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FIXED POINTS OF MULTIVALUED MAPS VIA (G, ¢)-
CONTRACTION

Tayyab KAMRAN 12 Vladimir RAKOCEVIC?, Mehwish WAHEED?,
Muhammad Usman ALI?

In this paper, we extend the notion of (G, @) -contraction, introduced

by Ozturk and Girgin, to multi-valued mappings. By using our new notion we
prove a fixed point theorem for multi-valued mappings. Our results imply
Nadler’s theorem, and generalized version of Nadler’s theorem on partial
metric spaces.
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1. Introduction

Investigation of the existence of fixed points for single-valued mappings in
partially ordered metric spaces was initially considered by Ran and Reurings [2].
They proved the following result.

Theorem 1.1 Let (X =) be a partially ordered set such that every pair
X,y € X has an upper and lower bound and endowed with the complete metric

d. Suppose f:X — X be a continuous monotone (either order preserving or
order reversing) mapping satisfying the following conditions:
(1) There exists an « € (0,1) with
d{fx.fy) = ad(x.y) for each x = y.
(2) There exists X, € X With xg = fxp Or fxg = xq.
Then f has a unique fixed point X" € X and for each xe X, |im f"(x)=X".

n—oo

Afterward, different authors considered the problem of existence of a fixed
point for contraction mappings in partially ordered metric spaces. Jachymski [3]
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combined graph theory and fixed point theory and gave some fixed point results,
which is a nice generalization of [2]. Some other results for existence of fixed
point for single-valued and multi-valued operators in metric spaces with a graph
are given by Bojor [4, 5], Beg et al. [6], Nicolae etal. [8], Aleomraninejad et al.
[9], Samreen etal. [10, 11], Kamran etal. [12], and Vetro and Vetro [13].

Very recently, Ozturk and Girgin [14] introduced the notion of (G,¢)-
contractions for single-valued mappings and proved some fixed point theorem. In
this paper, we extend (G, ¢) notion to multivalued mappings and extend some

results of [14] to multivalued mappings.
2. Preliminaries

In this section, we present some notions which are helpful for the understanding
of the
paper.

Let (X,d) be a metric space. We denote by CB(X) the class of nhonempty
closed and bounded subsets of X . For A,BeCB(X), H:CB(X)xCB(X)—>R
defined by

H (A, B) = max{sup d(b, A),supd(a, B)}.

beB acA
is a metric on CB(X). It is called Hausdorff metric generated by the metric d .

A directed graph (V,E) consists of a set of vertices V, and a set of
directed edges E. The elements of E are ordered pairs of vertices. A directed
graph, can have loops and permits two edges joining the same vertices. More than
one edges going in the same direction between the same vertices are called
parallel edges, which are not allowed in our results.

Let G=(V,E) be agraph. A pathin G from a vertex x to a vertex y of

length N (N {0,122, --}) is a sequence (X-)?l » of N+1 distinct vertices such
that x, =x, Xy =y and (X;,,x;) €E foralli=12,---N. A graph G =(V,E) is
said to be connected if there is a path between any two vertices. We say that a

directed graph G is weakly connected if G is connected, where G is the graph
obtained from G by neglecting the directions of the edges of G .

For a graph G such that E(G) is symmetric and X is a vertex in G, the
subgraph G, consisting of all edges and vertices which are contained in some

path beginning at x is called component of G containing x

Let G=(V,E) be a disconnected graph then different paths in G are
known as its components. If x be any vertex in G, then be a component of G
consisting of all edges and vertices which are included in some path starting at X .
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In this case V(G,) =[x]; ., where [x]; is the equivalence class of a relation R

defined on VV(G) by the rule: y R z if there is a path in G from y to z.
We use the following lemmas and the condition in next section.
Lemma 2.1 [15] Let (X,d) be a metric space and A,B € CB(X). Then,

for each g >1 and for each a e A there exists b € B such that
d(a,b) <gH (A, B). 1)
Lemma 2.2 [15] Let {A.} be asequence in CB(X) and
lim . H(A,, A) =0 for A CB(X). If x, € A, and [im....d(x,,x) =0, then
xeA.
Condition A ([3], Remark 3.1). For any sequence {x,}

and (x,,x,,,) € E for neN, then (x,,x) e E.

in X, if x, > x

neN

3. Main result

We start this section by defining a subclass of the family of mappings
introduced in [14].
Let @ be the class of nondecreasing functions ¢:[0, ) — [0,0) which

satisfies the following conditions:
(¢,) forevery {x,}eR", ¢(x,) >0 ifand only if x, - 0;

(p,) forevery x,x, eR™, o(X +X,) < (X)) +¢(X,);
(@) o(qt) <qe(t) forevery t >0 (where q>1).

Subsequently, throughout this paper, we assume that (X,d) be a metric
space, G is a directed graph with V = X, A={(x,x):xe X} E and G has no
parallel edges.

Definition 3.1 A mapping F : X — CB(X) issaid to be a (G, ¢)-
contraction if following conditions hold:

(i) there exists o € (0,1) and ¢ € @ such that

o(H(Fx, Fy)) < ap(d(x,y)), forall (x,y) € E; (2)
(i) for (x,y) e E,if ue Fx and v e Fy are such that
(d (u,v)) < Vap(d(x,y)), (3)

then (u,v) e E.

Now we state and proof our main results.

Theorem 3.2 Let (X,d) be a complete metric space endowed with the
graph G such that Condition A holds, F: X — CB(X) be a (G, ¢) -contraction
and X ={xe X :(x,u) € E forsomeu € Fx}. Then the following statements
hold:
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(i) Forany xe X, F |[X]é has a fixed point;

(i) If X =< and G is weakly connected, then F has a fixed pointin X ;
@@ Ify= U{[x]G~ :Xe X}, then F |, has a fixed pointin Y ;

(iv) If F < E then F has a fixed point;

(v) FixF = ifand only if X Q.

Proof.
(i) Let x, be any arbitrary point in X, then there exists x, € Fx, such that

(%, %) € E. Since F isa (G, p)-contraction, from (2), we have
P[H (Fxo, Fx)l < apld (X, %,)]-

Let g= 1 >1 by using lemma (2.1), we have x, € Fx_such that

Ja

d(xl,xz)siH(Fxo,Fxl).

Ja
By applying ¢, we get

w[d(xl,x»]w[%H(Fxo, Fx)l,

1
< olH (P, P,
<L opld(%,%)]

7

= Jagld (%, %) @
From (3) and (4), we get (x,X,) € E. Now by using (2), we have
P H(Fx, Fx,)] < agd(x, X,)].

Again for g = 1 >1 by using lemma (2.1), we have X, € Fx, such that

Ja
d(xz,xs)siH(Fxl,sz).

Ja
By applying ¢, we get

w[d(xz,xg)]s(p[%H(ny Fx,)]

1
SﬁcO[H(FXl,FXz)]



Fixed points of multivalued maps via (G, @) -contraction 193

1
7 ap[d(x;,X,)] (5)

1 _
< ﬁw&p[d (X, %)] = agd (%,, X)].

Thus, from (3) and (5), we get (x,,X;) € E. Continuing in similar manner, we
obtain a sequence {x.,}c X such that x. e Fx, with (x,,x,,,)eE for each
ne{0}UN and
old(x,, %,.)] < (a)"o[d(x,, %,)] foreachn e N.
(6)
By using triangular inequality, (¢,) and (6), we have
Pld (X, X )] < @A (X, Xoy0) + 0 (X1 Xoi2) +2 -+ 0 (Xomgs X))
< @ld (X, X0 )]+ @ld (X0, X, 2]+ + oA (X 10 Xpm)]
< (Va )" pld (%, )]+ (Ve )"l d (%, )]+ +
(Ve )" ™ old (%, %,)]
= (Va)"[1+Va +(Ja) +-+( a)" pld (%, %)]
< 1‘_6);) o1 (%, )]
Letting n — oo in above inequality, we have
lim ¢[d (X, X;.)]=0. ()

n—oo

By using (¢,), from (7), we have

lim d (%, X, = 0.

n—oo

Thus {x } is a Cauchy sequence in X . As X is complete, there exists X e X
such that x, — X~ as n— 0. Now by using Condition A, we have (x,,x)eE.
Since F isa (G, ¢)-contraction, so we have
o[H(Fx ,FX)] < ag[d(x,,X)]—0asn — .
Thus, we have
H(Fx,,Fx) =>0asn — o

Since x,,, € Fx, and x, — x_, then by lemma (2.2), X" € Fx". On the other hand,
since (x,,X )€ E for each neN. Thus, we conclude that (x,,X...,X,,X) is a

pathin G and also in G from x, to x". Therefore, X" e[%]5-
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(i) Since X =, then there exists x, € X . As the graph G is weakly

connected, i.e., G is connected. Thus, we have [%]s = X, thenby (i), F hasa
fixed point in X,

(iii) Given that Y = | K[x]5 :xe X:}. By (i) forany xe X, F |[X]é has a fixed
point. Since [x]; <Y . Thus F |, has a fixed pointin Y .

(iii) Let F < E. Thenforall xe X and y e Fx, we have (x,y) € E(G) . Hence
Xe =X and Y = X . By using (iii), F has a fixed point.

(iv) If FixF =, then there exists x € Fx. Since Ac E, we have that (x,x) e E
and thus xe X . Now, if X, =, from (i), we have that FixF = .

Remark 3.3 Nadler’s fixed point theorem [15] can be obtained from
Theorem 3.2 by taking E = X x X and ¢(x) = x foreach x>0.

Remark 3.4 Let us remark that than in the case of a partial metric space
X, Nadler’s type fixed point theorem (Theorem 3.2 of [1] and Theorem 3.3 of
[7]) can be obtained from Theorem 3.2 by taking E = X x X and ¢(x) = x for

each x>0.

Example 3.5 Let X =R be endowed with the usual metric d(x,y) =
| x—y| and graph G =(V,E) isdefinedas V = X and E ={(x,y):x,y>0}u
{(x,x):x eR}. Define T: X — CB(X) by

2X, .
Ey = [O,?] if x>0
otherwise.

Take ¢(x) = Jx foreach x>0 and o = \E Then for each (x,y) € E, we have
p(H(Fx,Fy)) = ap(d(x, y)).
Moreover, for (x,y) € E, if ue Fx and v e Fy are such that

o(d(u,v)) < Jag(d(x y)),
then (u,v) € E. Therefore, Theorem 3.2 ensures the existence of fixed point of
F.

4. Application

Let X =C([a,b],R) be the space of all continuous realvalued functions,
endowed with the metric  d(X,y)=sup, | X®)—y(t)| and graph



Fixed points of multivalued maps via (G, @) -contraction 195

G=(V(G),E(G)) such that V=X and E(G)={(x,y):x(t)<y(),Vte[a,b]}.
Clearly (X,d) is a complete metric space.

As an application, we give existence theorems for Fredholm integral
equation of following type.

x(t) = 9(t)+ [ K(t,5,x(9))ds, )
where g:[a,b] >R is a continuous function, and K:[a,b]x[a,b]xR >R is

continuous and nondecreasing function.
Theorem 4.1 Let X =C([a,b],R) and let the operator F: X — X is

defined by

Fx(t) = g(0) + [ K(t, 5, X(s))ds
where g:[a,b]—R is a continuous function, and K:[a,b]x[a,b]xR —R is
continuous and nondecreasing function. Assume that the following conditions

hold:
(i) for each t,s e[a,b] and x,y € X with (x,y) € E(G), there exists a

continuous mapping p:[a,b] — [0, %) such that
| K(t,s,x(s)) - K(t,s, y(s)) I< p(s) [ x(s) = y(s) |;

(i) U:p(s)ds‘ =q<1;

(i) there exists x, € X such that (x,, Fx,) € E(G).

Then the integral equation (8) has atleast one solution.

Proof. First we show that for each (x,y) e E(G), the the inequalities (2) and (3),
hold by assuming ¢(t) =t. As for each (x,y) € E(G)

| Fx() - Fy(@) < [ 1K (t.5,x() - K (t.5, y(s) | ds

b
<[ P Ix(s)-y(s) I ds
=qd(x,y).
Thus, we get d(Fx,Fy)<qd(x,y) for each (x,y)eX. Since K is
nondecreasing, for each (x,y)e E(G), we have (Fx,Fy)e E(G). Moreover, by
hypothesis (iii), we have X. =&. Therefore by Theorem 3.2-(v), there exists

atleast one fixed point of the operator F, that is, integral equation (8) has atleast
one solution.

The proof of following theorem runs on the same lines as the proof of
above theorem.

Theorem 4.2 Let X =C([a,b],R) and let the operator F: X — X is
defined by
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Fx(t) = g(t) + j:’K(t, s, x(s))ds

where g:[a,b] >R is a continuous function, and K :[a,b]x[a,b]xR —>R is

continuous and nondecreasing function. Assume that the following conditions
hold:
(i) for each t,s e[a,b] and x,y € X with (x,y) € E(G), we have

| K(t,s,x(s)) - K(t,s, y(s)) I [ x(s) — Y(S) I;

. 1
ii) f=————— forsome r>0;
)&= o ayis ’

(iii) there exists x, € X such that (x,, Fx,) € E(G).
Then the integral equation (8) has at least one solution.
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