan, “Detecting cyber security vulnerabilities

through reactive programming“, in proceedings of the Proceedings of the 52nd Hawaii

International Conference on System Sciences, Grand Wailea, Maui, Hawaii, USA,

ScholarSpace, pp. 1–10, 2019.

[7]. N. Tavabi, P. Goyal, M. Almukaynizi, P. Shakarian and K. Lerman, “Darkembed: Exploit

prediction with neural language models“, in proceedings of the Conference on Artificial

Intelligence, New Orleans, Louisiana, USA, AAAI Press, pp. 7489–7854, 2018.

[8]. S. Trabelsi, H. Plate, A. Abida, M. M. B. Aoun, A. Zouaoui, C. Missaoui, S. Gharbi and A. Ayari,

“Monitoring software vulnerabilities through social networks analysis“, in proceedings of

the 2015 12th International Joint Conference on e-Business and Telecommunications

(ICETE), Colmar, France, IEEE, pp. 236–242, 2015.

[9]. J. Wei, K. Zou, “Eda: Easy data augmentation techniques for boosting performance on text

classification tasks“, in proceedings of the Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference Natural Language

Processing, Hong Kong, China, Association for Computational Linguistics, pp. 6381–

6387, 2019.

[10]. J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training of deep bidirectional

transformers for language understanding“, in proceedings of the Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Minneapolis, MN, USA, Association for Computational Linguistics, pp.

4171–4186, 2019.

[11]. Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba and S. Fidler, “Aligning

books and movies: Towards story-like visual explanations by watching movies and reading

books“, in proceedings of the Proceedings of the IEEE international conference on

computer vision, Santiago, Chile, IEEE Computer Society, pp. 19–27, 2015.

https://patchstack.com/
https://www.businesswire.com/

78 Cristian Sandescu & co

[12]. V. Atliha, D. Šešok, “Text augmentation using BERT for image captioning“, in Applied

Sciences, vol. 10, no. 17, 2020, pp. 5978.

[13]. G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami and C. Dyer, “Neural architectures

for named entity recognition“, in proceedings of the The 2016 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, San Diego California, USA, The Association for Computational Linguistics,

pp. 260–270, 2016.

[14]. X. Wu, S. Lv, L. Zang, J. Han and S. Hu, “Conditional bert contextual augmentation“, in

proceedings of the International Conference on Computational Science, Faro, Portugal,

Springer, pp. 84–95, 2019.

[15]. Q. Qiu, Z. Xie, L. Wu, L. Tao and W. Li, “BiLSTM-CRF for geological named entity

recognition from the geoscience literature“, in Earth Science Informatics, vol. 12, no. 4,

2019, pp. 565–579.

[16]. B. Y. Lin, F. F. Xu, Z. Luo and K. Zhu, “Multi-channel bilstm-crf model for emerging named

entity recognition in social media“, in proceedings of the Proceedings of the 3rd Workshop

on Noisy User-generated Text, Copenhagen, Denmark, Association for Computational

Linguistics, pp. 160–165, 2017.

[17]. Q. Zhu, X. Li, A. Conesa and C. Pereira, “GRAM-CNN: a deep learning approach with local

context for named entity recognition in biomedical text“, in Bioinformatics, vol. 34, no. 9,

2018, pp. 1547–1554.

[18]. A. Sirotina, N. Loukachevitch, “Named entity recognition in information security domain for

russian“, in proceedings of the International Conference on Recent Advances in Natural

Language Processing (RANLP 2019), Varna, Bulgaria, ACL, pp. 1114-1120, 2019.

[19]. P. Phandi, A. Silva and W. Lu, “SemEval-2018 task 8: Semantic extraction from CybersecUrity

REports using natural language processing (SecureNLP)“, in proceedings of the 12th

International Workshop on Semantic Evaluation ((SemEval-2018)), New Orleans,

Louisiana, USA, ACL, pp. 697–706, 2018.

[20]. M. Honnibal, I. Montani, “spacy 2: Natural language understanding with bloom embeddings“,

in convolutional neural networks and incremental parsing, vol. 7, no. 1, 2017, pp.

[21]. J. Serrà, A. Karatzoglou, “Getting deep recommenders fit: Bloom embeddings for sparse

binary input/output networks“, in proceedings of the Proceedings of the Eleventh ACM

Conference on Recommender Systems, Como, Italy, ACM, pp. 279–287, 2017.

[22]. K. Zhang, W. Zuo, Y. Chen, D. Meng and L. Zhang, “Beyond a gaussian denoiser: Residual

learning of deep cnn for image denoising“, in IEEE transactions on image processing, vol.

26, no. 7, 2017, pp. 3142–3155.

[23]. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer and V.

Stoyanov, “Roberta: A robustly optimized bert pretraining approach“, in CoRR, vol.

abs/1907.11692, 2019, pp.

[24]. D. Iorga, D. Corlătescu, O. Grigorescu, C. Săndescu, M. Dascălu and R. Rughiniş, “Early

Detection of Vulnerabilities from News Websites using Machine Learning Models“, in

proceedings of the 2020 19th RoEduNet Conference: Networking in Education and

Research (RoEduNet), Online, IEEE, pp. 1–6, 2020.

[25]. L. Ou-Yang, “Newspaper3k: Article scraping & curation“, 2021.

[26]. The MITRE Corporation, “CVE“, https://cve.mitre.org/, 2021.

[27]. National Institute of Standards and Technology, “National Vulnerability Database“, 2021.

[28]. J. X. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin and Y. Qi, “Textattack: A framework for

adversarial attacks, data augmentation, and adversarial training in nlp“, in proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, Online, Association for Computational Linguistics, pp. 119–126, 2020.

https://cve.mitre.org/

