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BIFURCATION OF LIMIT CYCLES IN A CLASS OF LIENARD
SYSTEMS WITH A CUSP AND NILPOTENT SADDLE

Ali Zaghian', Rasool Kazemi?, Hamid R. Z. Zangeneh?

In this paper the asymptotic expansion of first-order Melnikov function of
a heteroclinic loop connecting a cusp and a nilpotent saddle both of order one for
a planar near-Hamiltonian system are given. Next, we consider the bifurcation of
limit cycles of a class of hyper-elliptic Liénard system with this kind of heteroclinic
loop. It is shown that this system can undergo Poincareé bifurcation from which at
most three limit cycles for small positive € can emerge in the plane. Also using
this asymptotic expansion it was shown that there exist parameter values for which
three limit cycles exist close to this loop.

Keywords: Melnikov function, Limit cycle, Heteroclinic loop, Chebyshev prop-
erty.
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1. Introduction and statements of the main results

Consider the planar differential system

x:Pn(x,y), y:Qn(x,y) (1)

in which P, and Q,, are real polynomials of degree n in x,y. The second half of the
famous Hilbert’s 16th problem is related to maximum number of limit cycles and
their relative locations in planar differential system (1) for all possible P, and Q,,. A
weaker version of this problem is proposed by Arnold to study the zeros of Abelian
integrals obtained by integrating polynomial 1-forms along ovals of polynomial
Hamiltonian, that is called the weak Hilbert’s 16th problem [1]. More precisely,
consider a perturbed Hamiltonian system

X=Hy+ep(x,y,€06), y=—Hy+&q(x,y,€,0) 2
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where p, g and H are C® (analytic) function, € is a small positive parameter and 6
is a vector parameter where 6 € D C R™ and D is a compact set. Suppose the unper-
turbed system (2)|¢—o has a family of periodic orbits L, continuously depending on
h € (hy,hy) defined by the H(x,y) = h. Then, there exist a so-called first-order Mel-
nikov function or Abelian integral of the form I(h,8) = ¢, gdx — pdy|e=o, which
is important in the study of bifurcation of limit cycles from system (2). Recall that
an Abelian integral is the integral of a rational 1-form along an algebraic oval. In
this paper first we study the asymptotic expansion of the Melnikov function of a
Hamiltonian system near a heteroclinic loop through a cusp and a nilpotent saddle,
both of order one. We recall that a heteroclinic orbit I' is an orbit whose ® and
a-limit set of its points consist of two different equilibruim points S| and S,. Now a
heteroclinic loop consist of equilibrium points Sy, S> and two heteroclinic orbits I'y
and I, heteroclinic to S and S and vice versa (see Figure 1). Then, we consider a
Liénard system of type (6,5) that is a small perturbation of Hamiltonian vector field
with a hyper-elliptic Hamiltonian of degree seven. Our system has a non-degenerate
center at O(7,0), a cusp at Sj(a,0) and a nilpotent saddle at S>(f3,0) with a hete-
roclinic loop passing through S; and S,. Without loss of generality we may assume
that y =0 and a < 0 < . Such a system will have the following form

dX dy ) 3.

o=, = X(X - 02X~ B) = (). 3)
The Hamiltonian of (3) is H(X,Y) = 1Y%+ F(X) where F(X) = — [5 f(¢)dt. Since
this system has a loop passing through S; and S5 then F (o) = F(f3) which implies
o= —%B. LetX = Bx,Y = B_%y and T = B%t, then system (3) with o = —%B will
be transformed into

i=y, §= (et 2P 1) (Ho)

The Hamiltonian function of (Hp) is

12
Hiry) = —y2 —oxd xSy 25 224 L3, 2 4
(6,3) = 57 = X 4 g0 ex” = X e o “)

which has a cusp point Sl(—%,O), a non-degenerate center 0(0,0), a nilpotent
saddle S»(1,0) and a heteroclinic loop L% where L, : {(x,y) | H(x,y) =h, h €

(0, %)} (see Fig. 1). Inside L 2, all orbits L, are closed. We study a perturbation
of (Hp) of the form:
3
x=y, y=x(x+ Z)z(x—1)3+8(a+bx2—|—x4)xy, (He)
and especially, its Abelian integral given by I(h) = aly(h) + bl|(h) + I,(h) where
I(h) = ¢, x***1ydx, and L, is oriented clockwise. Here 0 < &€ < 1 and (a,b) be-

longs to any bounded subset of R?.
The paper is organized as follows. In Section 2, we obtain the asymptotic expansion
of the Melnikov function for (2) near a heteroclinic loop connecting a cusp and a
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FIGURE 1. Level curves of equation (Hp) for 0 < h < 4228

nilpotent saddle both of order one. In section 3 we show that, if I(4) is not identi-
cally zero, system (H,) can undergo Poincaré bifurcation from which at most three
limit cycles emerges in this period annulus.

2. Asymptotic expansions of Melnikov function /(%, §)

In this section we consider the Melnikov function (%, d) near a heteroclinic
loop through a cusp and a nilpotent saddle both of order one for general planar near-
Hamiltonian systems. Let us suppose p(x,y,0,8) =Y, j>oa;;x'y’ and g(x,y,0,8) =
Yitj>0bi jxiyj . Suppose system (2)|¢—o has a cusp S| and a nilpotent saddle S,.
Moreover assume that this system
(A1) has a heteroclinic loop denoted by Ly := {(x,y) : H(x,y) = hs} = Li ULy U
{81,852}, where L; and L, are heteroclinic orbits connecting singular points S; and
S» so that a)(Ll) = OC(Lz) =5, and CO(LQ) = OC(L]) =5i.

(A2) In a neighborhood of Ly there is a family of periodic orbit of (2)|.—¢ denoted
by L, ={(x,y) : H(x,y) = h} for0 < —(h—h;) < 1.

Theorem 2.1. Consider the C® system (2) and suppose (2)|e—o satisfy assumptions
(A1) and (Az). Then near h = hy corresponding to heteroclinic loop Ly, Melnikov
function of system (2) has the following asymptotic expansion:

I(h,8) = & +&|h—hyY/* 4 &|h—hg/® + &|h— h|In|h — hy| + & (h— hy)
+ G|l —hy|"/® 4 &7 |h— hyT* + Eg|h— hy|T* + Eg(h — hy)* In |h — by
+ &olh—hs|"VO+O((h—hy)?) (5)
in which

2
& = M) = ¢ adx—pdyleo= Y. § (adr— pay)le=o
Ly k=1L

& = 2(82,0), &3 =ci1(51,6), ¢1=c3(52,0), & =c3(51,9),
&7 = ¢5(52,0), G =ce(82,6), G9=c7(52,0), E10=rc4(51,0),
where ¢;(S1,0), i=1,3,4 are givenin [4], ¢i($2,6), i=2,3,5,6,7 comes from [11],

C5 = Z/ px+qy Ok)|e= 0dt+/ px+qy le—odt +b1Cy + byC3 + b3¢4.
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provided by) + 2ax|s, = 0 where for k = 1,2, oy = (px+qy)|s,, Lok = Lo N Uk, Ui
denotes a disk of diameter & > 0 with centers at Sy and Loz = Ly — (Lo1 UL) In
particular, if ¢ = ¢z = ¢4 = 0 then

2
&5 = f (Pa-ty)lemodt = Y. / (Px + ) [e—odt. ©)
Ly k=1 Lk

Proof. The idea of the proof is motivated by [8]. Also without loss of generality we
may assume sy = 0 and we use Theorem 1.2 in [4] and Theorem 2 in [11]. First
we use two linear transformations to move S and S to the origin and transform
(2) into the forms that was considered in Theorem 1.2 in [4] and Theorem 2 in [11]
respectively. For this let

(y ) Qk( )+Sk7 k:1727 (7)

where Qy are 2 x 2 matrices satisfying det(Qy) = 1. Therefore system (2) become:

J0H, JdH,
u:a_f+8pk(uav7£=3)7 v:_a_;+8Qk(u7V7876) (8)
where
1 I
Hi(u,v) = v+ Y hiju'vi = —v* 4 haou® + O(u* 4 v||u, v]?),
2 i+j>3 2
1 - ..
Hy(uwv) = —qut+ ) hjou +v2 ¥ i/,
i>5 i+)>0
pl(u,v,O,S) = Z &i,juivj7 q1(uav7016): Z Z)ijuivja
i+7>0 4720
p2(u,v,0,0) = Z dijuivj, q2(u,v,0,8) = Z b,]uvj
i+j>0 i+j>0

For g sufficiently small we can write I(h, ) = 22:1 Ii(h,0), for0 < —h < 1 where

I(h,8) = f (gdx—pdy)|e—o, k=1,2,3,Lic=Ly"\Up, k=1,2, Lys = (Ly \ U2 L)-

hk

By Theorem 1.2 in [4] we can apply the formula for the local coefficients ¢;(S1,0), i =
1,3,4 to the system (8) with k = 1 and obtain the following expansion of /:

I (h) = 1 (S1, 8)| A0 + ¢3(S1,8) [/ + ca(S1,8) |n["® + O(?) + @1 (h,8)  (9)

By Theorem 2 in [11] we can apply the formula for the local coefficients ¢;(S3,0), i =
2,3,5,6,7 to the system (8) with kK = 2 and obtain the following expansion of I,:

L(h) = c2(82,8)|h"* +c3(S2, 8)|h|In || + c5(S2, 8) |AP/* + c6(Sa, 8) ||/
+c7(S2,8)h* In|h| + O(h*) + @2(h, §), (10)

for 0 < —h < 1 and @ € C® at h = 0, with @(0,0) = O(g). We set & =
€2(82,0),63=1c1(81,08),64 =c3(52,8),86 =c3(51,8),67 =1c5(52,68),3 = c6(52, ),
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¢9 = ¢7(82,0) and &9 = c4(S1, ). According to (9)-(10) for 0 < —h < 1 we have
I(h,8) = &|h[*+&|hP/0 + &u|h|In |h| + &|h|"/® + & |n]/* + &|n|/*
+eoh* In|h| + &1olh|""/® + O(h?) + N(h, 5) (11)

where N(h,8) = @i(h,0) + @2(h,0) + I3(h,8). Let N(h,8) = é1(8) + &(8)h +
O(h?). Tt is easy to see that

1(8) = 91(0.8)+ 02(0.8)+ 1,(0.8) = _lim [01(0,8)+ ¢2(0,5) +1,(0.5)

2
= lim 5(0,6) = f;@(qu—Pd)’Ne_o: Zfi(CldX—Pd)’)|e_0=1(0,5)(12)
i=17/Li

€1, 2%0

since 0(0,8) = O(&),k=1,2. By (11) and N(h,8) = ¢,(8) +&5(8)h+ O(h?), we
have

3 5
5(8) + O(h) = Ny(h, 8) = (1, 8) + Se2lhl ™ 4 Z&s|h| "¢ +&(1+In A]) + O(Jh).

According to [2] we know that I (h, 8) = §;, (Px+ qy)|e=odt, then

. 3.1 5. .1
55(5):Nh<0,5):%1_1’>r(1) |:7{ (px+Qy)|g:0dl+—6‘2|h| 4+—C3|h| 6+C4(1+ln|h|)}

= lim [Z/ (Px+ay— Ok)|e= odt—l—/ (Px+ay)|e=odt
h—0 Lk

3 5
+Z/ Ot + 28 |4+ 26 |h 6 +ea(1+n|h)) | |
L 4 6

By corollary 1.2 in [8], corollary 4.4 in [6], and considering ¢, = ¢3($>,0) =

—%, G4 =0c3(52,6)= @((27150—51,2)624-(1311 +2dy0)) and &3 =¢1(81,0) =
__1 ~

2\/561h 3 and under condition by + 2dy9 = 0 we have

Cs = Z/ (Px+ 4y — O1)|e= odt+/ (Px+qy)|e=o0dt 4 b1&2 + ba&3 + b3¢4.
Ok

Obviously ¢;=¢3=¢4=0 then ¢s (5):fL0 (Px+ay) |e:Odf:):.1%:1 ka (Px+4y)|e=odt.
0

Now assume (2)|¢—o has an elementary center C(0,0) with H(0,0) = 0 and
our assumption for p and ¢q in the beginning of this section holds. For (x,y) near
C(0,0), we may assume H (x,y) = 2 (x> +y )+Z,+J>3 hijx'y/. Then I(h, §) near the
elementary center C(0,0) has the following expansion (see [3])

8)=Y b;(&)h, 0<h<1. (13)
J=1
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To obtain more limit cycles we consider the limit cycles bifurcated from the annu-
lus not only near the center C(0,0) but also near the heteroclinic loop Lo, by the
following theorem.

Theorem 2.2. Consider system (2) and assume (5) and (13) hold. Also suppose
there exists & € RN such that

51(50) = 52(60) =" Cm (60) =0, C~‘m—i-l(a()) 7£ 0,
b1(80) = b2(80) = -+ = bi(80) = 0,bx+1(S0) # 0

(14)

and o ~
8(617C27"' 7cl’l’l7b17b27"' 7bk)

dé
Then system (2) can have m+ k + lfsgn(l(h"zéo)l(hz’éo)) limit cycles for some (€,98)
near (0,080) in which m limit cycles are near the heteroclinic loop Ly, k limit cycles

are near the center C(0,0) and 1—sgn(l(h1,26o)l(h2,80)) limit cycle are surrounding the
center C(0,0), where hy = hy — €1, hp = 0+ & with €| and &, are positive and small.

rank =m+k. (15)

Theorem 2.2 can be proved similarly as theorem 2.1 proved in [10] by using
implicit function theorem, then here we omit its proof for the sake of brevity.

3. Limit Cycles of System (H;)

In this section we provide a complete description of the number and the pos-
sible configurations of limit cycles for system (H).

3.1. Bifurcation of limit cycles from the period annulus

In this subsection we study the least upper bound of the number of limit cycles
which can bifurcate from the period annulus of system (Hy). We use an algebraic
criterion developed in [5] and [7] to study the related Abelian integral /() of system
(Hg). But first we give the following definition:

Definition 3.1. The base functions {I;(h), i=1,...,n} in the Melnikov function I (h)
is said to be a Chebyshev system with accuracy k, if number of zeros of any nontriv-
ial linear combination oply(h) + oyl (h) + - - - + QI (h) counted with multiplicity
isatmostn+k— 1. If k =0, it simply said to be a Chebyshev system.

We will show that the base functions {ly(h), I;(h), I(h)} in I(h) form a
Chebyshev system with accuracy one. Hence, the number (multiplicity taken into
account) of isolated zeros of /(h) in the open interval (0, 4%178) is at most three.

Let us consider Abelian integral /(h) with Hamiltonian function (4), which is a
linear combination of n := 3 Abelian integral {Iy(h),l;(h),Ir(h)}, where [;(h) =

¢, ¥ 1y*ldx, i =0,1,2 with s = 1 and ¥, is a closed curve defined by
yh:{(xy):A()—l—B() =h, 0<h<27/448},

with A(x) = —2x7 4+ 2x0 + 260 — 2xt — EXS + 5x%, m=1 and B(x) = 3. First
we check if the hypothesis of Theorem A in [7] are satisfied. We notice that the
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projection of period annulus on the x-axis is (—f—p 1) and xA’(x) > 0 for all x €
(—2,1)\{0}. Therefore, there exists an invertible function z(x) with —3 < z(x) < 0
such that A(x) = A(z(x)) for 0 <x < 1. Butin thiscase m =1, n =4 and s = 1,
so one of the hypothesis of Theorem A in [7], i.e. s > m(n+k —2) is not fulfilled.
However it is possible to overcome this problem using Lemma 4.1 in [5], and obtain
new Abelian integrals for which the corresponding s is large enough to verify the
inequality. Here we have to promote the power s to three such that the condition
s > n—+k—2 holds. On the oval 7y, for i =0, 1,2 we have

1 2\ 1 . ,
Ii(h) = - A(x)+ r X lydx = — 262 A (x)ydx+ ¢ X Ty3dx ).
h VZ 2 2h ) ¥z
‘ . (16)
Using Lemma 4.1 in [5] with k =3 and F (x) = 2x*" "' A(x) to get §, 2x*" "1 A (x)ydx =

2 2i+1A ;
i, Gilx)y>dx, where Gi(x) = 33:(*37™) = ey and

g = xHtl [512(1+i)x7—(1024i+960)x6—(832i+560)x5+(2464i+1708)x4
+ (3220 +21)x° — (2282i + 1036)x* + (841 + 126)x" +756(i+1)]

By (16) we obtain
1 , 1 .
Li(h) = — (x21+1 + G,-(x)) Vdx = —2?4 (2A(x) +yH) (P 4 Gi(x))y3dx
2h Jy, 4h= Jy,
1 : .
= — ( 2 Gi(x)A(x)y dx+ ¢ (x4 G,'(x))ysdx> V)]
4h Y Th

Again using Lemma 4.1 in [5] with k = 5 and F(x) = 2(x**! + G;(x))A(x) to get

2()(2’1rl + Gi(x))A (x)y3 dx= ¢ H; (x)y5 dx,
Yn Yn

224G (x)A(x h;
where H;(x) = %( ( A/(x§ - ))  2940(4x+3)0(x— 1)

hi = [(262144i% 4 1900544 + 1638400)x'* — (1048576i% + 7159808i + 5955584 )x'?

+ (196608i* 4 13885447 + 1490944)x'2 + (42270724% + 24812544 + 17810944 )x"!

— (40243204% +22312704i 4 16308992)x'0 — (7096320:* + 34743744i 4 20726048)x’

+ (10295040 + 47087376i 4288084 16)x® + (5986176:% + 24246516i + 12042730)x
— (12830076i% + 48586986i + 26187560)x° — (2313640:> + 7908278i 4 3090675)x°
(
(

and

+ (8987188i% 429109332/ 4 14592984)x* + (103488:% + 360444 — 338394)x>
— (3443328i% 4 10638684 + 4836888) x> 4 (127008i* + 444528i + 381024)x
+ (571536i* +2000376i + 1428840)] x>

From (17) we obtain 4h°I;(h) = [ fi(x)y dx = I;(h), where f;(x) = x**1 4+ G;(x) +

H;(x). Itis clear that {Iy, ], 1o} is a Chebyshev system with accuracy 1 on (0, 2%) if
and only if {ly,I;, 1> } is as well. Now since s = 3 and the condition s > m(n+k—2)



102 Ali Zaghian, Rasool Kazemi, Hamid R. Z. Zangeneh

satisfies, we can apply Theorem A in [7]. We set [;(x) = <%> (x) — (%) (z(x)),
where z(x) is an analytic involution defined by A(x) = A(z(x)) with A(1) = A(—%),
then z = z(x) for x € (0, 1) satisfy A(x) —A(z) = —ﬁ(x —z2)q(x,z) =0, where
(x—2)q(x,2) = 64(x" —2') = 112(x" =) - 84(x" - 2°)
+203(x* —74) +28(x3 — %) — 126(x* — 7).

i i dq(x,z) ;dq(x, .
So L1i(x) = L(4)(x) — [L(%)(2(x)))- &, where % = —24052) /24002) e will

show that {ly,/;,l»} is a Chebyshev system with accuracy 1 on x € (0,1):
Lemma 3.1.

(i) Wllo)(x) #0 forall xe€(0,1);

(ii) Wllo,l1](x) #0 forall xe (0,1);

(iii) W{ly, 11, ] (x) has a unique simple root x* € (0,1).
Proof. Using Maple we find that

B 8(x —z)wo(x,2)
Wih](x) = 21xz(4x+3)°(x — 1)7(42+3)°(z— )7
B 64(x —z)3w1 (x,2)
Wlo ) = = i 3) 00— 1)+ 3)0( — 1) W1 (5,0
W, 11, 1) (x) 102~ el

3087(4x+3) 14 (x— 1)21 (42 +3) 4 (z — 1)21W3 (x,2)
where w;(x,z), i =0, 1,2 are polynomials with long expression in (x,z) and
Woi(x,z) = 320xz* —448xz% 4+ 128zx* +256x72° +1922%x° — 1682x% — 224z2x°
—3362°x% — 2527%x + 4062x — 126 4 64x° — 112x* — 84x> 4 203x°
+28x —3367° — 560z +3847° + 567 4 60977

The resultant with respect to z between Wy (x,z) and g(x,z) is
po1(x) = 4619872982007808 (64x> — 112x* — 84x> +-203x% + 28x — 126) (4x + 3) 1 (x — 1) 4.

It is easy to see that pgj(x) does not have a zero in (0, 1). This implies that W [ly, ;]
and W{lp,1,l](x) are well defined in —% <z<0<x<l.

In order to determine if these three Wronskians have zeros on (0,1) , we shall
rely on the symbolic computations by Maple to compute the resultant between
wi(x,z), i = 0,1,2 and ¢g(x,z) with respect to z, and then we apply Sturm’s The-
orem.

Case (i). The resultant with respect to z between ¢(x,z) and wy(x,z) is R(g,wo,z) =
(4x+3)28(x—1)3 py(x), where po(x) is a polynomial of degree 42 in x. By Sturm’s
Theorem we get that pg(x) # 0 for all x € (0,1). Thus, woy(x,z) =0 and g(x,z) =0
have no common roots. This fact implies that W [lp](x) # O for all x € (0, 1).

Case (ii). The resultant with respect to z between g(x,z) and wy (x,z) is R(g, w1,2) =
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(4x +3)%(x —1)8p; (x), where p;(x) is a polynomial of degree 98 in x. By apply-
ing Sturm’s Theorem, there is a unique root x° ~ 0.9662426637 € (0,1), applying
Sturm’s Theorem to another resultant R(g, wy,z), we get that it has a root on (— % ,0).
In order to make sure if there exist a common root of wj(x,z) and g(x,z) satisfy-
ing —% <z<0<x<1, we use a program to compute the intervals in which all
common roots exist (see [9]). From the result of the program, there are 6 pairs of
common roots of wy(x,z) and g(x,z) in 6 pairs of intervals as follow:

[[x=[1.424285889, 1.424293518], z=[-.2157721701, -.2157721701]],
[x=[.9662399292, .9662475586], z=[-.7610659790, -.7610583496]],
[x=[1.019927979, 1.019935608], z=[-.7454480087, -.7454480087]],
[x=[-.2157745361, -.2157669067], z=[1.424286746, 1.424286746]],
[x=[-.7454528809, -.7454452515], z=[1.019933805, 1.019933805]],
[x=[-.7610659790, -.7610583496], z=[.9662399292, .9662475586]]].

But none pair satisfy —3 < z < 0 < x < 1. Therefore W([ly,l;] # 0 for all x € (0, 1).
Case (iii). The resultant with respect to z between g(x,z) and wy(x,z) is R(wp,q,z) =
(4x 4 3)%7(x — 1)"* py(x), where ps(x) is a polynomial of degree 164 in x. By
Sturm’s Theorem we get that p,(x) has a unique root in the interval (0,1) at x] ~
.7990077271. Substituting x = x7} into ¢(x,z), we find that g(x7,z) has also a unique
root in the interval (—%,O) at zj = —.6569892317. To make sure if (x7,z]) is the
common root of g(x,z) and wy(x,z), by program of the previous stage we obtain 4
pairs of common roots of wy(x,z) and ¢(x,z) in 4 pairs of intervals as follow:

[[x=[0.981296921, 0.981302643], z=[-.7186737061, -.7186660767]],
[x=[.7990055084, .7990112305], z=[1.171028761, 1.171028761]],

[x=[-.7186737061, -.7186660767], z=[0.981296921, 0.981302643]],
[x=[1.171028137, 1.171035767], z=[.7990077271, .7990077271]]1].

Only the first pair denoted by (x*,z") satisfies —% <7< 0 < x< 1. Therefore, there
is a unique x* € (0,1) such that W[ly,/;,](x*) = 0. Now we want to show that x*
is a simple root. We denote W ly,1;,L](x) by W3(x,z(x)). Its derivative is

dW; 1024(x — z) w3 (x,2)

dx 3087(4x+3)15(x — 1)22(4z+3) 3 (z — 1)2W, (x,2)
where ws(x,z) is polynomials with long expression in (x,z). Taking wsz(x,z) in
place of wy(x,z) in our program, we obtain seven common roots of w3(x,z) and
q(x,z), but non of them is equal (x*,z*) and because g(x*,z*) = g(x*,z(x*)) =0,
then w3 (x*,z(x*)) # 0, hence x* is a simple root of wy(x,z).

Based on the above arguments we obtain the following theorem.
Theorem 3.1. The collection {Iy(h),I;(h),I(h)} is a Chebyshev system with accu-
racy one on the interval (0, 2k ). Hence, if the Abelian integral I(h) is not identically

zero then in any compact subinterval of (0, 42778) and for all values of parameters
(a,b) it has at most three zeros, counting the multiplicities, And the number of limit
cycles bifurcating from the period annulus is at most three.



104 Ali Zaghian, Rasool Kazemi, Hamid R. Z. Zangeneh

3.2. Asymptotic expansion of /(%) near the endpoints of (0, 42Z8)

In this subsection we study the asymptotic expansion of Abelian integral /() at the
end points # =0 and h = 4 48, respectively. To obtain the asymptotic expansion of
I(h) when h — 0T, we compute I(h) near the elementary equilibrium (0,0). Let
x=rcos 0, y=rsin0, then the oval y, := {H(x,y) = h} will be transformed into

r (224 —64r°cos’ O +112r* cos® 0 + 8413 cos’ 0

1
—203r? cos* @ — 28rcos’ 0 — 98 cos? 0)? — V448h =

with 0 < h,r < 1. Let p = \/448h and define F(r,p) to be left hand expression of
the above equality. Then by applying the Implicit Function Theorem to F(r,p) =
at (r,p) = (0,0), we obtain that there exists a unique smooth function r = ¢(p) and
a small positive number 0 < § < 1 such that F(¢(p),p) =0for0 < p < 6. It can
be checked that @(p) has the following expansion

2 3
p p~cos’ 0
— 18
¢(p) /98¢0 6 £ 224 | 14(49c0s? 6 —224c0s2 6+ 256) (18)
cos* (193 cos? O — 464)p3 (o

+ +0
56/ —98cos? B +224(343¢cos® @ — 2352 cos* O + 5376cos2 6 — 4096)

Let us compute /() in the coordinate system (r, 8). From (18) we have
I(h) = 7{ (a+ bx* +x*)xydx = // (a+bx® +x¥)xdxdy
Yh ntyh
n o(p) 2 2 4. 4n),2
= / de/ (a+br cos” 0 +r"cos 6) recos@ dr. (19)
0 0

Note that & = %. Thus we obtain the asymptotic expansion of I(h) as h — 0™,
4 4894971 2 224
) = 6 12 [a (5980 80 > n (7 89497 69360 O) )

2834352 ° T 6561 243
30174980537 | 3602369630, 10721536
1033121304 ¢ 14348907 59049

) m+ 0(h4)] . (20

We set
by Oy JOA (980 80N 64 (74804971 269360, 2240
=g M T\ 04 7 37317\ 2834352 ¢ 6561 243

Now let us apply Theorem 2.1 to system (Hg) and obtain the asymptotic expansion
of Abelian integral I(h) as h — ( 42478) It is clear that on the loop L 2z we have

H(x,y) = 448, which implies that y* % (56x+42)(x — 1)2(4x +3), thus

343+/2

1
¢1(6)=1(0,6) = 2/ 3(cH—bxz+x4)xy+dx:
~3
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(©

(d) (e)
FIGURE 2. Distribution of limit cycles bifurcated from the period
annulus of system (H).

For §| = (—%,0) let X =x+ %, Y =y, and still denote X,Y by x,y , respectively.
Then system (Hg) becomes x =y, y = —(x—3)x*(x— 1)3 + €yqi (x), where

15 45 9 135 27 405 3 27 243
5 4

= 2 (b —(2b by T2y Y
9109 =27 = 2 (b = (b g e b+ = qa = Gb = oo
For € = 0 the Hamiltonian function is H(x,y) = —322x°> —|— Toxt — x5 46— Ix7.

Thus from Theorem 2.1 we see that ¢z = ¢1(S1,0) = %;123)(76&1 +432b +

243). For the nilpotent saddle S, = (1,0), we make the transformations X = 4 (1—
x),Y=yand T =— 4t and still denote X,Y and T by x,y and ¢ , respectively. Then

system (Hg) becomes x =y, y:x3— Tt +§i§ > 214—2081\/7x6+8yq2(x),where
(x)_64x5—160\/7x4+16(b+10)x —8\/_(3b+10)x2+4(a+3b+5)x_(1+a+b)
2x= 343 49 7 N

For € = 0 the Hamiltonian function is H(x,y) = 3y* — 3x* + 5 6 \V7x° — 3‘283x6

1%%87 7x’. Therefore from Theorem 2.1 we have
8v1 42

¢y =¢2(82,0) = 1 (1+a+b)A02, 54263(52,5)=¥(29+61+15b)

3.3. Distribution of limit cycles of system (H;)

In this section, we will use the coefficients given in previous section and apply
Theorem 2.2, to discuss distributions of limit cycles of system (Hg).
(1) ¢1(8) =0yields b= -1 — 8854 1f & = (a, — 2 — 22a,1), then

64 3 8v14 609 7
b1(50) = 8—1775617 02(50) = (T% - 6 )AO,Z,
if we fixa € (—oo O) (égé, o), then b1 (8y)é(8p) < 0, and 1*Sg”(1(h1,25o)1(h275o)) —1

forhi=¢€1 hy= 448 — & with €1 and &, positive and small. Note that rank ( I 9(ey b )1)> =

1 and we can apply theorem (2.2) to deduce that there exists some (a,b,1) near
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(a, —% - %@ 1) for a € (—o0,0) U (%,oo) and & positive and small, such that

system (Hg) has 2 limit cycles, 1 limit cycle is near the heteroclinic loop L 2 and 1

limit cycle is surrounding the center L, see Fig. 2(a).
Using the similar method as in (1) we obtain other cases as bellow:
(2) For ¢ positive and sufficiently small, there exists some (a,b, 1) near (0,5, 1) for

b e (—%;32,0) , such that system (H,) has 2 limit cycles, 1 limit cycle is near the

center Ly, 1 limit cycle is surrounding the center Ly(See Fig. 2(b)).
(3) For € positive and sufficiently small, there exists some (a, b, 1) near (%, —%, ),
such that system (Hg) has 3 limit cycles, two limit cycles are near the heteroclinic

loop L il and one limit cycle is surrounding the center Ly(See Fig. 2(c)).

(4) For ¢ positive and small, there exists some (a,b, 1) near (0, —%, 1), such that
system (H) has 3 limit cycles, for which one is near the heteroclinic loop L 2, 0ne

is near the center Ly and one is surrounding the center Ly(See Fig.2(d)).
(5) For € positive and small, there exists some (a,b, 1) near (0,0, 1), such that sys-
tem (H,) has 2 limit cycles which are near center Lo(See Fig.2(e)).

4. Conclusions

Based on the expansions of Melnikov function and the results of subsections
3.1 and 3.2 we proved the following theorem.

Theorem 4.1. There exist some parameter values such that the Abelian integral

I(h) has three isolated zeros in (0, 42778).
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