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RAKOTCH TYPE EXTENSION OF DARBO’S FIXED POINT

THEOREM AND AN APPLICATION

İlker Gençtürk1, Ali Erduran2, Ishak Altun3

In this paper, we present a new extension of Darbo’s fixed point theorem inspired

by Rakotch’s contraction. We also provide the alternative version of Leray-Schauder type

of our new result. In order to demonstrate the applicability of our theoretical result, we
present an existence theorem based on a functional equation. Finally, we provide an

illustration of our existence theorem.
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1. Introduction

The theory of integral equations has recently improved significantly as a result of
various tools from both nonlinear functional analysis and topological fixed point theory. One
of the most important of these tools is the measure of noncompactness (in short MNC), which
was first defined by Kuratowski [10] and later used frequently by various authors. In this
context, on the basis of MNC, Darbo [6] introduced the class of k-set contractive operators,
which includes compact operators, and presented a fixed point theorem that generalized
both the famous Schauder fixed point theorem and a version of Banach contraction theorem.
Darbo’s fixed point theorem was later generalized as theoretical in various ways and used
to obtained existence theorems for many functional equations. For details, we refer to
[1, 2, 3, 4, 7, 8, 9, 12] and the references therein.

In this paper, inspired by Rakotch type contraction stated in the following theorem,
we present a new extension of Darbo’s fixed point theorem. The alternative version of Leray-
Schauder type of our new result is also provided. Finally, to indicate the applicability of our
theoretical result, we present an existence theorem based on a functional equation.

Theorem 1.1. [11] Let (M, ρ) be a complete metric space and Γ : M → M be a Rakotch
type contraction, that is, there exists a function L : (0,∞) → [0, 1) with

sup {L(t) : 0 < a ≤ t ≤ b} < 1

such that

ρ(Γξ,Γζ) ≤ L(ρ(ξ, ζ))ρ(ξ, ζ)

for each ξ, ζ ∈ M. Then Γ has a unique fixed point.
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2. Preliminaries

In this section, first we recall the basic notions and main characteristics of the MNC.
For more informations about the MNC we refer to [4].

Definition 2.1. Let (M, ρ) be a complete metric space and B(M) be the family of all bounded
subsets of M. A nonnegative real valued mapping µ defined on B(M) is called MNC on M

if it satisfied the following axioms: for all Ω,Ω1,Ω2 ∈ B(M)

(µa) µ(Ω) = 0 if and only if Ω is precompact set,
(µb) µ(Ω) = µ(Ω),
(µc) µ(Ω1 ∪ Ω2) = max {µ(Ω1), µ(Ω2)}.

Remark 2.1. Let µ be a MNC of a complete metric space M, then the following properties
hold: for all Ω,Ω1,Ω2 ∈ B(M)

(µ1) If Ω1 ⊆ Ω2, then µ(Ω1) ≤ µ(Ω2),
(µ2) µ(Ω1 ∩ Ω2) ≤ min {µ(Ω1), µ(Ω2)} ,
(µ3) If Ω is a finite set, then µ(Ω) = 0,
(µ4) Let {Ωn} is a decreasing sequence in B(M) which all terms are nonempty and closed.

If µ(Ωn) → 0 as n → ∞, then
∞⋂

n=1
Ωn is nonempty and compact.

Besides, if M is a Banach space, then the function µ has additional properties, some
of which are given below: for all Ω,Ω1,Ω2 ∈ B(M)

(µ5) µ(λΩ) = |λ|µ(Ω), for any number λ,
(µ6) µ(Ω1 +Ω2) ≤ max {µ(Ω1), µ(Ω2)},
(µ7) µ(ξ0 +Ω) = µ(Ω) for any ξ0 ∈ M,
(µ8) µ(coΩ) = µ(Ω), where coΩ is the convex hull of Ω.

The famous Schauder fixed point theorem is as follows: For brevity, in the rest of this
paper BC(M) stands for the class of all nonempty, closed, convex and bounded subsets of
Banach space M.

Theorem 2.1. Let M be a Banach space and Ω ∈ BC(M). If Γ : Ω → Ω is continuous and
compact mapping, then Γ has at least a fixed point in Ω.

Darbo [6] presented the following definition and theorem:

Definition 2.2. Let Ω ̸= ∅ be a subset of a Banach space M and Γ : Ω → Ω be a mapping.
Then, Γ is called a k-set contraction if, for each Λ ⊆ Ω with bounded, ΓΛ is bounded and
there exists k ∈ [0, 1) such that

µ(ΓΛ) ≤ kµ(Λ). (1)

Theorem 2.2. Let M be a Banach space and Ω ∈ BC(M). Then each continuous k-set
contraction Γ : Ω → Ω has at least one fixed point in Ω.

3. Main Results

In this section, we first give the definition of the Rakotch type µ-set contraction.

Definition 3.1. Let Ω be nonempty subset of a Banach space M, µ be a MNC in M, and
let Γ : Ω → Ω be a mapping. If there exists a function L : [0,∞) → [0, 1) satisfying

sup {L(r) : 0 < p ≤ r ≤ q} < 1

such that
µ(ΓΛ) ≤ L(µ(Λ))µ(Λ) (2)

for any nonempty and bounded subset Λ of Ω. Then, Γ is said to be Rakotch type µ-set
contraction with respect to L.
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It is obvious that every k-set contraction is also Rakotch type µ-set contraction.
Hence, the below theorem is a generalization of both Theorem 2.1 and Theorem 2.2.

Theorem 3.1. Let M be a Banach space and Ω ∈ BC(M) and let Γ : Ω → Ω be a continuous
and Rakotch type µ-set contraction mapping with respect to L. Then, Γ has a fixed point in
Ω.

Proof. Define a sequence {Λn} such that

Λ0 = Ω and Λn = coΓΛn−1 (3)

for all n ∈ N. First prove that

Λn+1 ⊆ Λn and ΓΛn ⊆ Λn (4)

for all n ∈ N.
If n = 1, then from (3) we get

Λ1 = coΓΛ0 = coΓΩ ⊆ Ω = Λ0.

Next, for n > 1, we assume that
Λn ⊆ Λn−1.

Then, ΓΛn ⊆ ΓΛn−1 and so by (3) we get

Λn+1 = coΓΛn ⊆ coΓΛn−1 = Λn (5)

hence the first part of (4) hold. By (5) we have

ΓΛn ⊆ coΓΛn = Λn+1 ⊆ Λn

hence the second part of (4) also hold.
If there exists n0 ∈ N such that µ(Λn0

) = 0, then Λn0
is a compact subset of M. Also

since ΓΛn0
⊆ Λn0

and Γ is continuous, then by Theorem 2.1, Γ has a fixed point in Λn0
.

Now assume µ(Λn) > 0 for all n ∈ N. Then from (4), we have

µ(Λn+1) ≤ µ(Λn),

that is, {µ(Λn)} is a nonincreasing sequence and bounded below. Hence there exist δ ≥ 0
such that

lim
n→∞

µ(Λn) = δ+.

Assume that δ > 0 and set

λ = sup{L(r) : 0 < δ ≤ r ≤ µ(Λ0)}.
Then, observing that

0 < δ ≤ µ(Λn) ≤ µ(Λ0)

for all n ∈ N, we have
L(µ(Λn)) ≤ λ

for all n ∈ N. Hence we have

µ(Λn) = µ(coΓΛn−1)

= µ(ΓΛn−1)

≤ L(µ(Λn−1))µ(Λn−1)

≤ λµ(Λn−1)

= λµ(coΓΛn−2)

≤ λ2µ(Λn−2)

...

≤ λnµ(Λ0).
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Taking as n → ∞, we get lim
n→∞

µ(Λn) = 0, which contradict to δ > 0. Hence δ = 0 and so

µ(Λn) → 0 as n → ∞. Thus, Λ∞ =
∞⋂

n=1
Λn is nonempty and compact subset of Ω. Also,

since Λ∞ ⊆ Λn for all n ∈ N, then we have ΓΛ∞ ⊆ Λ∞ and so by Theorem 2.1, Γ has a
fixed point in Λ∞. □

Now, we are in position to establish an alternative version of Leray-Schauder type of
our main theorem.

Theorem 3.2. Let M be a Banach space and Ω ∈ BC(M), U an open subset of Ω and
ξ0 ∈ U . Suppose Γ : U → Ω be a continuous and Rakotch type µ-set contraction mapping
with a nondecreasing function L. Then, either

(i) Γ has a fixed point in U , or
(ii) there exists ξ ∈ ∂U and λ ∈ (0, 1) such that ξ = λΓξ + (1− λ)ξ0.

Proof. Assume that (ii) does not hold and Γ has no fixed point in ∂U . Then

ξ ̸= λΓξ + (1− λ)ξ0

for ξ ∈ ∂U and λ ∈ [0, 1]. Consider the set

K =
{
ξ ∈ U : ξ = λΓξ + (1− λ)ξ0 for some λ ∈ [0, 1]

}
.

Since ξ0 ∈ K, then K is nonempty. Also K is closed because of the continuity of Γ. Further
we have K ∩ ∂U = ∅. Thus there exists a continuous function λ : U → [0, 1] such that
λ(K) = 1 and λ(∂U) = 0. Now define a map Ψ : Ω → Ω as

Ψξ =

 λ(ξ)Γξ + (1− λ(ξ))ξ0 , ξ ∈ U

ξ0 , ξ ∈ Ω\U
.

Then Ψ is continuous. In addition Ψ is a Rakotch type µ-set contraction. Indeed, let Λ ⊆ Ω
be any set. Then we have

Ψ(Λ) ⊆ co(Γ(Λ ∩ U) ∪ {ξ0})
and hence

µ(Ψ(Λ)) ≤ µ(co(Γ(Λ ∩ U) ∪ {ξ0}))
= µ(Γ(Λ ∩ U))

≤ L(µ(Λ ∩ U))µ(Λ ∩ U)

≤ L(µ(Λ)µ(Λ).

Consequently Ψ : Ω → Ω is continuous and Rakotch type µ-set contraction mapping. There-
fore by Theorem 3.1, there exists η ∈ Ω such that η = Ψη. Notice that η ∈ U since ξ0 ∈ U .
Hence

η = λ(η)Γη + (1− λ(η))ξ0

and so η ∈ K. Consequently λ(η) = 1 which implies η = Γη. □

4. Application to a Functional Equation

Here and subsequently, we will study in the space C[0, 1] containing of all continuous
real valued functions defined on the interval [0, 1]. For the sake of simplicity, we set I = [0, 1]
and C(I) = C[0, 1]. It is well-known that the space C(I) equipped with the standard norm

∥ξ∥ = max{|ξ(t)| : t ∈ I}
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is a Banach space. Now, we remember the definition of a MNC in C(I), presented and
investigated in [5], that will be applied in the following. Let Υ ̸= ∅ be a bounded subset of
C(I). For ε > 0 and ξ ∈ Υ, let ω(ξ, ε) be the modulus of continuity of ξ which is defined by

ω(ξ, ε) := sup{|ξ(t)− ξ(s)| : t, s ∈ I, |t− s| ≤ ε}.
Further, let us put

ω(Υ, ε) = sup{ω(ξ, ε) : ξ ∈ Υ},
ω0(Υ) = lim

ε→0
ω(Υ, ε). (6)

It is known that the function ω0 is a MNC in the space C(I) (cf. [?]). Now, we are interested
with the following functional equation

ξ(t) = F

(
a(t), ξ(t),Λξ(t)

∫ t

0

v(t, τ, ξ(τ))dτ

)
, t ∈ I. (7)

The function ξ is an unknown while a, v functions and the operator Λ appearing in this
equation are known. Here we will examine this equation under the following assumptions:

(i) a : I → I and v : I × I × R → R are continuous.
(ii) There exists an increasing function g : R+ → R+ such that, the inequality

|v(t, τ, ξ)| ≤ g(|ξ|),
holds for all t, τ ∈ I and ξ ∈ R.

(iii) The operator Λ maps continuously the space C(I) into itself. Also there exists a
nondecreasing function ϕ : R+ → R+ such that ∥Λξ∥ ≤ ϕ(∥ξ∥) for any ξ ∈ C(I).

(iv) The function F : I × R × R → R+ is continuous and there exist positive constants
k1, k2 and k3 with k2 < 1 such that

|F (α1, α2, α3)− F (β1, β2, β3)| ≤ k1 |α1 − β1|+ k2 |α2 − β2|+ k3 |α3 − β3| , (8)

and FK = sup{|F (a(t), 0, 0)| : t ∈ I}.
(v) The inequalitiy

k2r + k3ϕ(r)g(r) + FK ≤ r (9)

has a positive solution r0.
(vi) For any Υ ∈ C(I), we have ω0(ΛΥ) ≤ L1(ω0(Υ))ω0(Υ), where the function L1 :

[0,∞) → [0, 1−k2

k3g(r0)
) satisfies that

sup{L1(r) : 0 < p ≤ r ≤ q} <
1− k2
k3g(r0)

.

Now, we are ready to present the following theorem:

Theorem 4.1. The equation (7) has at least one positive solution in C(I) under the as-
sumptions (i)-(vi).

Proof. Define a mapping Γ on the space C(I) having the form

Γξ(t) = F

(
a(t), ξ(t),Λξ(t)

∫ t

0

v(t, τ, ξ(τ))dτ

)
.

Based on the assumptions (i), (iii) and (iv) we infer that the function Γξ is continuous.
Furthermore, keeping the assumptions (ii), (iii) and (iv) in mind we get, for all t ∈ I

and ξ ∈ C(I),

|Γξ(t)| ≤
∣∣∣∣F (

a(t), ξ(t),Λξ(t)

∫ t

0

v(t, τ, ξ(τ))dτ

)
− F (a(t), 0, 0)

∣∣∣∣+ |F (a(t), 0, 0)|

≤ k2 |ξ(t)|+ k3

∣∣∣∣Λξ(t)∫ t

0

v(t, τ, ξ(τ))dτ

∣∣∣∣+ FK
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≤ k2 |ξ(t)|+ k3 |Λξ(t)|
∫ t

0

|v(t, τ, ξ(τ))| dτ + FK

≤ k2 ∥ξ∥+ k3ϕ(∥ξ∥)g(∥ξ∥) + FK .

Then, we have

∥Γξ∥ ≤ k2 ∥ξ∥+ k3ϕ(∥ξ∥)g(∥ξ∥) + FK . (10)

By virtue of the assumption (v), we know that there exists r0 > 0 such that

k2r0 + k3ϕ(r0)g(r0) + FK ≤ r0.

Hence for ξ ∈ Br0 = {ξ ∈ C(I) : ∥ξ∥ ≤ r0}, we have

∥Γξ∥ ≤ k2 ∥ξ∥+ k3ϕ(∥ξ∥)g(∥ξ∥) + FK

≤ k2r0 + k3ϕ(r0)g(r0) + FK

≤ r0.

Therefore the operator Γ maps Br0 into itself. Put

B+
r0 = {ξ ∈ Br0 : ξ(t) ≥ 0 for t ∈ I}.

Obviously, the set B+
r0 is nonempty, closed, bounded, and convex. By assumption (iv), we

conclude that Γ transforms the set B+
r0 into itself.

Now we show that Γ is continuous on B+
r0 . Let ε > 0, ξ, ζ ∈ B+

r0 with ∥ξ − ζ∥ ≤ ε.
Then, for a fixed t ∈ I, we have

|Γξ(t)− Γζ(t)| =
∣∣∣∣F (

a(t), ξ(t),Λξ(t)

∫ t

0

v(t, τ, ξ(τ))dτ

)
−F

(
a(t), ζ(t),Λζ(t)

∫ t

0

v(t, τ, ζ(τ))dτ

)∣∣∣∣
≤ k2|ξ(t)− ζ(t)|

+ k3

∣∣∣∣Λξ(t)∫ t

0

v(t, τ, ξ(τ))dτ − Λζ(t)

∫ t

0

v(t, τ, ζ(τ))dτ

∣∣∣∣
≤ k2|ξ(t)− ζ(t)|+ k3

∣∣∣∣Λξ(t)∫ t

0

v(t, τ, ξ(τ))dτ − Λζ(t)

∫ t

0

v(t, τ, ξ(τ))dτ

∣∣∣∣
+ k3

∣∣∣∣Λζ(t)∫ t

0

v(t, τ, ξ(τ))dτ − Λζ(t)

∫ t

0

v(t, τ, ζ(τ))dτ

∣∣∣∣
≤ k2|ξ(t)− ζ(t)|+ k3 |Λξ(t)− Λζ(t)|

∫ t

0

|v(t, τ, ξ(τ))| dτ

+ k3 |Λζ(t)|
∫ t

0

|v(t, τ, ξ(τ))− v(t, τ, ζ(τ))| dτ

≤ k2|ξ(t)− ζ(t)|+ k3 |Λξ(t)− Λζ(t)| g(r0) + k3ϕ(r0)

∫ t

0

β(ε, r0)dτ,

where β(ε, r0) is defined as β(ε, r0) = sup{|v(t, τ, ξ(τ))− v(t, τ, ζ(τ))| : t, τ ∈ I, ξ, ζ ∈
B+

r0 , ∥ξ − ζ∥ ≤ ε}.
Next, we get ∥Γξ − Γζ∥ ≤ k2 ∥ξ − ζ∥+ k3 ∥Λξ − Λζ∥ g(r0) + k3ϕ(r0)β(ε, r0).
By the continuity of the function v on the set I × I × [0, r0] and the continuity of Λ,

we deduce that Γ is continuous on the space B+
r0 .

Next, take a nonempty subset Υ of B+
r0 and a number ε > 0. Then, in view of our

assumptions, for ξ ∈ Υ and t, s ∈ I with 0 ≤ t− s ≤ ε, we obtain

|Γξ(t)− Γξ(s)| =
∣∣∣∣F (

a(t), ξ(t),Λξ(t)

∫ t

0

v(t, τ, ξ(τ))dτ

)
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−F

(
a(s), ξ(s),Λξ(s)

∫ s

0

v(s, τ, ξ(τ))dτ

)∣∣∣∣
≤ k1 |a(t)− a(s)|+ k2 |ξ(t)− ξ(s)|

+ k3

∣∣∣∣Λξ(t)∫ t

0

v(t, τ, ξ(τ))dτ − Λξ(s)

∫ s

0

v(s, τ, ξ(τ))dτ

∣∣∣∣
≤ k1ω(a, ε) + k2ω(ξ, ε) + k3

∣∣∣∣Λξ(t)∫ t

0

v(t, τ, ξ(τ))dτ − Λξ(s)

∫ t

0

v(t, τ, ξ(τ))dτ

∣∣∣∣
+ k3

∣∣∣∣Λξ(s)∫ t

0

v(t, τ, ξ(τ))dτ − Λξ(s)

∫ s

0

v(s, τ, ξ(τ))dτ

∣∣∣∣
≤ k1ω(a, ε) + k2ω(ξ, ε) + k3 |Λξ(t)− Λξ(s)|

∫ t

0

|v(t, τ, ξ(τ))| dτ

+ k3 |Λξ(s)|
∣∣∣∣∫ t

0

v(t, τ, ξ(τ))dτ −
∫ s

0

v(s, τ, ξ(τ))dτ

∣∣∣∣
≤ k1ω(a, ε) + k2ω(ξ, ε) + k3 |Λξ(t)− Λξ(s)|

∫ t

0

|v(t, τ, ξ(τ))| dτ

+ k3 |Λξ(s)|
∫ s

0

|v(t, τ, ξ(τ))− v(s, τ, ξ(τ))| dτ

+ k3 |Λξ(s)|
∫ t

s

|v(t, τ, ξ(τ))| dτ

≤ k1ω(a, ε) + k2ω(ξ, ε) + k3ω(Λξ, ε)g(∥ξ∥)
+ k3ϕ(∥ξ∥)γr0(ε) + k3ϕ(∥ξ∥)g(∥ξ∥)ε,
≤ k1ω(a, ε) + k2ω(ξ, ε) + k3ω(Λξ, ε)g(r0) + k3ϕ(r0)γr0(ε) + k3ϕ(r0)g(r0)ε,

where γr0(ε) = sup{|v(t, τ, ξ)− v(s, τ, ξ)| : t, s ∈ I, |t− s| ≤ ε, ξ ∈ [0, r0]}.
Hence, we have the estimate

ω(Γξ, ε) ≤ k1ω(a, ε) + k2ω(ξ, ε) + k3g(r0)ω(Λξ, ε) + k3ϕ(r0)γr0
(ε) + k3ϕ(r0)g(r0)ε.

Notice, taking into account the uniform continuity of v on the set I × I × [0, r0] we have
that γr0(ε) → 0 as ε → 0. Finally, by assumptions (vi) we have

ω0(ΓΥ) ≤ k2ω0(Υ) + k3g(r0)ω0(ΛΥ) ≤ k2ω0(Υ) + k3g(r0)L1(ω0(Υ))ω0(Υ)

= [k2 + k3g(r0)L1(ω0(Υ))]ω0(Υ) = L(ω0(Υ))ω0(Υ),

where L(t) = k2 + k3g(r0)L1(t). Note that, from (vi), the function L maps [0,∞) to [0, 1)
and also have the following property sup {L(r) : 0 < p ≤ r ≤ q} < 1. Hence, we conclude
that by Theorem 3.1, (7) has at least one positive solution in C(I). □

Finally, we present an illustrative example for Theorem 4.1.

Example 4.1. Consider the following functional equation for t ∈ [0, 1],

ξ(t) =
1

5
+

1

3
|ξ(t)|

t∫
0

(t+ τ)ξ2(τ)

1 + ξ2(τ)
dτ. (11)

It is easily seen that (11) is a special case of (7) with

a(t) =
1

5
, v(t, τ, ξ) =

(t+ τ)ξ2

1 + ξ2
, Λξ(t) =

1

3
|ξ(t)| , F (u, v, w) = u+ w.

Then, all assumptions of Theorem 4.1 are satisfied. Indeed,

(i) It is obvious that the functions a and v are continuous.
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(ii) Taking into account the function g : R+ → R+ defined by g(t) =
2t2

1 + t2
which is

increasing, we have g(|ξ|) ≥ |v(t, τ, ξ)|, for all ξ ∈ R and t, τ ∈ [0, 1].
(iii) It is clear that Λ transforms continuously the space C[0, 1]. Also for the function ϕ :

R+ → R+, ϕ(t) =
t

3
, we have ϕ(||ξ||) ≥ ||Λξ||, for any ξ ∈ C[0, 1].

(iv) The continuity of F is obvious. Also, we have the inequality (8) for k1 = 1, k2 =
1

3
, k3 = 1 and FK = sup {|F (a(t), 0, 0)| , t ∈ [0, 1]} =

1

5
.

(v) The inequality r
3 + r

3
2r2

1+r2 + 1
5 ≤ r has a positive solution r0 = 1.

(vi) The condition (vi) is satisfied with the constant function L1(t) =
1

3
.

As a consequence, these above facts lead to a positive solution for the functional inte-
gral equation (11) in C[0, 1].

5. Conclusions

In this article, we introduced and studied a new version of Darbo’s fixed point theorem
with the help of Rakotch type contraction. Also the alternative of Leray-Schauder type of
our result is also given. We have established an existence theorem based on a functional
equation to demonstrate the application of our theoretical finding. Finally, we show how
our existence theorem works by an example.

REFERENCES
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