
U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 4, 2017 ISSN 1223-7027

BEST PROXIMITY POINTS OF F -PROXIMAL CONTRACTIONS

UNDER THE INFLUENCE OF AN α-FUNCTION
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In this paper, we introduce the notions of F -α-proximal contractions for

Hardy-Rogers type mappings as well as for Ciric-type mappings. Then we discuss the

existence of best proximity for nonself multivalued mappings satisfying at least one of

these notions along with few other conditions. An example is also constructed to support

the result.
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1. Introduction

With the introduction of Banach Contraction Principle to metric �xed poind theory,

pure and applied mathematical research has taken new dimensions. Researchers around the

world have done major developments in the �eld by generalizing this contraction principle.

Samet et. al. [1] introduced the notion of the α-ψ-contraction principle which gen-

eralized the Banach contraction in a di�erent and unique way. With this break through

the research, metric �xed point theory has widened to many di�erent directions. The α-

admissibility condition used by Samet, has been used quite frequently to discuss existence

and uniqueness of �xed points by di�erent researchers in di�erent ways

Recently, Wardowski [2] introduced a new family of mappings so called F or F family.

Using the mappings from this family, he introduced a new contraction condition namely the

F -contractions. Many researchers have generalized the concept of Wardowski [2], see for

example: Ali et al. [3], Cosentino and Vetro [4], Kamran et al. [6], Minak et al. [7], Sgroi
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and Vetro [8], Paesano and Vetro [9], Piri and Kumam [10], Akar et al. [11], Batra and

Vashistha [12].

Jleli et al. [13] introduced the notion of α-ψ-proximal contractive type mappings and

proved some best proximity point theorems. Later on, Ali et al. [14] extended these notions

to multivalued mappings. Many authors obtained best proximity point theorems in di�erent

settings, see for example: Abkar and Gabeleh [15, 16, 17], Choudhury et al. [5], Kamran et

al. [18], Alghamdi [19], Al-Thaga� and Shahzad [20, 21], Derafshpour et al. [22], Di Bari et

al. [23], Eldred and Veeramani [24], Jacob et al. [25], Markin and Shahzad [26], Rezapour

et al. [27], Sadiq Basha [28], Shatanawi and Pitea [29], Vetro [30], Zhang [31]. Note that

Abkar and Gabeleh [17] and Al-Thaga� and Shahzad [20, 21] investigated best proximity

points for multi-valued mappings.

In this paper, we introduce the notions of F -α-proximal contractions for Hardy-Rogers

type mappings as well as for Ciric-type mappings. Taking advantage of this framework, we

discuss the existence of best proximity for nonself multivalued mappings satisfying at least

one of these notions along with few other conditions. An example supports the result.

2. Preliminaries

First we recall the concept of F -contraction, see Wardowski [2]. In this respect, denote

by F the class of all functions F : (0,∞) → R satisfying:

(F1) Function F is strictly increasing, that is, for each a1, a2 ∈ (0,∞) with a1 < a2,

we have F (a1) < F (a2).

(F2) For each sequence {dn} of positive real numbers we have limn→∞ dn = 0 if and

only if limn→∞ F (dn) = −∞.

(F3) There exists k ∈ (0, 1) such that limn→∞ dn
kF (dn) = 0.

Following are some examples of such functions.

(i) F (a) = ln a for each a ∈ (0,∞).

(ii) F (b) = b+ ln b for each b ∈ (0,∞).

(iii) F (c) = − 1√
c
for each c ∈ (0,∞).

Wardowski [2] introduced F -contraction and proved corresponding �xed point theo-

rem in the following way:

De�nition 2.1 ([2]). Let (X, d) be a metric space. A mapping T : X → X is F -contraction

if there exist F ∈ F and τ > 0 such that for each x, y ∈ X with d(Tx, Ty) > 0, we have

τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Theorem 2.1 ([2]). Let (X, d) be a complete metric space and let T : X → X is F -

contraction. Then T has a unique �xed point.

Minak et al. [7] generalized the above result in the following way:
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Theorem 2.2 ([7]). Let (X, d) be a complete metric space and let T : X → X. Assume that

there exists F ∈ F and τ > 0 such that

τ + F (d(Tx, Ty)) ≤ F
(
max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

})
,

for each x, y ∈ X with d(Tx, Ty) > 0. If T or F is continuous, then T has a unique �xed

point.

Sgroi and Vetro [8] gave the following generalization of [2].

Theorem 2.3 ([8]). Let (X, d) be a complete metric space and let T : X → CB(X). Assume

that there exists F ∈ F and τ > 0 such that

2τ + F (H(Tx, Ty)) ≤ F (a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + Ld(y, Tx)),

for each x, y ∈ X with Tx ̸= Ty, where a1, a2, a3, a4, L ≥ 0 satisfying a1 + a2 + a3 +2a4 = 1

and a3 ̸= 1. Then T has a �xed point.

Wemake complete these preliminaries with other basic notions, de�nitions and results,

which are necessary to state our results.

Let (X, d) be a metric space. For A,B ⊆ X, we use the notions:

dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}, d(x,B) = inf{d(x, b) : b ∈ B},
A0 = {a ∈ A : d(a, b) = dist(A,B) for some b ∈ B},
B0 = {b ∈ B : d(a, b) = dist(A,B) for some a ∈ A}.
If CL(X) is the set of all nonempty closed subsets of X, then for every A,B ∈ CL(X),

let

H(A,B) =

max{supx∈A d(x,B), supy∈B d(y,A)} if the maximum exists;

∞ otherwise.

Such a map H is called generalized Hausdor� metric induced by d.

A point x∗ ∈ X is said to be a best proximity point of mapping T : A → CL(B) if

d(x∗, Tx∗) = dist(A,B). When A = B, the best proximity point reduces to �xed point of

the mapping T .

De�nition 2.2 ([31]). Let (A,B) be a pair of nonempty subsets of a metric space (X, d)

with A0 ̸= ∅. Then the pair (A,B) is said to have the weak P -property if and only if for any

x1, x2 ∈ A and y1, y2 ∈ B,d(x1, y1) = dist(A,B)

d(x2, y2) = dist(A,B)
⇒ d(x1, x2) ≤ d(y1, y2).

Lemma 2.1. Let (X, d) is a metric space and B ∈ CL(X). Then for each x ∈ X and q > 1,

there exists b ∈ B such that d(x, b) ≤ qd(x,B).
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3. Main results

We begin this section with the following de�nitions.

De�nition 3.1. Let A and B be two nonempty subsets of a metric space (X, d). A mapping

T : A→ CL(X) is called strictly α-proximal admissible if there exists a mapping α : A×A→
[0,∞) such that 

α(x1, x2) > 1

d(u1, y1) = dist(A,B)

d(u2, y2) = dist(A,B)

⇒ α(u1, u2) > 1,

where x1, x2, u1, u2 ∈ A and y1 ∈ Tx1, y2 ∈ Tx2.

De�nition 3.2. Let (X, d) be a metric space, A,B ⊆ X and α : A × A → [0,∞) be a

function. A mapping T : A → CL(B) is F -α-proximal contraction of Hardy-Rogers-type, if

there exist F ∈ F and τ > 0 such that

τ + F (α(x, y)H(Tx, Ty)) ≤ F (N(x, y)), (1)

for each x, y ∈ A, whenever min{α(x, y)H(Tx, Ty), N(x, y)} > 0, where

N(x, y) = a1d(x, y) + a2[d(x, Tx)− dist(A,B)] + a3[d(y, Ty)− dist(A,B)]

+a4[d(x, Ty)− dist(A,B)] + L[d(y, Tx)− dist(A,B)],

with a1, a2, a3, a4, L ≥ 0 satisfying a1 + a2 + a3 + 2a4 = 1 and a3 ̸= 1.

Theorem 3.1. Let A and B be nonempty closed subsets of a complete metric space (X, d).

Assume that A0 is nonempty and T : A→ CL(B) is an F -α-proximal contraction of Hardy-

Rogers-type satisfying the following conditions:

: (i) Tx ⊆ B0 for each x ∈ A0 and (A,B) satis�es the weak P -property;

: (ii) T is strictly α-proximal admissible;

: (iii) there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

α(x0, x1) > 1 and d(x1, y1) = dist(A,B).

: (iv) T is continuous, or, for any sequence {xn} ⊆ A such that xn → x as n→ ∞ and

α(xn, xn+1) > 1 for each n ∈ N, we have α(xn, x) > 1 for each n ∈ N.

Then T has a best proximity point.

Proof. By hypothesis (iii), there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = dist(A,B) and α(x0, x1) > 1. (2)

If y1 ∈ Tx1, then x1 is a best proximity point of T .

Let y1 /∈ Tx1. As α(x0, x1) > 1, by Lemma 2.1 there exists y2 ∈ Tx1 such that

d(y1, y2) ≤ α(x0, x1)H(Tx0, Tx1).
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Since F is strictly increasing, we have

F (d(y1, y2)) ≤ F (α(x0, x1)H(Tx0, Tx1)).

From (1), we have

τ + F (d(y1, y2)) ≤ τ + F (α(x0, x1)H(Tx0, Tx1))

≤ F
(
a1d(x0, x1) + a2[d(x0, Tx0)− dist(A,B)] + a3[d(x1, Tx1)− dist(A,B)],

a4[d(x0, Tx1)− dist(A,B)] + L[d(x1, Tx0)− dist(A,B)]
)

≤ F
(
a1d(x0, x1) + a2d(x0, x1) + a3d(y1, y2),

a4[d(x0, x1) + d(y1, y2)] + L · 0
)

= F
(
(a1 + a2 + a4)d(x0, x1) + (a3 + a4)d(y1, y2)

)
. (3)

Since

d(x0, Tx0) ≤ d(x0, x1) + d(x1, y1) + d(y1, Tx0) = d(x0, x1) + dist(A,B) + 0,

d(x1, Tx1) ≤ d(x1, y1) + d(y1, y2) + d(y2, Tx1) = dist(A,B) + d(y1, y2) + 0,

d(x0, Tx1) ≤ d(x0, x1)+d(x1, y1)+d(y1, y2)+d(y2, Tx1) = d(x0, x1)+dist(A,B)+d(y1, y2)+0

d(x1, Tx0) ≤ d(x1, y1) + d(y1, Tx0) = dist(A,B) + 0.

Since F is strictly increasing, we get from (3) that

d(y1, y2) < (a1 + a2 + a4)d(x0, x1) + (a3 + a4)d(y1, y2).

That is,

(1− a3 − a4)d(y1, y2) < (a1 + a2 + a4)d(x0, x1).

As a1 + a2 + a3 + 2a4 = 1, thus we have

d(y1, y2) < d(x0, x1).

Now, from (3), we have

τ + F (d(y1, y2)) ≤ F (d(x0, x1)). (4)

As y2 ∈ Tx1 ⊆ B0, there exists x2 ̸= x1 ∈ A0 such that

d(x2, y2) = dist(A,B), (5)

for otherwise x1 is a best proximity point. As (A,B) satis�es the weak P -property, from (2)

and (5), we have

0 < d(x1, x2) ≤ d(y1, y2).

By applying F , we get

F (d(x1, x2)) ≤ F (d(y1, y2)). (6)

Thus from (4) and (6), we have

τ + F (d(x1, x2)) ≤ τ + F (d(y1, y2)) ≤ F (d(x0, x1)).
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As T is strictly α-proximal admissible, since α(x0, x1) > 1, d(x1, y1) = dist(A,B) and

d(x2, y2) = dist(A,B), then α(x1, x2) > 1. Thus we have

d(x2, y2) = dist(A,B) and α(x1, x2) > 1.

If y2 ∈ Tx2, then x2 is a best proximal point of T . Let y2 /∈ Tx2. As α(x1, x2) > 1.

There exists y3 ∈ Tx2 such that

d(y2, y3) ≤ α(x1, x2)H(Tx1, Tx2).

Since, F is strictly increasing, we have

F (d(y2, y3)) ≤ F (α(x1, x2)H(Tx1, Tx2)).

From (1), we have

τ + F (d(y2, y3)) ≤ τ + F (α(x1, x2)H(Tx1, Tx2))

≤ F
(
a1d(x1, x2) + a2[d(x1, Tx1)− dist(A,B)] + a3[d(x2, Tx2)− dist(A,B)],

a4[d(x1, Tx2)− dist(A,B)] + L[d(x2, Tx1)− dist(A,B)]
)

≤ F
(
a1d(x1, x2) + a2d(x1, x2) + a3d(y2, y3),

a4[d(x1, x2) + d(y2, y3)] + L · 0
)

= F
(
(a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(y2, y3)

)
. (7)

Since F is strictly increasing, we get from above that

d(y2, y3) < (a1 + a2 + a4)d(x1, x2) + (a3 + a4)d(y2, y3).

That is,

(1− a3 − a4)d(y2, y3) < (a1 + a2 + a4)d(x1, x2).

As a1 + a2 + a3 + 2a4 = 1, thus we have

d(y2, y3) < d(x1, x2).

Now from (7), we have

τ + F (d(y2, y3)) ≤ F (d(x1, x2)).

As y3 ∈ Tx2 ⊆ B0, there exists x3 ̸= x2 ∈ A0 such that

d(x3, y3) = dist(A,B), (8)

for otherwise x2 is a best proximity point. As (A,B) satis�es the weak P -property. From

(5) and (8), we have

0 < d(x2, x3) ≤ d(y2, y3).

By applying F , we obtain

F (d(x2, x3)) ≤ F (d(y2, y3)).
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Thus, we have

τ + F (d(x2, x3)) ≤ τ + F (d(y2, y3)) ≤ F (d(x1, x2)).

So we get

F (d(x2, x3)) ≤ F (d(y2, y3)) ≤ F (d(x1, x2))− τ ≤ F (d(x0, x1))− 2τ.

As T is strictly α-proximal admissible, since α(x1, x2) > 1, d(x2, y2) = dist(A,B) and

d(x3, y3) = dist(A,B), then α(x2, x3) > 1.

Continuing in the same way, we get sequences {xn} in A0 and {yn} in B0, where

yn ∈ Txn−1 for each n ∈ N such that

d(xn, yn) = dist(A,B) and α(xn−1, xn) > 1. (9)

Furthermore,

F (d(xn, xn+1)) ≤ F (d(yn, yn+1)) ≤ F (d(x0, x1))− nτ for each n ∈ N. (10)

Letting n→ ∞ in (10), we get limn→∞ F (d(xn, xn+1)) = limn→∞ F (d(yn, yn+1))−∞. Thus,

by property (F2), we have limn→∞ d(xn, xn+1) = 0. Let dn = d(xn, xn+1) for each n ∈ N.
From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

dknF (dn) = 0.

From (10) we have

dknF (dn)− dknF (d0) ≤ −dknnτ ≤ 0 for each n ∈ N. (11)

Letting n→ ∞ in (11), we get

lim
n→∞

ndkn = 0.

This implies that there exists n1 ∈ N such that ndkn ≤ 1 for each n ≥ n1. Thus, we have

dn ≤ 1

n1/k
, for each n ≥ n1. (12)

To prove that {xn} is a Cauchy sequence in A, consider m,n ∈ N with m > n > n1.

By using the triangle inequality and (12), we obtain

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=
m−1∑
i=n

di ≤
∞∑
i=n

di ≤
∞∑
i=n

1

i1/k
.

Since
∑∞

i=1
1

i1/k
is convergent series, then limn→∞ d(xn, xm) = 0, which implies that {xn}

is a Cauchy sequence in A. Similarly, we see that {yn} is a Cauchy sequence in B. Since A

and B are closed subsets of a complete metric space, there exist x∗ in A and y∗ in B such

that xn → x∗ and yn → y∗ as n → ∞. By the (9), we conclude that d(x∗, y∗) = dist(A,B)

as n→ ∞. By hypothesis (iv), when T is continuous, we have y∗ ∈ Tx∗, since yn ∈ Txn−1.

Hence dist(A,B) ≤ d(x∗, Tx∗) ≤ d(x∗, y∗) = dist(A,B). Therefore x∗ is a best proximity
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point of the mapping T . By hypothesis (iv), when α(xn, x
∗) > 1 for each n ∈ N, then by

using triangular property, we have

d(x∗, Tx∗) ≤ d(x∗, yn+1) + d(yn+1, Tx
∗)

< d(x∗, yn+1) + α(xn, x
∗)H(Txn, Tx

∗)

< d(x∗, yn+1) + a1d(xn, x
∗) + a2[d(xn, Txn)− dist(A,B)]

+a3[d(x
∗, Tx∗)− dist(A,B)] + a4[d(xn, Tx

∗)− dist(A,B)]

+L[d(x∗, Txn)− dist(A,B)]

≤ d(x∗, yn+1) + a1d(xn, x
∗) + a2[d(xn, yn+1)− dist(A,B)]

+a3[d(x
∗, Tx∗)− dist(A,B)] + a4[d(xn, Tx

∗)− dist(A,B)]

+L[d(x∗, yn+1)− dist(A,B)]. (13)

Letting n→ ∞ in (13), we have

d(x∗, Tx∗) ≤ dist(A,B) + (a3 + a4)[d(x
∗, Tx∗)− dist(A,B)].

This implies that

d(x∗, Tx∗) ≤ dist(A,B).

Thus, we conclude that d(x∗, Tx∗) = dist(A,B). �

De�nition 3.3. Let (X, d) be a metric space, A,B ⊆ X and α : A × A → [0,∞) be a

function. A mapping T : A → CL(B) is F -α-proximal contraction of Ciric-type, if there

exist continuous F in F and τ > 0 such that

τ + F (α(x, y)H(Tx, Ty)) ≤ F (M(x, y)), (14)

for each x, y ∈ A, whenever min{α(x, y)H(Tx, Ty),M(x, y)} > 0, where

M(x, y) = max
{
d(x, y), d(x, Tx)− dist(A,B), d(y, Ty)− dist(A,B),

d(x, Ty) + d(y, Tx)− 2dist(A,B)

2

}
+ L[d(y, Tx)− dist(A,B)]

and L ≥ 0.

Theorem 3.2. Let A and B be nonempty closed subsets of a complete metric space (X, d).

Assume that A0 is nonempty and T : A→ CL(B) is an F -α-proximal contraction of Ciric-

type satisfying the following conditions:

: (i) Tx ⊆ B0 for each x ∈ A0 and (A,B) satis�es the weak P -property;

: (ii) T is strictly α-proximal admissible;

: (iii) there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

α(x0, x1) > 1 and d(x1, y1) = dist(A,B).

: (iv) T is continuous, or, for any sequence {xn} ⊆ A such that xn → x as n→ ∞ and

α(xn, xn+1) > 1 for each n ∈ N, we have α(xn, x) > 1 for each n ∈ N.
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Then T has a best proximity point.

Proof. By hypothesis (iii), there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = dist(A,B) and α(x0, x1) > 1, (15)

If y1 ∈ Tx1, then x1 is a best proximity point of T . Let y1 /∈ Tx1. As α(x0, x1) > 1,

by Lemma 2.1 there exists y2 ∈ Tx1 such that

d(y1, y2) ≤ α(x0, x1)H(Tx0, Tx1).

Since F is strictly increasing, we have

F (d(y1, y2)) ≤ F (α(x0, x1)H(Tx0, Tx1)).

From (14), we have

τ + F (d(y1, y2)) ≤ τ + F (α(x0, x1)H(Tx0, Tx1))

≤ F
(
max

{
d(x0, x1), d(x0, Tx0)− dist(A,B), d(x1, Tx1)− dist(A,B),

d(x0, Tx1) + d(x1, Tx0)− 2dist(A,B)

2

}
+ L[d(x1, Tx0)− dist(A,B)]

)
≤ F

(
max

{
d(x0, x1), d(x0, x1), d(y1, y2),

d(x0, x1) + d(y1, y2)

2

}
+ L · 0

)
= F

(
max{d(x0, x1), d(y1, y2)}

)
= F (d(x0, x1)), (16)

for other choose of max, we have a contraction. Note that, we use the following facts in

above inequalities:

d(x0, Tx0) ≤ d(x0, x1) + d(x1, y1) + d(y1, Tx0) = d(x0, x1) + dist(A,B) + 0,

d(x1, Tx1) ≤ d(x1, y1) + d(y1, y2) + d(y2, Tx1) = dist(A,B) + d(y1, y2) + 0,

d(x0, Tx1) ≤ d(x0, x1)+d(x1, y1)+d(y1, y2)+d(y2, Tx1) = d(x0, x1)+dist(A,B)+d(y1, y2)+0

d(x1, Tx0) ≤ d(x1, y1) + d(y1, Tx0) = dist(A,B) + 0.

As y2 ∈ Tx1 ⊆ B0, there exists x2 ̸= x1 ∈ A0 such that

d(x2, y2) = dist(A,B), (17)

for otherwise x1 is a best proximity point. As (A,B) satis�es the weak P -property. From

(15) and (17), we have

0 < d(x1, x2) ≤ d(y1, y2).

By applying F , we get

F (d(x1, x2)) ≤ F (d(y1, y2)). (18)

Thus from (16) and (18), we have

τ + F (d(x1, x2)) ≤ τ + F (d(y1, y2)) ≤ F (d(x0, x1)).
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As mapping T is strictly α-proximal admissible, since α(x0, x1) > 1, d(x1, y1) = dist(A,B)

and d(x2, y2) = dist(A,B), then α(x1, x2) > 1. Thus we have

d(x2, y2) = dist(A,B) and α(x1, x2) > 1.

If y2 ∈ Tx2, then x2 is a best proximity point of T . Let y2 /∈ Tx2. As α(x1, x2) > 1. There

exists y3 ∈ Tx2 such that

d(y2, y3) ≤ α(x1, x2)H(Tx1, Tx2).

Since, F is strictly increasing, we have

F (d(y2, y3)) ≤ F (α(x1, x2)H(Tx1, Tx2)).

From (14), we have

τ + F (d(y2, y3)) ≤ τ + F (α(x1, x2)H(Tx1, Tx2))

≤ F
(
max

{
d(x1, x2), d(x1, Tx1)− dist(A,B), d(x2, Tx2)− dist(A,B),

d(x1, Tx2) + d(x2, Tx1)− 2dist(A,B)

2

}
+ L[d(x2, Tx1)− dist(A,B)]

)
≤ F

(
max

{
d(x1, x2), d(x1, x2), d(y2, y3),

d(x1, x2) + d(y2, y3)

2

}
+ L · 0

)
= F

(
max{d(x1, x2), d(y2, y3)}

)
= F (d(x1, x2)),

otherwise we have a contradiction. As y3 ∈ Tx2 ⊆ B0, there exists x3 ̸= x2 ∈ A0 such that

d(x3, y3) = dist(A,B), (19)

for otherwise x2 is a best proximity point. As (A,B) satis�es the weak P -property. From

(17) and (19), we have

0 < d(x2, x3) ≤ d(y2, y3).

By applying F , we get

F (d(x2, x3)) ≤ F (d(y2, y3)).

Thus, we have

τ + F (d(x2, x3)) ≤ τ + F (d(y2, y3)) ≤ F (d(x1, x2)).

So we get

F (d(x2, x3)) ≤ F (d(y2, y3)) ≤ F (d(x1, x2))− τ ≤ F (d(x0, x1))− 2τ.

As T is strictly α-proximal admissible, since α(x1, x2) > 1, d(x2, y2) = dist(A,B) and

d(x3, y3) = dist(A,B), then α(x2, x3) > 1. Continuing in the same way, we get sequences

{xn} in A0 and {yn} in B0, where yn ∈ Txn−1 for each n ∈ N such that

d(xn, yn) = dist(A,B) and α(xn−1, xn) > 1. (20)
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Furthermore,

F (d(xn, xn+1)) ≤ F (d(yn, yn+1)) ≤ F (d(x0, x1))− nτ for each n ∈ N. (21)

Letting n→ ∞ in (21), we get limn→∞ F (d(xn, xn+1)) = limn→∞ F (d(yn, yn+1))−∞. Thus,

by property (F2), we have limn→∞ d(xn, xn+1) = 0. Let dn = d(xn, xn+1) for each n ∈ N.
From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

dknF (dn) = 0.

From (21) we have

dknF (dn)− dknF (d0) ≤ −dknnτ ≤ 0 for each n ∈ N. (22)

Letting n→ ∞ in (22), we get

lim
n→∞

ndkn = 0.

This implies that there exists n1 ∈ N such that ndkn ≤ 1 for each n ≥ n1. Thus, we have

dn ≤ 1

n1/k
, for each n ≥ n1. (23)

To prove that {xn} is a Cauchy sequence in A. Consider m,n ∈ N with m > n > n1. By

using the triangular inequality and (23), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=
m−1∑
i=n

di ≤
∞∑
i=n

di ≤
∞∑
i=n

1

i1/k
.

Since
∑∞

i=1
1

i1/k
is convergent series. Thus, limn→∞ d(xn, xm) = 0. Which implies that {xn}

is a Cauchy sequence in A. Similarly, we see that {yn} is a Cauchy sequence in B. Since A

and B are closed subsets of a complete metric space, there exist x∗ in A and y∗ in B such

that xn → x∗ and yn → y∗ as n→ ∞. By the (20), we conclude that d(x∗, y∗) = dist(A,B)

as n→ ∞. By hypothesis (iv), when T is continuous, we have y∗ ∈ Tx∗, since yn ∈ Txn−1.

Hence dist(A,B) ≤ d(x∗, Tx∗) ≤ d(x∗, y∗) = dist(A,B). Therefore x∗ is a best proximity

point of the mapping T . By hypothesis (iv), when α(xn, x
∗) > 1 for each n ∈ N. We claim

that dist(A,B) = d(x∗, Tx∗). On contrary assume that dist(A,B) ̸= d(x∗, Tx∗). By using
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the triangular inequality, we have

τ + F (d(yn+1, Tx
∗)) ≤ τ + F (α(xn, x

∗)H(Txn, Tx
∗))

≤ F
(
max

{
d(xn, x

∗), d(xn, Txn)− dist(A,B), d(x∗, Tx∗)− dist(A,B),

d(x∗, Txn) + d(xn, Tx
∗)− 2dist(A,B)

2

}
+L[d(x∗, Txn)− dist(A,B)]

)
≤ F

(
max

{
d(xn, x

∗), d(xn, yn+1)− dist(A,B), d(x∗, Tx∗)− dist(A,B),

d(x∗, yn+1) + d(xn, Tx
∗)− 2dist(A,B)

2

}
+L[d(x∗, yn+1)− dist(A,B)]

)
.

Letting n→ ∞ in the above inequality, we have

τ + F (d(y∗, Tx∗)) ≤ F
(
max

{
d(x∗, Tx∗)− dist(A,B),

d(x∗, Tx∗)− dist(A,B)

2

})
. (24)

As

d(x∗, Tx∗) ≤ d(x∗, y∗) + d(y∗, Tx∗).

Thus, we have

d(x∗, Tx∗)− dist(A,B) ≤ d(y∗, Tx∗).

By using the above inequality, (F1) and (24), we get

τ + F (d(x∗, Tx∗)− dist(A,B)) ≤ τ + F (d(y∗, Tx∗))

≤ F
(
max

{
d(x∗, Tx∗)− dist(A,B),

d(x∗, Tx∗)− dist(A,B)

2

})
.

This implies that

d(x∗, Tx∗)− dist(A,B) < d(x∗, Tx∗)− dist(A,B).

This is a contradiction to our assumption. Thus, we conclude that d(x∗, Tx∗) = dist(A,B).

�

Example 3.1. Let X = R× R be endowed with a metric d((x1, x2), (y1, y2)) = |x1 − y1|+
|x2 − y2| for each x, y ∈ X. Take A = {(0, x) : x ∈ R} and B = {(1, x) : x ∈ R}. De�ne

T : A→ CL(B), T (0, x) =


{(1, x2)} if x < 0

{(1, 0), (1, 1)} if 0 ≤ x ≤ 1

{(1, x− 1), (1, x)} if x > 1
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and

α : A×A→ [0,∞), α((0, x), (0, y)) =


2 if x, y ∈ [0, 1]

1
2 if x, y ∈ N− {1}

0 otherwise.

Take F (x) = x+ lnx for each x ∈ (0,∞). Under this F , condition (1) reduces to

α(x, y)H(Tx, Ty)

N(x, y)
eα(x,y)H(Tx,Ty)−N(x,y) ≤ e−τ (25)

for each x, y ∈ A with min{α(x, y)H(Tx, Ty), N(x, y)} > 0. Assume that a1 = 1, a2 = a3 =

a4 = L = 0 and τ = 1
2 . Clearly, min{α(x, y)H(Tx, Ty), d(x, y)} > 0 for each x, y ∈ N \ {1}

with x ̸= y. From (25) for each x, y ∈ N \ {1} with x ̸= y, we have

1

2
e−

1
2 |x−y| < e−

1
2 .

Thus, T is F -α-proximal contraction of Hardy-Rogers-type with F (x) = x+ lnx. Note that

A0 = A, B0 = B and Tx ⊆ B0 for each x ∈ A0. Also, the pair (A,B) satis�es the weak

P -property. If x0, x1 ∈ {(0, x) : 0 ≤ x ≤ 1}, then Tx0, Tx1 ∈ {(1, 0), (1, 1)}. Take y1 ∈ Tx0,

y2 ∈ Tx1 and u1, u2 ∈ A such that d(u1, y1) = dist(A,B) and d(u2, y2) = dist(A,B).

Then we have u1, u2 ∈ {(0, 0), (0, 1)}. Hence T is strictly α-proximal admissible mapping.

For x0 = (0, 1) ∈ A0 and y1 = (1, 0) ∈ Tx0 in B0, we have x1 = (0, 0) ∈ A0 such that

d(x1, y1) = dist(A,B) and α(x0, x1) = 2 > 1. Moreover, for any sequence {xn} ⊆ A such

that xn → x as n→ ∞ and α(xn, xn+1) > 1 for each n ∈ N, we have α(xn, x) > 1 for each

n ∈ N. Therefore, by Theorem 3.1, T has a best proximity point.

When we take X = A = B, we get the following �xed point theorems from our results:

Theorem 3.3. Let (X, d) be a complete metric space. Assume T : X → CL(X) is a mapping

for which there exist F ∈ F and τ > 0 such that

τ + F (α(x, y)H(Tx, Ty)) ≤ F (N(x, y)),

for each x, y ∈ X, whenever min{α(x, y)H(Tx, Ty), N(x, y)} > 0, where

N(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + Ld(y, Tx),

with a1, a2, a3, a4, L ≥ 0 satisfying a1 + a2 + a3 + 2a4 = 1 and a3 ̸= 1. Further assume that

the following conditions hold:

: (i) T is strictly α-admissible, that is, if α(x, y) > 1, then α(a, b) > 1 for each a ∈ Tx

and b ∈ Ty;

: (ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1;

: (iii) T is continuous, or, for any sequence {xn} ⊆ X such that xn → x as n→ ∞ and

α(xn, xn+1) > 1 for each n ∈ N, we have α(xn, x) > 1 for each n ∈ N.

Then T has a �xed point.
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Theorem 3.4. Let (X, d) be a complete metric space. Assume T : X → CL(X) is a mapping

for which there exist continuous F in F and τ > 0 such that

τ + F (α(x, y)H(Tx, Ty)) ≤ F (M(x, y)),

for each x, y ∈ X, whenever min{α(x, y)H(Tx, Ty),M(x, y)} > 0, where

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
+ Ld(y, Tx)

and L ≥ 0. Further assume that the following conditions hold:

: (i) T is strictly α-admissible, that is, if α(x, y) > 1, then α(a, b) > 1 for each a ∈ Tx

and b ∈ Ty;

: (ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1;

: (iii) T is continuous, or, for any sequence {xn} ⊆ X such that xn → x as n→ ∞ and

α(xn, xn+1) > 1 for each n ∈ N, we have α(xn, x) > 1 for each n ∈ N.

Then T has a �xed point.

4. Conclusions

In this paper, we introduced the notions of F -α-proximal contractions for Hardy-

Rogers type mappings as well as for Ciric-type mappings. Within this framework, we studied

the existence of best proximity for nonself multivalued mappings satisfying at least one of

these notions along with few other conditions. Nontrivial example supports the results

herein.
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