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BICOMPLEX MATRIX TRANSFORMATIONS BETWEEN ¢,
AND ¢ IN BICOMPLEX SETTING

Birsen Sagir!, Nilay Degirmen?, Cenap Duyar3

In this paper, we give the characterizations of bicomplex matrix
transformations between co (BC) and ¢ (BC) extending some results in com-
plex versions of them. Also, we state and prove their bicomplex counterparts
utilizing Silverman-Toeplitz theorem and Kojima-Schur theorem.
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1. Introduction

Bicomplex numbers are mentioned for the first time in the history of
mathematics in [23]. An extensive review of the bicomplex space and related
context is given in G.B Price’s book [20]. Alpay et al [4] has developed the
bicomplex version of functional analysis with complex scalars and it was the
next significant push in subsequent studies on theory of functions with bi-
complex variables. Bicomplex numbers has new applications with their use in
fields such as neural networks [3], intelligent radio access networks [24], elec-
tromagnetic wave propagation [21], integral transforms and fractional calculus
[1]. So, researchers working on bicomplex analysis reveal the importance of
these numbers in real-world problems. The other recent notable applications
can be found in [13, 8, 2, 11, 19, 14, 12, 10].

Now, we introduce a basic review of bicomplex numbers. Further, we
refer to the books [20], [4] and [15] for more comprehensive knowledge.

The set of bicomplex numbers BC consists of the elements of the form

21 + jzo where 21,20 € C, j2 = —1 and ij = ji. Also, it forms an algebra
and BC—module with respect to the standard operations and also, it has
two distinguished zero divisors e; = 1;”,62 = 1_2”. If By = z1 — iz and

Ba = z1 + 1z, the idempotent representation of z = 27 + jz5 is uniquely written
as z = fre1 + Baea.
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For two bicomplex numbers z = 1e; + 265 and w = €1 + Y262 we have
the followings:

zrw=(B1E7)er + (B2 £ 72) ez, 2w = (Sin)er+ (B272) 2.

. 2 2
A map [[.[gc : BC = RTU{0}, |[2llge = |21 +j22llge = \/ |21]” + |22

is a real valued norm on BC, and also it satisfies the following properties:
(1) flzwllpe < V2 [2[lpc lwllpe and ||z £ wllge < [[2[lpe + wllpe -

(ii) If z = Brer+ faes, then |2[lpe = G54/ 1817 + 5]

A sequence (z,) in BC converges to zy € BC with respect to the norm
||.|gc if for every € > 0 there is a natural number ng such that ||z, — 2o[/pc < €
for all n > ng. In this paper, we denote this convergence by lim z, = z.

n—oo

Every BC—module X is written in the idempotent decomposition
X = e1 X1 + ex Xy or equivalents X = e; X + es X, where X; := ;X and
X5 := e3X. Assume that X; and X5 are normed spaces with respective norms
I.lly, [l For any = = xie; + xqe2 € X, the function ||.||, defined as

z]ly = \/Li‘/ 1|7 + ||z2]l2 is a norm on X, the so-called Euclidean-type

norm in X and ||¢z]|y < v2||¢|lge |7y for any ¢ € BC and for any = € X.

For two BC—modules X and Y, a map T : X — Y is said to be a
BC—linear operator if 7' ((x + y) = (T (z) + T (y) holds for any z,y € X and
¢ € BC [4].

Every BC—linear operator 1" on X is written in the idempotent decom-
position T' = e; T} + ex Ty where X = e; X1 4+ e2X5 is idempotent decomposition
of X and the linear operator T; maps X; to itself as x — ¢, (e;z) for [ = 1, 2.
Also, BC—linear operator T on X is bounded if and only if 77 and 75 are both
bounded [9].

In [22], which is our first article on bicomplex sequence spaces, we set
up the spaces ¢y (BC) and ¢ (BC) and obtained that they are Banach spaces
according to the norm .|| pe defined as ||z pe = sup ||zl[pe for every

keN

2= (z) € ¢o (BC) (or ¢(BC)).

The theory of sequence spaces has always been of great interest in the
study on summability which has applications in many different fields such
as functional anaylsis, numerical analysis, approximation theory, the theory of
orthogonal series. The theory of matrix transformations is also one of the main
topics studied in the theory of sequence spaces. Special theorems and results
in summability theory motivated the authors to study matrix transformations.
We refer to works and books [16, 25, 18, 7, 6, 5] on characterizations of matrix
transformations between some complex sequence spaces.

The following theorems given in [16] serve as a motivation of our main
results.

Theorem 1.1. Let the following properties be satisfied for the matrix
A= (an) :
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i) app — 0 (n — 00, k fized).

i) M = Supz |ang| < oo
=1

Then, A E B (co,c0) and || Al =
Theorem 1.2. Let A € B(cy,co). Then, the bounded linear transformation
A assigns a matriz (ang) such that A, () = > appxy for every v = (zx) € .

k=1
In addition, the following conditions are satisfied:

i) app — 0 (n — o0, k fized).

i) sup Y |ank| < oo.

n k=1
Lemma 1.1. If Y apx, < oo for any x = (xy) € ¢, then Y |ax| < oo.
k=1 k=1

Theorem 1.3. (Silverman-Toeplitz Theorem) A € (¢, c;p) if and only if

i) sup Y |ank| < 0.

n k=0
i) anr, — 0 (n — o0, k fized).
i) Y apr — 1 (n — 00).

k=0

Theorem 1.4. (Kojima-Schur theorem) A € (c,c) if and only if

i) sup Y |ank| < oo.
n k=0

o0
i) lim Y an, = a,, for every m € N.
n—oo k=m

Motivated by the importance of the applications of bicomplex numbers
and matrix transformations, this article is devoted to establish the matrix
transformations in bicomplex analysis. In more detail, in the present work, we
evaluate the bicomplex matrix transformations between ¢y (BC) and ¢ (BC)
using the fundamentals in complex versions of them. So, we transfer some
theorems such as Silverman-Toeplitz theorem and Kojima-Schur theorem that
exist in the literature to the bicomplex setting.

2. Main Results

If 2, = 2161 + zpoeo for any k € N, where {21} and {22} are com-
plex (C (7)) sequences, then z = {2} is a bicomplex sequence. Therefore
given any complex sequence space (X (C),|.||y) we can always define a bi-

complex version <X (BC), |||l X(B(C)> comprising of all sequences of the type

{zx} = {zr1€1 + 2K 2ea}, where {21} and {z;2} are in (X (C), H.HX(C)) and

1 2 s \?
Iellxme) = 75 (IHoriHixe + ekt
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The addition and scalar multiplication on <X (BC), ||| X(BC)> is defined

as follows:

z+w = {xpie1+ Tpoea}t + {wpier + wroea} = {21 +wrater + {zp2 + Wi} e,

az = (04161 + 06262) {Zk7161 + Zk,2€2} = {ozlzk,l} €1 —+ {OéQZk’Q} €9
where z,w € (X (BC), ||.HX(EC)> and o € BC.

Example 2.1. The spaces ¢ and ¢y of convergent and null complex sequences
are given by

c :{x:(xk)ES:klim|xk—l|:Oforsomel€(C},
—00
co :{x:(:ﬂk)ES:limxkzo}
k—ro0
and they are Banach spaces with respect to the norm ||.| . defined as

|z||, = sup|zk|. Then, their corresponding bicomplex sequence space co (BC)
k

(or ¢ (BC)) comprises of all sequences of the type z = {zx} = {zr161 + 2262}
where {z1} . {zr2} € co (orc). Also,
1 2 2\
2]l o me = [{zK161 + 2K 262} Be = 7 (21 HIS + Iz} IS) * -

We will refer to ||.|| ge as the Buclidean-type norm on co (BC) and c (BC) .

Lemma 2.1. ¢y (BC) (or ¢ (BC)) equipped with |||, g s a Banach space over
BC.

Proof. 1t is clear from the definition of addition and scalar multiplication that
co (BC) (or ¢(BC)) is a module over BC. It is also easy to show that ||.|| zc
defines a norm on ¢y (BC) (or ¢(BC)). Now it only remains to show that
co (BC) is also complete with respect to ||| pc - For that let {z,’j}zo:l be a
Cauchy sequence c¢q (BC) . For {z, = 2,161 + zn2€2} ., we have

1

{20 Hl oo pe = 7 (I % + {223 12) 7 (1)

Therefore one has [|[{z,}|_, < V2 [{20}H ] oo mc for @ = 1,2. Now for & > 0 there
exists ng € N such that

£

ze — 2 < — 2

{27 = 20" Hloo me NG (2)

for all s,m > ng. Thus (1) and (2) yield that {zf”}:;l is a Cauchy sequence
in (co, |.||,) for ¢ = 1,2. In view of the completeness of the (co,|.||..), we
have that {sz”}:;l converges to some {z,,} € ¢y. Therefore for i = 1,2
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there exists N; € N such that H{zf” — ZnZ}Hoo < /e for all s > N;. Now for
N =max {Ny, No} and s > N one has

22— s = 5 (10— i + e — i) < g e +0) =

Thereby showing that {22}20:1 is a convergent sequence in cg (IB%(C) . So, ¢ (BC)
equipped with [|.|| g is a Banach space over BC. The proof is completed. [

Suppose A" = (al,;,) is an infinite matrix of bicomplex numbers a!,, where
k,n € N. Since a}, € BC, it is uniquely written in the form
al, = al,er + a?,es where (al,) and (a?,) denote infinite matrices with com-
plex terms. For ¢ = {(.} = {Cler + Ckeg} € s(BC), we obtain the sequence

A'C, the A’—transform of ¢, by the usual matrix product

‘111 a12 e alk e TG [ a} G+ alGet o+ ailka + ..

Uy Qg - Ay o G2 a5, C1 + Qo + ..+ ab G + ...
A¢ = : e e N :

Upy Gpy *t* Qg o Ck Ap1G1 + ApaCo + o+ agy G+ o

Hence, in this way, we transform the BC- Sequence ¢ into the BC-sequence

AC = {(AQ,) with (4, = YauG = AL(Qer + AL (Qea where

AL (¢) = Zankgk 1 and A2 (¢) = ZankaQ For each n, the existence of the

sum of A;( ) = al, G+ alsC + . —l— al .G + ... is accepted. If idempotent
representation is used, we get

e}

A Q) = Z (&ikel + aikez) (ka1 + Croea) = Z (Gika,1€1 + Gika,zez)
k=1 k=1
= (ZarlszkJ) €1+ (Zaik@g) €2
k=1 k=1
and so

<Zank<k 1> e+ <Zank{k 2> : (3)

Then, (3) can be also ertten A(() = Jer + A% (C)ey where

Al ( ) Zankckl and A2 ( ) zankaQ

Let X (BC) and Y (BC) be any two bicomplex sequence spaces. If A(
exists and is in Y (BC) for every BC—sequence ¢ = (¢x) € X (BC), then we
say that A" defines a BC—matrix mapping from X (BC) into Y (BC), and
we denote it by writting A’ : X (BC) — Y (BC). By (X (BC),Y (BC)), we
denote the class of all BC—matrices A" such that A’ : X (BC) — Y (BC).
Thus, A" € (X (BC),Y (BC)) if and only if the series on the right hand
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side of (3) converges for each n € N and every ¢ € X (BC), and we have
A'C={(A(), },en € Y (BC) for all ( € X (BC).
Since A; = (al,) and Ay = (a?,) are linear, A’ is BC—linear as follows:

ANH+n) = D ah (A +n)
1

k=

NE

larcer + atpes] [(Aea + M) €1 + (A2 + Mi2) €3]
k

1

WE

[are (ACia + mi1) €1+ a2y, (A2 + Mi2) €3]

oo (o]
2 2
A aklea Y adimka| e
k=1 k=1

>
Il

1

00 S
1 1
- )\§ ankck,l + § :anknlﬁl
k=1 k=1

= M)+ A (n)
for all {,n € X (BC),\ € BC.

In this section, we give the characterizations of some bicomplex matrix
classes. We begin with stating the necessary and sufficient condition on an
infinite BC—matrix belonging to the class (¢ (BC),¢o (BC)). For this, the
known fundamental theorems for ¢ and ¢y and their results will be used.

First of all, let’s give the following two theorems, which we can call the
existence theorems:

e +

Theorem 2.1. Let the following properties be satisfied for the bicomplex matrix
Al = (ay,,) :
i) al, —0 (n— oo, k fired).

o0
) [|Mllgc = sup 2., ll@allac < oo
n =

Then, A’ defines a BC—linear bounded operator on ¢y (BC) into itself and
AT = 1M| g

Proof. Since a!;, — 0 (n — oo, k fixed), for given € > 0 there exists np € N

such that
/ / 1 1 12 2 12
Hank - O“IB%(C = ”ank“B(C = E |ank’ + ‘ank| <e¢

for all n > ng.Then we obtain that for given £ > 0 there exists ng € N such
that |al,| < v/2¢,]a2,| < V/2¢ for all n > ng. This implies that

ar, — 0 and a2, — 0 (n — oo, k fixed). (4)

o0
Also, since sup ) ||a;,;||pec < 0o and

n k=1
Z lanllse = Z_ Vs l” 4 lal, (5)
k=1 V2



Bicomplex Matrix Transformations between ¢y and c¢ in Bicomplex Setting 121

oo oo
we have My = Zssup - |ay,| < oo and M, = \%supz la%,| < oco. Thus, by

(4), (5) and Theorem 1.1 we deduce that A'; A> € B(cy,c) and
|AY| = My, ||A?|| = M, since A" = Ale; + A%ey where A' = (Al (€)),
A% = (A2(C)). Since A', A* € B(cy,cp), we write ||[A' (O, < K16l
and [|A% (Gl < K2 |Gl where ¢ = (i), G = (C1) € co. Hence,

1A O] e = %ww (CIP + 142 (I

1 2 2
< K161+ 161 = K [Claae

for K = max {K;, K} . Finally, A" is bounded. It is clear that A" is BC—linear.
So, A" defines a BC—linear bounded operator on ¢y (BC) into itself.
On the other hand, if we take M’ = Mye; + Mses, we get

1 1
AT = AT+ 1421 = 017405 =
This completes the proof. O

Theorem 2.1 shows us that a BC—matrix of a certain type describes a
bounded linear transformation from ¢ (BC) into itself. Now let’s show the
converse.

Theorem 2.2. Let A’ be a BC—linear bounded operator on co (BC) into itself.
Then, A" determines a BC—matriz (al,) such that

[e.9]

AL (Q) =D "l for every ¢ = (Gi) € co (BC) (6)

k=1

holds and such that
i)al, —0 (n— oo, k fired).

i) | Al = Supkz_jl lrgllpe < oo
Proof. The BC—sequence (€},) defined as e}, = (0,0, ...,0,e1 + €3,0,...) = ej.e;+
exes is a basis for ¢g (BC) where e = ez = ( 0,0,...,0, 1 0, ), (er), (€3)

" k—th term
are a basis for ¢y. So, we can write

(= ngek = (Z@,l@i) €1+ (Z@,zi) €2.
k=1 k=1 k=1

Since A’ is a BC—bounded linear transformation, we have A’ ({) = > (A’ (e}) .
k=1

On the other hand, since (e}) € co (BC) for every k € N, by_hypothesis
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A’ (e}) = (a4 Ao gy ool gy o) € Co (BC) is obtained. This yields the following
statement:

A (C) = ZCk (a%,k) .

o0
accordingly, the general term of this new sequence is A7, (¢) = > _a;, ,(xin other
k=1

notation, as A; (¢) = > al (. This proves (6).
k=1

Let us now show that conditions i) and ii) are satisfied. By hypothesis
that
AC € ¢y (BC) whenever ¢ € ¢, (BC), we deduce that A’ (e}) € ¢ (BC),
k =1,2,... implies a/,, - 0 (n — o0), k = 1,2,.... It remains to show that

= 2 2
A = SquZlHa;lkH]Bc < 00 lagllse = 5/ lanl” +laf" where
n =

a,, = al,e; + a?eq, the statement a/, — 0 (n — oo, k fixed) implies that
al, = 0 and a2, — 0 (n — oo, k fixed). Since A’ is a BC—linear bounded
operator on ¢y (BC) into itself and

1
A0 = AT + 427 < oo,

we derive that

[e.o] o0
HAlH =M, = supz |a7llk| < 00, HAQH =M, = supz }aik} < 00,
" ok=1 " k=1

by Theorem 1.2 and so A', A% € B (cy, ¢y) . Therefore, we obtain that
SUPZ lanellse = ESUPZ |ap "+ lazy]
" k=1 " k=1

1 o0
< Esgp; (|| + |an|) < oo

Also, for M" = Mie; + Mses we get

1
1A = —\/Hz‘llH2 + A2 < [JAY| + ||A?)) = My + M.
V2
This completes the proof. 0]
Lemma 2.2. If > ay(, < oo for any ¢ = (G) € ¢(BC), then 3 [[ax|lge < oo.
k=1 k=1

Proof. Let ¢ = (¢) € ¢(BC) and a, € BC. Then, we can write
Ck = Crae1 + Cpoeo, ar = ag1€1 + ag2e2, and so apCr = a1Ck1€1 + g 2Ck 262, If
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o
> agl < oo, then we have
k=1

where S, = Zakék, nl = Zamckl, n2 = ZakQCkQ Since Zakék < o0,
there exists S Sie; + 5262 c IBC such that S —> S. We note that

||SR_S||IB§(C = ||( n1_51)€1+(5 _32)62”153@
1 2
—/|Sn1 — S1|" + |Sno — So|” < e.
\/5\/| 1= B+ 1802 = 5

This means that S, ; — 51 and S, 2 — Sy. With the help of Lemma 1.1 we
see that ) |ag1| < 0o and Y |age| < co. In the light of these, we write
k=1 k=1

o0 1 o0
Slardse = —=3 Vlaral® + laal?
k=1 \/§k:1

o0

%Zaamwmn

IN

= Z|ak1\+2|ak21><oo

%I

O

Definition 2.1. By (X (BC),Y (BC)) we shall denote the set of all matrices
A" which map X (BC) into Y (BC). By (X (BC),Y (BC);p) we denote that
subset of (X (BC),Y (BC)) for which limits or sums are preserved. For exam-
ple,

A € (¢(BC),c(BC);p) means that Al (() exists for each n
whenever ¢ € ¢(BC) and A () — t (n—o00) whenever
G —t (k— 0).

Now we give some basic results.

Theorem 2.3. (BC—Silverman-Toeplitz Theorem) A’ € (¢ (BC), ¢ (BC);p) if
and only if

1) SUPZ @k llsc < oo
i) ank —> 0 (n — oo, k fized).

i) Zank —1 (n— o).
k=0
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Proof. Let’s assume that i), ii) and iii) are satisfied. We want to show that
A" € (¢(BC),c(BC);p). Take an arbitrary ¢ = () € ¢(BC). Let ¢, — t
(k — o00). Then, in the view of i) we write

oo o [o¢]
Za%kgk = Za;m (G —1)+ tza%k-
k=0 k=0 k=0

By iii), we have limt¢) al, = t. Also, since n = () € co (BC) where

e = (. —t, it is clear that Y al, ((x —t) € ¢o (BC) by i), ii) and Theorem 2.2.
k=0
This implies that

. / o
lim %ank (Ge—1)=0

and equivalently, lim > al,(x = t.So, it results that A’ € (¢ (BC),c(BC);p).
n—00p_(

Conversely, let A" € (¢(BC),c(BC);p). Then, since ( = ¢, = (¢x),

¢ = (0,0,...,0,e1,0,...) € ¢g(BC) C ¢(BC) with k& € N arbitrary and fixed,

Al (C) = > al, ( exists for every n € N and lim A/ (¢) = lim ¢, = 0 holds.
k=0 n—oo n—oo
This produces

n—oo n—oo

lim A/, (¢) = lim E a,.Ce = lima,, =0 (k fixed),
n—oo
k=0

which proves ii).
Let ( = e = (ey,eq,...). It follows that ( = e € ¢(BC) and (, — 1
(n = 0). Since A’ € (¢(BC),c(BC);p), one can easily see that

I / I / 1 /

n—oo

which gives iii).
Again let ¢ = () € ¢(BC). So, we say that ((x1),(Ce2) € ¢ where
¢ = (k€1 + Croe2. Because of A' € (¢(BC),c(BC);p), we have

A Q) =) auG = (Za;kck,l) er+ (Zaik@z) ez € co (BC)

k=0 k=0 k=0

/A | 2
where a), = a,,e1 + a;,es.
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Suppose that lim A, (() = t and t = tie; + taea. Thus, we get
n—oo
t; = lim Al (Cp1), t2 = lim A2 (¢yo) and so A', A% € (c,c;p). From Theo-
n—00 n—00

o0

oo
rem 1.3 we obtain that sup)_ |al,| < oo, sup>_ |a2,| < oo.

oo 1 (o)

2 2

sup ) [lagillpe = ESUPZ\/ |ap,|” + laz,]
k=0 " k=0

1 [0.9] o0
e — <supz }a}m} +supz |aik|> < 00,
V2 n k=0 " k=0
which is exactly iii). The proof is completed. ([l

Remark 2.1. In Theorem 2.1 and Theorem 2.3, BC—matrices that transform
BC—convergent sequences into BC—convergent sequences are characterized.

Definition 2.2. A BC—matriz satisfying the conditions of Theorem 2.3 is
called a BC— Toeplitz matriz or BC—reqular matriz.

Definition 2.3. Let a BC—infinite matriz A" = (a),;,) be given. If al,, =0 for
k > n, then the BC—matriz A" is called BC—triangular matriz.

Corollary 2.1. If a BC—triangular matriz A" = (al,,) satisfies the condition
lim a/ = 0 for every fixed k € N with 0 < k < n in addition to the

nn—k
n—oo ’
conditions of Theorem 2.3, then

n

& = Za;kzkwn_k — zw (N — )
k=0

where ||z, — z|lgc = 0, [Jw, — w[lge = 0 (R — o).

Proof. Let the BC—triangular matrix A" = (a,,) satisfy the given conditions
and let z, — z,w, - w (n — 00). Therefore, we obtain

&, 1 = Za;kwn,k (2 — 2) + Za;kwn,kz (7)
k=0 k=0

n n
o / ) /
= U Wn—k (21— 2) + 2 ay, . W
k=0 k=0

Put 0, := al,w,_j. Clearly, the matrix B’ = (/) satisfies the conditions of
Theorem 2.1. Also, since (z, — z) € ¢y (BC), taking into account Theorem 2.1

we obtain that
n

Za;kwn,k (21— 2) = 0(n — ). (8)
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The matrix C" = () obtained by taking ¢, := a,, , satisfies the
conditions of Theorem 2.3. Indeed, the following statements explain this claim:

n n n
sup Yl chillse = supd _ [lal, e =sup> _ llan,llze < oo,
" k=0 " k=0 " k=0

e = Gy — 0 (n— 00,k fixed),
n n n
/ / !/
chk = Zanﬁn_k = Zank — 1 (n— ).
k=0 k=0 k=0

So, using Theorem 2.3, we get

chkwk Zann LWk — w (N — 00). 9)

k=0

Substituting (8) and (9) in (7), & — zw (n — o0)is obtained. So, the
proof ends. O

Now let’s give BC—Kojima-Schur theorem, which is a generalization of
BC—Silverman-Toeplitz theorem.

Theorem 2.4. (BC— Kojima-Schur theorem) A" € (¢ (BC), ¢ (BC)) if and only
if

oo
i) SquZ @k llse < oo
n =

i) hm Zank = a, for every p € N.
=p

Proof. Let A" € (¢(BC),c(BC)). The necessity of i) is proved as in Theorem
2.3. Therefore, we only prove the necessity of ii). The sequence ¢ = ((x)
defined as

0, 0<k<p
C:Ck ::{ e1, kZp :(0,0,...,O,el,el,....)

is in ¢(BC). Since A’ € (¢(BC),c(BC)), we have A (¢) = >_al, and the
k=p
limit

Jim. Al ( = lim Zanszk Tim Zank

exists. If we denote this limit depending on p with a,, we get lim Zank Ap-

On the contrary, assume that i) and ii) are satisfied. Let
¢ = (G) = Ceaer + Ceoea € ¢(BC) and ¢ — a = aje; + azes. We know

that
= <Zaikék,1> €1+ (Zaika,Z) €2
k=0 k=0
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where al, = al.e; + a,es. Also, since ¢ = () € ¢(BC), we say that
(o), (G2) € c The statement sup3 ajylse < oo implies that
n k=0
supy_ |ap,| < oo, sup) |aZ,| < co. Similarly, lim > al, = a] implies that
n k=0 n k=0 n—o0 k:p
lim Y a), = a), lim Y a2, = a’. By Theorem 1.4, one can deduce that
A, Q) = Yanlr1, AR (Q) = Yagla € ¢ and so A € (¢ (BC),c(BC)).
k=0 k=0
Thus, the proof comes to the end. 0

Definition 2.4. A BC—matriz satisfying the conditions of Theorem 2.J is
called a K — BC—matriz.

Remark 2.2. A K — BC—matriz may not be BC—reqular.

3. Concluding Remarks

In this paper, the characterizations of bicomplex matrix transformations
between ¢y (BC) and ¢ (BC) are given. This characterization is based on the
definition of a BC—linear bounded operator, and converts matrix transforma-
tions between complex sequence spaces ¢ and ¢y into bicomplex ones. We be-
lieve that these new matrix transformations can be a powerful tool for summa-
bility theory in bicomplex analysis. Hereupon, a subject of future research
might be Tauberian theorems for Cesaro and Abel summability methods of
single sequences.
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