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FIXED POINTS OF MULTIVALUED MAPS VIA ),( G -

CONTRACTION 

 

Tayyab KAMRAN 1,2, Vladimir RAKOCEVIC3, Mehwish WAHEED1, 

Muhammad Usman ALI2 

In this paper, we extend the notion of ),( G -contraction, introduced 

by Ozturk and Girgin, to multi-valued mappings. By using our new notion we 

prove a fixed point theorem for multi-valued mappings. Our results imply 

Nadler’s theorem, and generalized version of Nadler’s theorem on partial 

metric spaces.  
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1. Introduction 

Investigation of the existence of fixed points for single-valued mappings in 

partially ordered metric spaces was initially considered by Ran and Reurings [2]. 

They proved the following result.  

 

Theorem 1.1 Let  be a partially ordered set such that every pair 

Xyx ,  has an upper and lower bound and endowed with the complete metric 

d . Suppose XXf :  be a continuous monotone (either order preserving or 

order reversing) mapping satisfying the following conditions:   

 (1) There exists an (0,1)  with  

  for each  

 (2) There exists Xx 0  with  or  

Then f  has a unique fixed point Xx *
 and for each Xx , .=)(lim

*xxf n

n 

 

        Afterward, different authors considered the problem of existence of a fixed 

point for contraction mappings in partially ordered metric spaces. Jachymski [3] 
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combined graph theory and fixed point theory and gave some fixed point results, 

which is a nice generalization of [2]. Some other results for existence of fixed 

point for single-valued and multi-valued operators in metric spaces with a graph 

are given by Bojor [4, 5], Beg . alet  [6], Nicolae . alet  [8], Aleomraninejad . alet  

[9], Samreen . alet  [10, 11], Kamran . alet  [12], and Vetro and Vetro [13]. 

Very recently, Ozturk and Girgin [14] introduced the notion of ),( G -

contractions for single-valued mappings and proved some fixed point theorem. In 

this paper, we extend ),( G  notion to multivalued mappings and extend some 

results of [14] to multivalued mappings. 

  2. Preliminaries 

In this section, we present some notions which are helpful for the understanding 

of the 

 paper. 

Let ),( dX  be a metric space. We denote by )(XCB  the class of nonempty 

closed and bounded subsets of X . For )(, XCBBA  , R )()(: XCBXCBH  

defined by  

)}.,(sup),,(sup{max=),( BadAbdBAH
AaBb 

 

 is a metric on )(XCB . It is called Hausdorff metric generated by the metric d . 

A directed graph ),( EV  consists of a set of vertices V , and a set of 

directed edges E . The elements of E  are ordered pairs of vertices. A directed 

graph, can have loops and permits two edges joining the same vertices. More than 

one edges going in the same direction between the same vertices are called 

parallel edges, which are not allowed in our results.  

Let ),(= EVG  be a graph. A path in G  from a vertex x  to a vertex y  of 

length }){0,1,2,( NN  is a sequence 
N

jjx 0=)(  of 1N  distinct vertices such 

that xx =0 , yxN =  and NiforallExx jj ,1,2,=  ),( 1  . A graph ),(= EVG  is 

said to be connected if there is a path between any two vertices. We say that a 

directed graph G  is weakly connected if G
~

 is connected, where G
~

 is the graph 

obtained from G  by neglecting the directions of the edges of G . 

For a graph G such that E(G) is symmetric and x is a vertex in G, the 

subgraph xG  consisting of all edges and vertices which are contained in some 

path beginning at x is called component of G containing x 

Let ),(= EVG  be a disconnected graph then different paths in G  are 

known as its components. If x  be any vertex in G , then  be a component of G  

consisting of all edges and vertices which are included in some path starting at x .  



Fixed points of multivalued maps via ),( G -contraction                   191 

In this case Gx xGV ][=)( ., where Gx][  is the equivalence class of a relation R 

defined on V(G) by the rule: y R z if there is a path in G from y to z.  

We use the following lemmas and the condition in next section.  

Lemma 2.1 [15] Let ),( dX  be a metric space and )(, XCBBA  . Then, 

for each 1>q  and for each Aa  there exists Bb  such that  

                                       ).,(),( BAqHbad                                              (1) 

Lemma 2.2 [15]  Let }{ nA  be a sequence in )(XCB  and  

0=),(lim AAH nn   for )(XCBA . If nn Ax   and 0=),(lim xxd nn  , then 

Ax .  

Condition A ([3], Remark 3.1). For any sequence Nnnx }{  in X, if xxn   

and Exx nn  ),( 1  for Nn , then Exxn ),( .  

3. Main result  

 We start this section by defining a subclass of the family of mappings 

introduced in [14]. 

Let   be the class of nondecreasing functions )[0,)[0,:   which 

satisfies the following conditions:    

 )( 1  for every R}{ nx , 0)( nx  if and only if 0nx ;  

)( 2  for every R21, xx , )()()( 2121 xxxx   ;  

)( 3  )()( tqqt    for every 0>t  (where 1>q ).  

Subsequently, throughout this paper, we assume that ),( dX  be a metric 

space, G  is a directed graph with XV = , EXxxx  }:),{(=  and G  has no 

parallel edges. 

Definition 3.1 A mapping )(: XCBXF   is said to be a ),( G -

contraction if following conditions hold:   

(i) there exists (0,1)  and   such that  

;),(  )),,(()),(( EyxallforyxdFyFxH                                          (2) 

 (ii) for Eyx ),( , if Fxu  and Fyv  are such that  

)),,(()),(( yxdvud                                                                         (3) 

 then Evu ),( .  

Now we state and proof our main results.  

Theorem 3.2  Let ),( dX  be a complete metric space endowed with the 

graph G  such that Condition A holds, )(: XCBXF   be a ),( G -contraction 

and }  ),(:{= FxusomeforEuxXxX F  . Then the following statements 

hold:   
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 (i) For any 
FXx , 

G
xF

~][|  has a fixed point;  

 (ii) If FX  and G  is weakly connected, then F  has a fixed point in X ; 

 (iii) If }:]{[= ~ FG
XxxY  , then 

YF |  has a fixed point in Y ;  

 (iv) If EF   then F  has a fixed point;  

 (v) FixF  if and only if FX .   

 

Proof.   

 (i) Let 0x  be any arbitrary point in 
FX , then there exists 01 Fxx   such that 

Exx ),( 10 . Since F  is a ),( G -contraction, from (2), we have  

)].,([)],([ 1010 xxdFxFxH    

Let 1>
1

=


q  by using lemma (2.1), we have 
12 Fxx   such that  

).,(
1

),( 1021 FxFxHxxd


  

By applying  , we get  

)],,(
1

[)],([ 1021 FxFxHxxd


   

                                          )],,([
1

10 FxFxH


  

                                           

.

)],([
1

10 xxd



 

                                                                   ),([= 10 xxd                          (4) 

 From (3) and (4), we get Exx ),( 21
. Now by using (2), we have 

)].,([)],([ 2121 xxdFxFxH    

Again for 1>
1

=


q  by using lemma (2.1), we have 23 Fxx   such that  

).,(
1

),( 2132 FxFxHxxd


  

By applying  , we get  

)],(
1

[)],([ 2132 FxFxHxxd


   

                    )],([
1

21 FxFxH


  
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                                                     )],([
1

21 xxd


                               (5) 

                                                )].,([=)],([
1

1010 xxdxxd 


  

 Thus, from (3) and (5), we get Exx ),( 32 . Continuing in similar manner, we 

obtain a sequence Xxn }{  such that nn Fxx 1  with Exx nn  ),( 1  for each 

N{0}n  and  

   .  )],([)()],([ 101 N neachforxxdxxd n

nn                                  

(6) 

 By using triangular inequality, )( 2  and (6), we have  

                 )],(),(),([)],([ 1211 mnmnnnnnmnn xxdxxdxxdxxd    

                )],([)],([)],([ 1211 mnmnnnnn xxdxxdxxd     

                  )],([)()],([)( 10

1

10 xxdxxd nn   

                     )],([)( 10

1 xxdmn  
 

                )],([])()([1)(= 10

12 xxdmn    

                 )],([
)(1

)(
< 10 xxd

n







 

 Letting n  in above inequality, we have  

                                  0.=)],([lim mnn
n

xxd 


                                              (7) 

 By using )( 1 , from (7), we have  

0.=),(lim mnn
n

xxd 


 

Thus }{ nx  is a Cauchy sequence in X . As X  is complete, there exists Xx *
 

such that *xxn   as n . Now by using Condition A, we have Exxn ),( * . 

Since F  is a ),( G -contraction, so we have  

 .  0)],([)],([ **  nasxxdFxFxH nn   

Thus, we have  

 .  0),( *  nasFxFxH n  

Since nn Fxx 1  and *xxn  , then by lemma (2.2), 
** Fxx  . On the other hand, 

since Exxn ),( *
 for each Nn . Thus, we conclude that ),...,,( *

10 xxxx n  is a 

path in G  and also in G
~

 from 0x  to 
*x . Therefore, 

G
xx ~0

* ][ .  
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 (ii) Since FX , then there exists FXx 0 . As the graph G  is weakly 

connected, i.e., G
~

 is connected. Thus, we have Xx
G

=][ ~0 , then by (i), F  has a 

fixed point in X.  

 (iii) Given that }:]{[= ~ FG
XxxY  . By (i) for any 

FXx , 
G

xF
~][|  has a fixed 

point. Since Yx
G
~][ . Thus 

YF |  has a fixed point in Y .  

(iii) Let EF  . Then for all Xx  and Fxy , we have )(),( GEyx  . Hence 

XX F =  and XY = . By using (iii), F  has a fixed point.  

(iv) If FixF , then there exists Fxx . Since E , we have that Exx ),(  

and thus 
FXx . Now, if fX , from (i), we have that FixF .  

  

Remark 3.3 Nadler’s fixed point theorem [15] can be obtained from 

Theorem 3.2 by taking XXE =  and xx =)(  for each 0x .  

 

Remark 3.4 Let us remark that than in the case of a partial metric space 

X , Nadler’s type fixed point theorem (Theorem 3.2 of [1] and Theorem 3.3 of 

[7]) can be obtained from Theorem 3.2 by taking XXE =  and xx =)(  for 

each 0x .  

  

Example 3.5 Let R=X  be endowed with the usual metric =),( yxd  

|| yx   and graph ),(= EVG  is defined as XV =  and  0},:),{(= yxyxE  

}:),{( Rxxx . Define )(: XCBXT   by  









.  

0   ]
3

2
[0,

=

otherwise

xif
x

Fx  

Take xx =)(  for each 0x  and 
3

2
= . Then for each Eyx ),( , we have  

 )).,((=)),(( yxdFyFxH   

Moreover, for Eyx ),( , if Fxu  and Fyv  are such that  

 )),,(()),(( yxdvud    

then Evu ),( . Therefore, Theorem 3.2 ensures the existence of fixed point of 

F .  

4. Application 

 Let )],,([= RbaCX  be the space of all continuous realvalued functions, 

endowed with the metric |)()(|sup=),(
],[

tytxyxd
bat




 and graph 
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))(),((= GEGVG  such that XV =  and ]},[),()(:),{(=)( battytxyxGE  . 

Clearly ),( dX  is a complete metric space. 

As an application, we give existence theorems for Fredholm integral 

equation of following type. 

                       ,))(,,()(=)( dssxstKtgtx
b

a                                            (8) 

 where R],[: bag  is a continuous function, and RR ],[],[: babaK  is 

continuous and nondecreasing function.  

Theorem 4.1 Let )],,([= RbaCX  and let the operator XXF :  is 

defined by  

dssxstKtgtFx
b

a
))(,,()(=)(   

where R],[: bag  is a continuous function, and RR ],[],[: babaK  is 

continuous and nondecreasing function. Assume that the following conditions 

hold:   

 (i) for each ],[, bast   and Xyx ,  with )(),( GEyx  , there exists a 

continuous mapping )[0,],[: bap  such that  

                     |;)()(|)(|))(,,())(,,(| sysxspsystKsxstK   

(ii) 1<=)( qdssp
b

a ;  

(iii) there exists Xx 0  such that )(),( 00 GEFxx  .  

Then the integral equation (8) has atleast one solution.  

Proof. First we show that for each )(),( GEyx  , the the inequalities (2) and (3), 

hold by assuming tt =)( . As for each )(),( GEyx    

 dssystKsxstKtFytFx
b

a
|))(,,())(,,(||)()(|    

                                    dssysxsp
b

a
|)()(|)(    

                                     ).,(= yxqd  

 Thus, we get ),(),( yxqdFyFxd   for each Xyx ),( . Since K  is 

nondecreasing, for each )(),( GEyx  , we have )(),( GEFyFx  . Moreover, by 

hypothesis (iii), we have FX . Therefore by Theorem 3.2-(v), there exists 

atleast one fixed point of the operator F , that is, integral equation (8) has atleast 

one solution.  

The proof of following theorem runs on the same lines as the proof of 

above theorem.  

 

Theorem 4.2 Let )],,([= RbaCX  and let the operator XXF :  is 

defined by  
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dssxstKtgtFx
b

a
))(,,()(=)(   

where R],[: bag  is a continuous function, and RR ],[],[: babaK  is 

continuous and nondecreasing function. Assume that the following conditions 

hold:   

 (i) for each ],[, bast   and Xyx ,  with )(),( GEyx  , we have  

|;)()(||))(,,())(,,(| sysxsystKsxstK    

(ii) 



 )(

1
=

ab
, for some 0> ;  

 (iii) there exists Xx 0  such that )(),( 00 GEFxx  .  

Then the integral equation (8) has at least one solution.  
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