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BICOMPLEX MATRIX TRANSFORMATIONS BETWEEN c0
AND c IN BICOMPLEX SETTING

Birsen Sağır1, Nilay Değirmen2, Cenap Duyar3

In this paper, we give the characterizations of bicomplex matrix
transformations between c0 (BC) and c (BC) extending some results in com-
plex versions of them. Also, we state and prove their bicomplex counterparts
utilizing Silverman-Toeplitz theorem and Kojima-Schur theorem.
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1. Introduction

Bicomplex numbers are mentioned for the first time in the history of
mathematics in [23]. An extensive review of the bicomplex space and related
context is given in G.B Price’s book [20]. Alpay et al [4] has developed the
bicomplex version of functional analysis with complex scalars and it was the
next significant push in subsequent studies on theory of functions with bi-
complex variables. Bicomplex numbers has new applications with their use in
fields such as neural networks [3], intelligent radio access networks [24], elec-
tromagnetic wave propagation [21], integral transforms and fractional calculus
[1]. So, researchers working on bicomplex analysis reveal the importance of
these numbers in real-world problems. The other recent notable applications
can be found in [13, 8, 2, 11, 19, 14, 12, 10].

Now, we introduce a basic review of bicomplex numbers. Further, we
refer to the books [20], [4] and [15] for more comprehensive knowledge.

The set of bicomplex numbers BC consists of the elements of the form
z1 + jz2 where z1, z2 ∈ C, j2 = −1 and ij = ji. Also, it forms an algebra
and BC−module with respect to the standard operations and also, it has
two distinguished zero divisors e1 = 1+ij

2
, e2 = 1−ij

2
. If β1 = z1 − iz2 and

β2 = z1+ iz2, the idempotent representation of z = z1+jz2 is uniquely written
as z = β1e1 + β2e2.
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For two bicomplex numbers z = β1e1+β2e2 and w = γ1e1+γ2e2 we have
the followings:

z ± w = (β1 ± γ1) e1 + (β2 ± γ2) e2, zw = (β1γ1) e1 + (β2γ2) e2.

A map ∥.∥BC : BC → R+ ∪ {0} , ∥z∥BC = ∥z1 + jz2∥BC =
√

|z1|2 + |z2|2

is a real valued norm on BC, and also it satisfies the following properties:
(i) ∥zw∥BC ≤

√
2 ∥z∥BC ∥w∥BC and ∥z ± w∥BC ≤ ∥z∥BC + ∥w∥BC .

(ii) If z = β1e1+ β2e2, then ∥z∥BC = 1√
2

√
|β1|2 + |β2|2.

A sequence (zn) in BC converges to z0 ∈ BC with respect to the norm
∥.∥BC if for every ε > 0 there is a natural number n0 such that ∥zn − z0∥BC < ε
for all n ≥ n0. In this paper, we denote this convergence by lim

n→∞
zn = z0.

Every BC−module X is written in the idempotent decomposition
X = e1X1 + e2X2 or equivalents X = e1X + e2X, where X1 := e1X and
X2 := e2X. Assume that X1 and X2 are normed spaces with respective norms
∥.∥1 , ∥.∥2 . For any x = x1e1 + x2e2 ∈ X, the function ∥.∥X defined as

∥x∥X := 1√
2

√
∥x1∥21 + ∥x2∥22 is a norm on X, the so-called Euclidean-type

norm in X and ∥ζx∥X ≤
√
2 ∥ζ∥BC ∥x∥X for any ζ ∈ BC and for any x ∈ X.

For two BC−modules X and Y, a map T : X → Y is said to be a
BC−linear operator if T (ζx+ y) = ζT (x) + T (y) holds for any x, y ∈ X and
ζ ∈ BC [4].

Every BC−linear operator T on X is written in the idempotent decom-
position T = e1T1+e2T2 where X = e1X1+e2X2 is idempotent decomposition
of X and the linear operator Tl maps Xl to itself as x → elT (elx) for l = 1, 2.
Also, BC−linear operator T on X is bounded if and only if T1 and T2 are both
bounded [9].

In [22], which is our first article on bicomplex sequence spaces, we set
up the spaces c0 (BC) and c (BC) and obtained that they are Banach spaces
according to the norm ∥.∥∞,BC defined as ∥z∥∞,BC = sup

k∈N
∥zk∥BC for every

z = (zk) ∈ c0 (BC) (or c (BC)) .
The theory of sequence spaces has always been of great interest in the

study on summability which has applications in many different fields such
as functional anaylsis, numerical analysis, approximation theory, the theory of
orthogonal series. The theory of matrix transformations is also one of the main
topics studied in the theory of sequence spaces. Special theorems and results
in summability theory motivated the authors to study matrix transformations.
We refer to works and books [16, 25, 18, 7, 6, 5] on characterizations of matrix
transformations between some complex sequence spaces.

The following theorems given in [16] serve as a motivation of our main
results.

Theorem 1.1. Let the following properties be satisfied for the matrix
A = (ank) :
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i) ank → 0 (n → ∞, k fixed).

ii) M = sup
n

∞∑
k=1

|ank| < ∞.

Then, A ∈ B (c0, c0) and ∥A∥ = M.

Theorem 1.2. Let A ∈ B (c0, c0) . Then, the bounded linear transformation

A assigns a matrix (ank) such that An (x) =
∞∑
k=1

ankxk for every x = (xk) ∈ c0.

In addition, the following conditions are satisfied:
i) ank → 0 (n → ∞, k fixed).

ii) sup
n

∞∑
k=1

|ank| < ∞.

Lemma 1.1. If
∞∑
k=1

akxk < ∞ for any x = (xk) ∈ c, then
∞∑
k=1

|ak| < ∞.

Theorem 1.3. (Silverman-Toeplitz Theorem) A ∈ (c, c; p) if and only if

i) sup
n

∞∑
k=0

|ank| < ∞.

ii) ank → 0 (n → ∞, k fixed).

iii)
∞∑
k=0

ank → 1 (n → ∞).

Theorem 1.4. (Kojima-Schur theorem) A ∈ (c, c) if and only if

i) sup
n

∞∑
k=0

|ank| < ∞.

ii) lim
n→∞

∞∑
k=m

ank = am for every m ∈ N.

Motivated by the importance of the applications of bicomplex numbers
and matrix transformations, this article is devoted to establish the matrix
transformations in bicomplex analysis. In more detail, in the present work, we
evaluate the bicomplex matrix transformations between c0 (BC) and c (BC)
using the fundamentals in complex versions of them. So, we transfer some
theorems such as Silverman-Toeplitz theorem and Kojima-Schur theorem that
exist in the literature to the bicomplex setting.

2. Main Results

If zk = zk,1e1 + zk,2e2 for any k ∈ N, where {zk,1} and {zk,2} are com-
plex (C (i)) sequences, then z = {zk} is a bicomplex sequence. Therefore
given any complex sequence space (X (C) , ∥.∥X) we can always define a bi-

complex version
(
X (BC) , ∥.∥X(BC)

)
comprising of all sequences of the type

{zk} = {zk,1e1 + zk,2e2} , where {zk,1} and {zk,2} are in
(
X (C) , ∥.∥X(C)

)
and

∥z∥X(BC) =
1√
2

(
∥{zk,1}∥2X(C) + ∥{zk,2}∥2X(C)

) 1
2
.
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The addition and scalar multiplication on
(
X (BC) , ∥.∥X(BC)

)
is defined

as follows:

z + w = {xk,1e1 + xk,2e2}+ {wk,1e1 + wk,2e2} = {zk,1 + wk,1} e1 + {zk,2 + wk,2} e2,
αz = (α1e1 + α2e2) {zk,1e1 + zk,2e2} = {α1zk,1} e1 + {α2zk,2} e2

where z, w ∈
(
X (BC) , ∥.∥X(BC)

)
and α ∈ BC.

Example 2.1. The spaces c and c0 of convergent and null complex sequences
are given by

c : =
{
x = (xk) ∈ s : lim

k→∞
|xk − l| = 0 for some l ∈ C

}
,

c0 : =
{
x = (xk) ∈ s : lim

k→∞
xk = 0

}
and they are Banach spaces with respect to the norm ∥.∥∞ defined as
∥x∥∞ = sup

k
|xk| . Then, their corresponding bicomplex sequence space c0 (BC)

(or c (BC)) comprises of all sequences of the type z = {zk} = {zk,1e1 + zk,2e2}
where {zk,1} , {zk,2} ∈ c0 (or c) . Also,

∥z∥∞,BC = ∥{zk,1e1 + zk,2e2}∥∞,BC =
1√
2

(
∥{zk,1}∥2∞ + ∥{zk,2}∥2∞

) 1
2 .

We will refer to ∥.∥∞,BC as the Euclidean-type norm on c0 (BC) and c (BC) .

Lemma 2.1. c0 (BC) (or c (BC)) equipped with ∥.∥∞,BC is a Banach space over
BC.

Proof. It is clear from the definition of addition and scalar multiplication that
c0 (BC) (or c (BC)) is a module over BC. It is also easy to show that ∥.∥∞,BC
defines a norm on c0 (BC) (or c (BC)) . Now it only remains to show that
c0 (BC) is also complete with respect to ∥.∥∞,BC . For that let

{
zkn
}∞
k=1

be a

Cauchy sequence c0 (BC) . For {zn = zn,1e1 + zn,2e2}∞n=1 we have

∥{zn}∥∞,BC =
1√
2

(
∥{zn,1}∥2∞ + ∥{zn,2}∥2∞

) 1
2 . (1)

Therefore one has ∥{zn,i}∥∞ ≤
√
2 ∥{zn}∥∞,BC for i = 1, 2. Now for ε > 0 there

exists n0 ∈ N such that

∥{zsn − zmn }∥∞,BC <
ε√
2

(2)

for all s,m ≥ n0. Thus (1) and (2) yield that
{
zkn,i
}∞
k=1

is a Cauchy sequence

in (c0, ∥.∥∞) for i = 1, 2. In view of the completeness of the (c0, ∥.∥∞) , we
have that

{
zkn,i
}∞
k=1

converges to some {zn,i} ∈ c0. Therefore for i = 1, 2



Bicomplex Matrix Transformations between c0 and c in Bicomplex Setting 119

there exists Ni ∈ N such that
∥∥{zsn,i − zn,i

}∥∥
∞ <

√
ε for all s ≥ Ni. Now for

N = max {N1, N2} and s ≥ N one has

∥{zsn − zn}∥2∞,BC =
1

2

(∥∥{zsn,i − zn,i
}∥∥2

∞ +
∥∥{zsn,i − zn,i

}∥∥2
∞

)
<

1

2
(ε+ ε) = ε.

Thereby showing that
{
zkn
}∞
k=1

is a convergent sequence in c0 (BC) . So, c0 (BC)
equipped with ∥.∥∞,BC is a Banach space over BC. The proof is completed. □

Suppose A′ = (a′nk) is an infinite matrix of bicomplex numbers a′nk, where
k, n ∈ N. Since a′nk ∈ BC, it is uniquely written in the form
a′nk = a1nke1 + a2nke2 where (a1nk) and (a2nk) denote infinite matrices with com-
plex terms. For ζ = {ζk} = {ζ1ke1 + ζ2ke2} ∈ s (BC) , we obtain the sequence
A′ζ, the A′−transform of ζ, by the usual matrix product

A′ζ =


a′11 a′12 · · · a′1k · · ·
a′21 a′22 · · · a′2k · · ·
...

... · · · ... · · ·
a′n1 a′n2 · · · a′nk · · ·
...

... · · · ...
. . .




ζ1
ζ2
...
ζk
...

 =


a′11ζ1 + a′12ζ2 + ...+ a′1kζk + ...
a′21ζ1 + a′22ζ2 + ...+ a′2kζk + ...

...
a′n1ζ1 + a′n2ζ2 + ...+ a′nkζk + ...

...

 .

Hence, in this way, we transform the BC-sequence ζ into the BC-sequence
A′ζ = {(A′ζ)n} with (A′ζ)n =

∑
k

a′nkζk = A1
n (ζ) e1 + A2

n (ζ) e2 where

A1
n (ζ) =

∞∑
k=1

a1nkζk,1 and A2
n (ζ) =

∞∑
k=1

a2nkζk,2. For each n, the existence of the

sum of A′
n (x) = a′n1ζ1 + a′n2ζ2 + ... + a′nkζk + ... is accepted. If idempotent

representation is used, we get

A′
n (ζ) =

∞∑
k=1

(
a1nke1 + a2nke2

)
(ζk,1e1 + ζk,2e2) =

∞∑
k=1

(
a1nkζk,1e1 + a2nkζk,2e2

)
=

(
∞∑
k=1

a1nkζk,1

)
e1 +

(
∞∑
k=1

a2nkζk,2

)
e2

and so

A′
n (ζ) =

(
∞∑
k=1

a1nkζk,1

)
e1 +

(
∞∑
k=1

a2nkζk,2

)
e2. (3)

Then, (3) can be also written A′
n (ζ) = A1

n (ζ) e1 + A2
n (ζ) e2 where

A1
n (ζ) =

∞∑
k=1

a1nkζk,1 and A2
n (x) =

∞∑
k=1

a2nkζk,2.

Let X (BC) and Y (BC) be any two bicomplex sequence spaces. If Aζ
exists and is in Y (BC) for every BC−sequence ζ = (ζk) ∈ X (BC) , then we
say that A′ defines a BC−matrix mapping from X (BC) into Y (BC) , and
we denote it by writting A′ : X (BC) → Y (BC) . By (X (BC) , Y (BC)) , we
denote the class of all BC−matrices A′ such that A′ : X (BC) → Y (BC) .
Thus, A′ ∈ (X (BC) , Y (BC)) if and only if the series on the right hand
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side of (3) converges for each n ∈ N and every ζ ∈ X (BC) , and we have
A′ζ = {(A′ζ)n}n∈N ∈ Y (BC) for all ζ ∈ X (BC) .

Since A1 = (a1nk) and A2 = (a2nk) are linear, A′ is BC−linear as follows:

A′ (λζ + η) =
∞∑
k=1

a′nk (λζ + η)

=
∞∑
k=1

[
a1nke1 + a2nke2

]
[(λζk,1 + ηk,1) e1 + (λζk,2 + ηk,2) e2]

=
∞∑
k=1

[
a1nk (λζk,1 + ηk,1) e1 + a2nk (λζk,2 + ηk,2) e2

]
=

[
λ

∞∑
k=1

a1nkζk,1 +
∞∑
k=1

a1nkηk,1

]
e1 +

[
λ

∞∑
k=1

a2nkζk,2 +
∞∑
k=1

a2nkηk,2

]
e2

= λA′ (ζ) + A′ (η)

for all ζ, η ∈ X (BC) , λ ∈ BC.
In this section, we give the characterizations of some bicomplex matrix

classes. We begin with stating the necessary and sufficient condition on an
infinite BC−matrix belonging to the class (c0 (BC) , c0 (BC)) . For this, the
known fundamental theorems for c and c0 and their results will be used.

First of all, let’s give the following two theorems, which we can call the
existence theorems:

Theorem 2.1. Let the following properties be satisfied for the bicomplex matrix
A′ = (a′nk) :

i) a′nk → 0 (n → ∞, k fixed).

ii) ∥M ′∥BC = sup
n

∞∑
k=1

∥a′nk∥BC < ∞.

Then, A′ defines a BC−linear bounded operator on c0 (BC) into itself and
∥|A′|∥ = ∥M ′∥BC .

Proof. Since a′nk → 0 (n → ∞, k fixed), for given ε > 0 there exists n0 ∈ N
such that

∥a′nk − 0∥BC = ∥a′nk∥BC =
1√
2

√
|a1nk|

2
+ |a2nk|

2
< ε

for all n > n0.Then we obtain that for given ε > 0 there exists n0 ∈ N such
that |a1nk| <

√
2ε, |a2nk| <

√
2ε for all n > n0. This implies that

a1nk → 0 and a2nk → 0 (n → ∞, k fixed). (4)

Also, since sup
n

∞∑
k=1

∥a′nk∥BC < ∞ and

∞∑
k=1

∥a′nk∥BC =
∞∑
k=1

1√
2

√
|a1nk|

2
+ |a2nk|

2
, (5)
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we have M1 = 1√
2
sup
n

∞∑
k=1

|a1nk| < ∞ and M2 = 1√
2
sup
n

∞∑
k=1

|a2nk| < ∞. Thus, by

(4), (5) and Theorem 1.1 we deduce that A1, A2 ∈ B (c0, c0) and
∥A1∥ = M1, ∥A2∥ = M2 since A′ = A1e1 + A2e2 where A1 = (A1

n (ζ)) ,
A2 = (A2

n (ζ)) . Since A1, A2 ∈ B (c0, c0) , we write ∥A1 (ζ1)∥∞ ≤ K1 ∥ζ1∥∞
and ∥A2 (ζ1)∥∞ ≤ K2 ∥ζ2∥∞ where ζ1 = (ζk,1) , ζ1 = (ζk,1) ∈ c0. Hence,∥∥A1 (ζ)

∥∥
∞,BC =

1√
2

√
∥A1 (ζ1)∥2∞ + ∥A2 (ζ2)∥2∞

≤ K.
1√
2

√
∥ζ1∥2∞ + ∥ζ2∥2∞ = K ∥ζ∥∞,BC

forK = max {K1, K2} . Finally, A′ is bounded. It is clear that A′ is BC−linear.
So, A′ defines a BC−linear bounded operator on c0 (BC) into itself.

On the other hand, if we take M ′ = M1e1 +M2e2, we get

∥|A′|∥ =
1√
2

√
∥A1∥2 + ∥A2∥2 = 1√

2

√
M2

1 +M2
2 = ∥M ′∥BC .

This completes the proof. □

Theorem 2.1 shows us that a BC−matrix of a certain type describes a
bounded linear transformation from c0 (BC) into itself. Now let’s show the
converse.

Theorem 2.2. Let A′ be a BC−linear bounded operator on c0 (BC) into itself.
Then, A′ determines a BC−matrix (a′nk) such that

A′
n (ζ) =

∞∑
k=1

a′nkζk for every ζ = (ζk) ∈ c0 (BC) (6)

holds and such that
i) a′nk → 0 (n → ∞, k fixed).

ii) ∥A′∥ = sup
n

∞∑
k=1

∥a′nk∥BC < ∞.

Proof. The BC−sequence (e′k) defined as e′k = (0, 0, ..., 0, e1 + e2, 0, ...) = e1ke1+

e2ke2 is a basis for c0 (BC) where e1k = e2k =

(
0, 0, ..., 0, 1

k−th term
, 0, ...

)
, (e1k) , (e

2
k)

are a basis for c0. So, we can write

ζ =
∞∑
k=1

ζke
′
k =

(
∞∑
k=1

ζk,1e
1
k

)
e1 +

(
∞∑
k=1

ζk,2e
2
k

)
e2.

SinceA′ is a BC−bounded linear transformation, we haveA′ (ζ) =
∞∑
k=1

ζkA
′ (e′k) .

On the other hand, since (e′k) ∈ c0 (BC) for every k ∈ N, by hypothesis
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A′ (e′k) =
(
a′1,k, a

′
2,k, ..., a

′
n,k, ...

)
∈ c0 (BC) is obtained. This yields the following

statement:

A′ (ζ) =
∞∑
k=1

ζk
(
a′n,k
)
.

accordingly, the general term of this new sequence is A′
n (ζ) =

∞∑
k=1

a′n,kζkin other

notation, as A′
n (ζ) =

∞∑
k=1

a′nkζk. This proves (6).

Let us now show that conditions i) and ii) are satisfied. By hypothesis
that
Aζ ∈ c0 (BC) whenever ζ ∈ c0 (BC) , we deduce that A′ (e′k) ∈ c0 (BC) ,
k = 1, 2, ... implies a′nk → 0 (n → ∞), k = 1, 2, .... It remains to show that

∥A′∥ = sup
n

∞∑
k=1

∥a′nk∥BC < ∞. ∥a′nk∥BC = 1√
2

√
|a1nk|

2
+ |a2nk|

2
where

a′nk = a1nke1 + a2nke2, the statement a′nk → 0 (n → ∞, k fixed) implies that
a1nk → 0 and a2nk → 0 (n → ∞, k fixed). Since A′ is a BC−linear bounded
operator on c0 (BC) into itself and

∥|A′|∥ =
1√
2

√
∥A1∥2 + ∥A2∥2 < ∞,

we derive that∥∥A1
∥∥ = M1 = sup

n

∞∑
k=1

∣∣a1nk∣∣ < ∞,
∥∥A2

∥∥ = M2 = sup
n

∞∑
k=1

∣∣a2nk∣∣ < ∞,

by Theorem 1.2 and so A1, A2 ∈ B (c0, c0) . Therefore, we obtain that

sup
n

∞∑
k=1

∥a′nk∥BC =
1√
2
sup
n

∞∑
k=1

√
|a1nk|

2
+ |a2nk|

2

≤ 1√
2
sup
n

∞∑
k=1

(∣∣a1nk∣∣+ ∣∣a2nk∣∣) < ∞.

Also, for M ′ = M1e1 +M2e2 we get

∥|A′|∥ =
1√
2

√
∥A1∥2 + ∥A2∥2 ≤

∥∥A1
∥∥+ ∥∥A2

∥∥ = M1 +M2.

This completes the proof. □

Lemma 2.2. If
∞∑
k=1

akζk < ∞ for any ζ = (ζk) ∈ c (BC) , then
∞∑
k=1

∥ak∥BC < ∞.

Proof. Let ζ = (ζk) ∈ c (BC) and ak ∈ BC. Then, we can write
ζk = ζk,1e1 + ζk,2e2, ak = ak,1e1 + ak,2e2, and so akζk = ak,1ζk,1e1 + ak,2ζk,2e2. If
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∞∑
k=1

akζk < ∞, then we have

Sn =

(
n∑

k=1

ak,1ζk,1

)
e1 +

(
n∑

k=1

ak,2ζk,2

)
e2 = Sn,1e1 + Sn,2e2

where Sn =
n∑

k=1

akζk, Sn,1 =
n∑

k=1

ak,1ζk,1, Sn,2 =
n∑

k=1

ak,2ζk,2. Since
∞∑
k=1

akζk < ∞,

there exists S = S1e1 + S2e2 ∈ BC such that Sn → S. We note that

∥Sn − S∥BC = ∥(Sn,1 − S1) e1 + (Sn,2 − S2) e2∥BC

=
1√
2

√
|Sn,1 − S1|2 + |Sn,2 − S2|2 < ε.

This means that Sn,1 → S1 and Sn,2 → S2. With the help of Lemma 1.1 we

see that
∞∑
k=1

|ak,1| < ∞ and
∞∑
k=1

|ak,2| < ∞. In the light of these, we write

∞∑
k=1

∥ak∥BC =
1√
2

∞∑
k=1

√
|ak,1|2 + |ak,2|2

≤ 1√
2

∞∑
k=1

(|ak,1|+ |ak,2|)

=
1√
2

(
∞∑
k=1

|ak,1|+
∞∑
k=1

|ak,2|

)
< ∞.

□

Definition 2.1. By (X (BC) , Y (BC)) we shall denote the set of all matrices
A′ which map X (BC) into Y (BC) . By (X (BC) , Y (BC) ; p) we denote that
subset of (X (BC) , Y (BC)) for which limits or sums are preserved. For exam-
ple,
A′ ∈ (c (BC) , c (BC) ; p) means that A′

n (ζ) exists for each n
whenever ζ ∈ c (BC) and A′

n (ζ) → t (n → ∞) whenever
ζk → t (k → ∞) .

Now we give some basic results.

Theorem 2.3. (BC−Silverman-Toeplitz Theorem) A′ ∈ (c (BC) , c (BC) ; p) if
and only if

i) sup
n

∞∑
k=0

∥a′nk∥BC < ∞.

ii) a′nk → 0 (n → ∞, k fixed).

iii)
∞∑
k=0

a′nk → 1 (n → ∞).
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Proof. Let’s assume that i), ii) and iii) are satisfied. We want to show that
A′ ∈ (c (BC) , c (BC) ; p). Take an arbitrary ζ = (ζk) ∈ c (BC) . Let ζk → t
(k → ∞). Then, in the view of i) we write

∞∑
k=0

a′nkζk =
∞∑
k=0

a′nk (ζk − t) + t

∞∑
k=0

a′nk.

By iii), we have lim
n→∞

t
∞∑
k=0

a′nk = t. Also, since η = (ηk) ∈ c0 (BC) where

ηk = ζk− t, it is clear that
∞∑
k=0

a′nk (ζk − t) ∈ c0 (BC) by i), ii) and Theorem 2.2.

This implies that

lim
n→∞

∞∑
k=0

a′nk (ζk − t) = 0

and equivalently, lim
n→∞

∞∑
k=0

a′nkζk = t.So, it results that A′ ∈ (c (BC) , c (BC) ; p) .

Conversely, let A′ ∈ (c (BC) , c (BC) ; p) . Then, since ζ = e′k = (ζk) ,
ζ = (0, 0, ..., 0, e1, 0, ...) ∈ c0 (BC) ⊂ c (BC) with k ∈ N arbitrary and fixed,

A′
n (ζ) =

∞∑
k=0

a′nkζk exists for every n ∈ N and lim
n→∞

A′
n (ζ) = lim

n→∞
ζn = 0 holds.

This produces

lim
n→∞

A′
n (ζ) = lim

n→∞

∞∑
k=0

a′nkζk = lim
n→∞

a′nk = 0 (k fixed),

which proves ii).
Let ζ = e = (e1, e1, ...) . It follows that ζ = e ∈ c (BC) and ζn → 1

(n → ∞). Since A′ ∈ (c (BC) , c (BC) ; p) , one can easily see that

1 = lim
n→∞

A′
n (ζ) = lim

n→∞

∞∑
k=0

a′nkζk = lim
n→∞

∞∑
k=0

a′nk,

which gives iii).
Again let ζ = (ζk) ∈ c (BC) . So, we say that (ζk,1) , (ζk,2) ∈ c where

ζ = ζk,1e1 + ζk,2e2. Because of A′ ∈ (c (BC) , c (BC) ; p) , we have

A′
n (ζ) =

∞∑
k=0

a′nkζk =

(
∞∑
k=0

a1nkζk,1

)
e1 +

(
∞∑
k=0

a2nkζk,2

)
e2 ∈ c0 (BC)

where a′nk = a1nke1 + a2nke2.
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Suppose that lim
n→∞

A′
n (ζ) = t and t = t1e1 + t2e2. Thus, we get

t1 = lim
n→∞

A1
n (ζk,1) , t2 = lim

n→∞
A2

n (ζk,2) and so A1, A2 ∈ (c, c; p) . From Theo-

rem 1.3 we obtain that sup
n

∞∑
k=0

|a1nk| < ∞, sup
n

∞∑
k=0

|a2nk| < ∞.

sup
n

∞∑
k=0

∥a′nk∥BC =
1√
2
sup
n

∞∑
k=0

√
|a1nk|

2
+ |a2nk|

2

≤ 1√
2

(
sup
n

∞∑
k=0

∣∣a1nk∣∣+ sup
n

∞∑
k=0

∣∣a2nk∣∣
)

< ∞,

which is exactly iii). The proof is completed. □

Remark 2.1. In Theorem 2.1 and Theorem 2.3, BC−matrices that transform
BC−convergent sequences into BC−convergent sequences are characterized.

Definition 2.2. A BC−matrix satisfying the conditions of Theorem 2.3 is
called a BC−Toeplitz matrix or BC−regular matrix.

Definition 2.3. Let a BC−infinite matrix A′ = (a′nk) be given. If a′nk = 0 for
k > n, then the BC−matrix A′ is called BC−triangular matrix.

Corollary 2.1. If a BC−triangular matrix A′ = (a′nk) satisfies the condition
lim
n→∞

a′n,n−k = 0 for every fixed k ∈ N with 0 ≤ k ≤ n in addition to the

conditions of Theorem 2.3, then

ξn :=
n∑

k=0

a′nkzkwn−k → zw (n → ∞)

where ∥zn − z∥BC → 0, ∥wn − w∥BC → 0 (n → ∞).

Proof. Let the BC−triangular matrix A′ = (a′nk) satisfy the given conditions
and let zn → z, wn → w (n → ∞). Therefore, we obtain

ξn : =
n∑

k=0

a′nkwn−k (zk − z) +
n∑

k=0

a′nkwn−kz (7)

=
n∑

k=0

a′nkwn−k (zk − z) + z
n∑

k=0

a′n,n−kwk.

Put b′nk := a′nkwn−k. Clearly, the matrix B′ = (b′nk) satisfies the conditions of
Theorem 2.1. Also, since (zn − z) ∈ c0 (BC) , taking into account Theorem 2.1
we obtain that

n∑
k=0

a′nkwn−k (zk − z) → 0(n → ∞). (8)
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The matrix C ′ = (c′nk) obtained by taking c′nk := a′n,n−k satisfies the
conditions of Theorem 2.3. Indeed, the following statements explain this claim:

sup
n

n∑
k=0

∥c′nk∥BC = sup
n

n∑
k=0

∥∥a′n,n−k

∥∥
BC = sup

n

n∑
k=0

∥a′nk∥BC < ∞,

c′nk = a′n,n−k → 0 (n → ∞, k fixed),
n∑

k=0

c′nk =
n∑

k=0

a′n,n−k =
n∑

k=0

a′nk → 1 (n → ∞).

So, using Theorem 2.3, we get
n∑

k=0

c′nkwk =
n∑

k=0

a′n,n−kwk → w (n → ∞). (9)

Substituting (8) and (9) in (7), ξn → zw (n → ∞)is obtained. So, the
proof ends. □

Now let’s give BC−Kojima-Schur theorem, which is a generalization of
BC−Silverman-Toeplitz theorem.

Theorem 2.4. (BC−Kojima-Schur theorem) A′ ∈ (c (BC) , c (BC)) if and only
if

i) sup
n

∞∑
k=0

∥a′nk∥BC < ∞.

ii) lim
n→∞

∞∑
k=p

a′nk = ap for every p ∈ N.

Proof. Let A′ ∈ (c (BC) , c (BC)) . The necessity of i) is proved as in Theorem
2.3. Therefore, we only prove the necessity of ii). The sequence ζ = (ζk)
defined as

ζ = ζk :=

{
0, 0 ≤ k < p
e1, k ≥ p

= (0, 0, ..., 0, e1, e1, ....)

is in c (BC). Since A′ ∈ (c (BC) , c (BC)) , we have A′
n (ζ) =

∞∑
k=p

a′nk and the

limit

lim
n→∞

A′
n (ζ) = lim

n→∞

∞∑
k=0

a′nkζk = lim
n→∞

∞∑
k=p

a′nk

exists. If we denote this limit depending on p with ap, we get lim
n→∞

∞∑
k=p

a′nk = ap.

On the contrary, assume that i) and ii) are satisfied. Let
ζ = (ζk) = ζk,1e1 + ζk,2e2 ∈ c (BC) and ζk → a = a1e1 + a2e2. We know
that

A′
n (ζ) =

(
∞∑
k=0

a1nkζk,1

)
e1 +

(
∞∑
k=0

a2nkζk,2

)
e2
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where a′nk = a1nke1 + a2nke2. Also, since ζ = (ζk) ∈ c (BC) , we say that

(ζk,1) , (ζk,2) ∈ c. The statement sup
n

∞∑
k=0

∥a′nk∥BC < ∞ implies that

sup
n

∞∑
k=0

|a1nk| < ∞, sup
n

∞∑
k=0

|a2nk| < ∞. Similarly, lim
n→∞

∞∑
k=p

a′nk = a′p implies that

lim
n→∞

∞∑
k=p

a1nk = a1p, lim
n→∞

∞∑
k=p

a2nk = a2p. By Theorem 1.4, one can deduce that

A1
n (ζ) =

∞∑
k=0

a1nkζk,1, A
2
n (ζ) =

∞∑
k=0

a2nkζk,2 ∈ c and so A′ ∈ (c (BC) , c (BC)) .

Thus, the proof comes to the end. □

Definition 2.4. A BC−matrix satisfying the conditions of Theorem 2.4 is
called a K − BC−matrix.

Remark 2.2. A K − BC−matrix may not be BC−regular.

3. Concluding Remarks

In this paper, the characterizations of bicomplex matrix transformations
between c0 (BC) and c (BC) are given. This characterization is based on the
definition of a BC−linear bounded operator, and converts matrix transforma-
tions between complex sequence spaces c and c0 into bicomplex ones. We be-
lieve that these new matrix transformations can be a powerful tool for summa-
bility theory in bicomplex analysis. Hereupon, a subject of future research
might be Tauberian theorems for Cesaro and Abel summability methods of
single sequences.
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