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MILD SOLUTIONS FOR NEUTRAL CONFORMABLE FRACTIONAL

ORDER FUNCTIONAL EVOLUTION EQUATIONS USING
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Our mission is to demonstrate the existence, uniqueness, attractiveness,

and controllability of mild solutions to neutral conformable fractional-order functional

evolution equations, specifically of order between 1 and 2. These intriguing equations
encompass finite delay, all while adhering to local conditions within a separable Banach

space. By invoking Meir-Keeler’s fixed-point Theorem and enhancing it with measures of

noncompactness, we establish the existence of these solutions. To highlight the potency
of our approach, we present a captivating example.
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1. Introduction

This paper establishes criteria for the existence, uniqueness, attractivity, and con-
trollability of mild solutions to conformable fractional-order neutral functional evolution
equations with finite delay. The analysis is conducted within the framework of a separable
Banach space, where the completeness of the space and local conditions are leveraged to
prove the existence of a unique mild solution, forming the cornerstone of our study.

The conformable derivative, introduced by Khalil et al. [29], has advanced fractional
calculus beyond classical definitions [33, 30] and enabled diverse applications (see eg. [9,
11]). Recent work has extended this framework to complex settings: Liang et al. [32] and
Bouaouid et al. [21, 20] studied impulsive differential equations using semigroup theory,
while Bouaouid et al. [12, 8] and Atraoui et al. [13] applied fixed-point theorems to prove
existence and controllability. Further contributions by Baghli et al. [14] and Agarwal et al.
[7] extended this approach to controllability, also, see [1, 16, 17, 18, 19, 4, 5, 6, 26, 31, 34].
Researchers have also utilized measures of noncompactness to address solution existence
challenges across various contexts (see eg. [10, 15, 27]).

Firstly, we study in Section 3 the conformable fractional order functional evolution
equations with local conditions of the form:

Dc[Dc(ψ(s)− Y(s, ψs))] = P(ψ(s)− Y(s, ψs)) + Ψ(s, ψs), a.e. s ∈ I := [0,+∞); (1)
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ψ(s) = η(s), s ∈ H := [−b, 0], where 0 < b < +∞, Dcψ(0) = ϑ ∈ D; (2)

Let Ψ and Y: I ×C([−b, 0],D) → D denote given functions, η: [−b, 0] → D represent
a continuous function, P: D(P) ⊂ D → D serves as the infinitesimal generator of a strongly
continuous cosine function, represented by a family of bounded linear operators (C(s))s∈R.
This elegant framework ensures that S(s) =

∫ s
0
C(x)dx, weaving a seamless integration of

the operators over the real line, and D denote a real separable Banach space equipped with
norm | · |, while Dc represents a fractional conformable derivative of order 0 < c ≤ 1.

Let ψs denote, for all s ≥ 0, the function in C([−b, 0],D) defined as ψs(θ) = ψ(s+ θ).
Here, ψs(·) captures the state history from s− b up to the current time s. Additionally, we
will explore the attractiveness of mild solutions to conformable fractional-order functional
evolution equations subject to local conditions (1)−(2). Moreover, we will delineate adequate
conditions to guarantee the controllability of mild solutions across the semi-infinite interval
I = [0,+∞) for conformable fractional-order functional evolution equations characterized
by the following conditions

Dc[Dc(ψ(s)− Y(s, ψs))] = P(ψ(s)− Y(s, ψs)) + Ψ(s, ψs) +BU(s); (3)

ψ(s) = η(s), s ∈ H, Dcψ(0) = ϑ ∈ D; (4)

where P, Ψ, Y, and η are defined as in problem (1)−(2), the control function U(·) is provided
in L2(I,D), representing the Banach space of admissible control functions, and B stands as
a bounded linear operator mapping from D to D.

Ultimately, we furnish an illustrative example demonstrating the abstract theory ex-
pounded in the preceding results.

2. Introductory concepts

In this part, we present symbols, explanations, and fundamental principles drawn
from multivalued analysis.

The notation BC(I,D) represents the Banach space comprising all functions that
are both bounded and continuous from I to D, where the norm is defined as: ∥ψ∥BC =
sup{ |ψ(s)| : s ∈ I}.

Consider the space BC∞ defined as {ψ : [−b,+∞) → D, ψ|[0,s] is bounded
and continuous for s > 0}, with the norm: ∥ψ∥BC∞ = sup{ |ψ(s)| : s ∈ [0, T ]}, here
T = sup{s > 0 : ψ|[0,s] is bounded and continuous}.

Definition 2.1. (Khalil et al. [29]) The conformable fractional derivative of order 0 < c ≤ 1
for a function ψ(·) is defined as

Dcψ(s) = lim
t→0

ψ(s+ ts1−c)− ψ(s)

t
, s > 0;

Dcψ(0) = lim
t→0

Dcψ(t),

Definition 2.2. (see eg. [10, 15, 27]) Let FD the bounded subsets of D so the map A :
FD → [0,+∞) denotes the Kuratowski measure of noncompactness which is given by

A(F) = inf{α > 0 : F ⊆
k⋃
j+1

Fj and diam(Fj) ≤ α}, here F ∈ FD.

Definition 2.3. Let’s say we have a nonempty subset F within the Banach space D, and
consider any arbitrary measure of noncompactness A defined on D. We define M : F → D

as a Meir-Keeler condensing operator if it meets the following criteria: M is both continuous
and bounded, and for any given β > 0, there exists µ > 0 such that if β < A(R) < β + µ,
then A(M(R)) ≤ β holds true for every bounded subset R of F.
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Lemma 2.1. (see [25]) Consider D as a Banach space, and let F be a subset of C(I,D)
that is both bounded and equicontinuous. Then, the function A(F(s)) remains continuous
over the interval I, and AI(F) equals the maximum value of A(F(s)) for s in I.

Theorem 2.1. (Meir-Keeler’s Theorem [8]) Let F be a nonempty, bounded, closed, and
convex subset of a Banach space D. If M : F → F is a continuous Meir-Keeler condensing
operator, then M guarantees at least one fixed point, and the collection of all such fixed
points within F forms a compact set.

Definition 2.4. (see [23]) We characterize solutions of Equations (1) − (2) as locally at-
tractive if there exists a closed ball B(ψ∗, σ) within the space BC, where ψ∗ ∈ BC, such that

for any solutions ψ and ψ̃ of Equations (1)− (2) within B(ψ∗, σ), the following convergence

occurs: lims→+∞(ψ(s)− ψ̃(s)) = 0.

3. Existence results

In this section, we reveal our main findings regarding the existence of solutions to
problems (1) − (2). Before presenting and verifying this result, we introduce the notion of
its mild solution.

Definition 3.1. We define the mild solution ψ ∈ C([−b,+∞),D) of the problem (1)− (2)
as follows

ψ(s) =


η(s), if s ∈ H;

C
(
sc

c

)
[η(0)− Y(0, η(0))] +S

(
sc

c

)
ϑ+ Y(s, ψs)

+
∫ s
0
tc−1S

(
sc−tc
c

)
Ψ(t, ψt) dt, if s ∈ I;

We must introduce the following hypotheses, which will be utilized subsequently:

(i) The function Ψ : I ×C(H,D) → D is carathéodory function and there exist a contin-
uous function O : I → I such that

|Ψ(s, u)| ≤ O(s)∥u∥,

A(Ψ(s,F)) ≤ O(s)A(F),

and O∗ := sups∈I
∫ s
0
tc−1O(t)dt <∞, for all s ∈ I, u ∈ C(H,D), bounded

set F ⊂ C([−b,+∞),D) and 0 < c ≤ 1 ;

(ii) The cosine operator C(s)s∈R is uniformly continuous and there exist constantsMC
c , M

S
c

both greater than zero, such that

sup
s∈I

∥C
(sc
c

)
∥ ≤ MC

c and sup
s∈I

∥S
(sc
c

)
∥ ≤ MS

c .

(iii) The function Y : I×C([−b, 0],D) → D is carathéodory function and there exist Y∗ > 0
such that

|Y(s, u)| ≤ Y∗∥u∥,

A(Y(s,F)) ≤ Y∗ A(F),

{s 7→ Y(s, u), u ∈ F} is equicontinuous on each compact interval of I,

for all s ∈ I, u ∈ C(H,D), bounded set F ⊂ C([−b,+∞),D).

Theorem 3.1. Given assumptions (i) − (iii), if MS
c O

∗ + Y∗ < 1, then problem (1) − (2)
admits at least one mild solution over BC.
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Proof. We initiate the transformation of problem (1)−(2) into a fixed-point problem.
Let’s examine the operator M : BC([−b,+∞),D) → BC([−b,+∞),D), which is delineated
as follows:

M(ψ)(s) =


η(s), if s ∈ [−b, 0];

C
(
sc

c

)
[η(0)− Y(0, η(0))] +S

(
sc

c

)
ϑ+ Y(s, ψs)

+
∫ s
0
tc−1S

(
sc−tc
c

)
Ψ(t, ψt) dt, if s ∈ I;

The operator M maps BC into BC. Specifically, for ψ ∈ BC and for any s ∈ I we have:

|M(ψ)(s)| ≤ ∥C
(sc
c

)
∥|η(0) + Y(0, η(0))|+ ∥S

(sc
c

)
∥∥ϑ∥+ |Y(s, ψs)|

+

∫ s

0

tc−1∥S
(sc − tc

c

)
∥ |Ψ(t, ψt)|dt

≤ MC
c ∥η∥(1 + Y∗) +MS

c ∥ϑ∥+ (MS
c O

∗ + Y∗)∥ψ∥BC .
which imply M ∈ BC.

Furthermore, suppose l ≥ MC
c ∥η∥(1+Y∗)+MS

c ∥ϑ∥
1−(MS

c O∗+Y∗)
, and let Bl denote the closed ball in

BC centered at the origin with radius l. consider ψ ∈ Bl and s ∈ I, we get

|M(ψ)(s)| ≤ MC
c ∥η∥(1 + Y∗) +MS

c ∥ϑ∥+ (MS
c O

∗ + Y∗)l

Thus, ∥M(ψ)∥BC ≤ l.
Now we prove that M : Bl → Bl satisfies the assumptions of Meir-Keeler’s fixed point

Theorem.
Firstly, we establish that M exhibits continuity within Bl. Let {ψn} be a sequence

such that ψn → ψ in Bl. We have

|M(ψn)(s)−M(ψ)(s)| ≤ |Y(s, (ψs)n)− Y(s, ψs)|+Mc

∫ s

0

tc−1|Ψ(t, (ψt)n)−Ψ(t, ψt)|dt

and by (i) and (iii) we get Ψ(t, (ψt)n) → Ψ(t, ψt) and Y(t, (ψt)n) → Y(t, ψt) as n→ +∞ for
ae. t ∈ I and by the Lebesgue dominated convergence Theorem we conclude that

∥M(ψn)−M(ψ)∥BC → 0, as n→ ∞.

Thus, M is continuous.

Secondly, we observe that M(Bl) ⊂ Bl, which is evident.
Moving on, we note that M(Bl) demonstrates equicontinuity on every compact inter-

val X ′ of I, let x1, x2 ∈ X ′ with x2 > x1 we have

|M(ψ)(x1)−M(ψ)(x2)| ≤ ∥C
(xc2
c

)
− C

(xc1
c

)
∥B(D) (1 + Y∗)∥η∥

+ ∥S
(xc2
c

)
−S

(xc1
c

)
∥B(D) ∥ϑ∥+ |Y(x1, ψx1

)− Y(x2, ψx2
)|

+

∫ x1

0

tc−1∥S
(xc2 − tc

c

)
−S

(xc1 − tc

c

)
∥B(D) |Ψ(t, ψt)|dt

+MS
c

∫ x2

x1

tc−1 |Ψ(t, ψt)|dt

As x1 → x2, the uniformly continuity property of the operators C(s) and S(s) indicate that
the right part of the previous enequality converges to zero. This confirms the equicontinuity
of M.
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Additionally, we establish the equiconvergence of M(Bl). For s ∈ I and ψ ∈ Bl, we
find

|M(ψ)(s)| ≤ MC
c ∥η∥(1 + Y∗) +MS

c ∥ϑ∥+ (MS
c

∫ s

0

xc−1O(x)dx+ Y∗)l

Consequently, |M(ψ)(s)| → l′, as s→ +∞.Where l′ ≤ MC
c ∥η∥(1+Y∗)+MS

c ∥ϑ∥+(MS
c O

∗+
Y∗)l. Here O∗ := sups∈I

∫ s
0
xc−1O(x)dx. Therefore,

|M(ψ)(s)−M(ψ)(+∞)| → 0, s→ +∞.

Finally, we confirm that the Meir-Keeler type condition is satisfied.
For any given β > 0, there exists µ > 0 such that if β < AI(R) < β + µ, then

AI(M(R)) ≤ β for any R ⊂ Bl where AI(R) = maxx∈I A(R(x)).
We have

A(M(R)(s)) ≤ (Y∗ +MS
c O

∗)AI(R).

Since M(R) is bounded and equicontinuous of all R ⊂ Bl. Then

AI(M(R)) = max
s∈I

A(M(R)(s)).

Therefore AI(M(R)) ≤ (Y∗ +MS
c O

∗)AI(R) ≤ β ⇒ AI(R) ≤ β
Y∗+MS

c O∗ .

Then for any given β > 0 and taking µ =
(

1−Y∗−MS
c O∗

Y∗+MS
c O∗

)
β − ϵ such that ϵ > 0, we obtain

β < AI(R) < β + µ⇒ AI(M(R)) ≤ β, for any R ⊂ Bl

Hence M is a Meir-Keeler condensing operator.
Through these steps, we ensure that the conditions required for Meir-Keeler’ s fixed-point
Theorem [8] are satisfied by M : Bl → Bl. Therefore, we may conclude that M has a fixed
point ψ that provides a mild solution to the problem (1)− (2).

3.1. Uniqueness results. Subsequently, we present our main finding concerning the exis-
tence and uniqueness of solutions to problem (1)− (2). Before proceeding with the demon-
stration of this outcome, we establish the following conditions.

(i)′ The function Ψ : I ×C(H,D) → D is carathéodory function and there exist a contin-
uous function O : I → I such that

|Ψ(s, u)−Ψ(s, v)| ≤ O(s)∥u− v∥,

Ψ∗ = sup
s∈I

∫ s

0

tc−1Ψ(t, 0)dt <∞

A(Ψ(s,F)) ≤ O(s)A(F),

and O∗ := sups∈I
∫ s
0
tc−1O(t)dt <∞, for all s ∈ I, u, v ∈ C(H,D), bounded

set F ⊂ C([−b,+∞),D) and 0 < c ≤ 1 ;
(iii)′ The function Y : I×C([−b, 0],D) → D is carathéodory function, continuous according

to its first variable and there exist Y∗ > 0 such that

|Y(s, u)− Y(s, v)| ≤ Y∗∥u− v∥,

A(Y(s,F)) ≤ Y∗A(F),

{s 7→ Y(s, u), u ∈ F} is equicontinuous on each compact interval of I,

Y′ = sup
s∈I

|Y(s, 0)| < +∞,

for all s ∈ I, u ∈ C(H,D), bounded set F ⊂ C([−b,+∞),D).

Theorem 3.2. Given assumptions (i)′ − (ii) and (iii)′, if Y∗ + MS
c O

∗ < 1, then problem
(1)− (2) possesses a unique mild solution over BC.
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Proof. By following analogous procedures as those in the proof of Theorem 3.2, we
confirm the presence of a sole mild solution. Particularly noteworthy is the adjustment of

the radius estimation to l ≥ MC
c [∥η∥(1+Y∗)+Y′]+MS

c ∥ϑ∥+MS
c Ψ∗+Y′

1−(MS
c O∗+Y∗)

.

Now, we proceed to demonstrate uniqueness. Suppose ψ and ψ∗ are both mild solu-
tions of the problem (1)− (2), then,

|ψ(s)− ψ∗(s)| = |Mψ(s)−Mψ∗(s)|

≤ |Y(s, ψs)− Y(s, ψ∗
s )|+MS

c

∫ s

0

tc−1|Ψ(t, ψt)−Ψ(t, ψ∗
t )|dt

≤ (Y∗ +MS
c O

∗)∥ψ − ψ∗∥BC
then (1 − (Y∗ + MS

c O
∗))∥ψ − ψ∗∥BC ≤ 0 therefore ψ = ψ∗. Hence the uniqueness of the

mild solution.

3.2. Attractivity of Mild Solutions. In this section, we explore the local attractiveness
of solutions to problem (1)− (2).

Theorem 3.3. Given assumptions (i)′ − (ii) and (iii)′, if MS
c O

∗ + Y∗ < 1, and let ψ∗

be a solution of (1) − (2), and B(ψ∗, σ) represent the closed ball in BC such that: σ ≥
MC

c [∥η∥(1+Y∗)+Y′]+MS
c ∥ϑ∥+MS

c Ψ∗+Y′

1−(MS
c O∗+Y∗)

then the problem (1)− (2) exhibits attractivity.

Proof. For ψ ∈ B(ψ∗, σ), by (i)′ − (ii) and (iii)′, we get

|M(ψ)(s)− ψ∗(s)| = |M(ψ)(s)−M(ψ∗)(s)|

≤ |Y(s, ψ∗
s )− Y(s, ψs)|+MS

c

∫ s

0

tc−1|Ψ(t, ψ∗
t )−Ψ(t, ψt)|dt

≤ Y∗∥ψ∗
s − ψs∥+MS

c

∫ s

0

tc−1O(t)∥ψ∗
t − ψt∥dt

≤ (Y∗ +MS
c O

∗)σ ≤ σ

consequently, M(B(ψ∗, σ)) ⊂ B(ψ∗, σ) then for each solutions ψ, ψ̃ ∈ B(ψ∗, σ) of (1)− (2)
and s ∈ I, we have

|ψ(s)− ψ̃(s)| ≤ (Y∗ +MS
c O

∗) ∥ψ̃ − ψ∥BC
hence

∥ψ̃ − ψ∥BC = 0

As a result, the problem solutions (1)− (2) are locally attractive.

3.3. Controllability results. This section delineates the controllability outcomes for the
system (3) − (4). Before delving into this, we introduce a specific type of solutions for
problem (3)− (4).

Definition 3.2. We define the mild solution ψ ∈ C([−b,+∞),D) of the problem (3)− (4)
as follows

ψ(s) =


η(s), if s ∈ H;

C
(
sc

c

)
[η(0)− Y(0, η(0))] +S

(
sc

c

)
ϑ+ Y(s, ψs)

+
∫ s
0
tc−1S

(
sc−tc
c

)
Ψ(t, ψt) dt,+

∫ s
0
tc−1S

(
sc−tc
c

)
BU(t)dt, if s ∈ I;

Definition 3.3. The system (3)− (4) is considered controllable if, for every initial function

η ∈ C([−b, 0],D) and ψ̂ ∈ D, there exists some natural number n ∈ N and a control function
U ∈ L2([0, n],D) such that the resulting mild solution ψ(·) satisfies the terminal condition

ψ(n) = ψ̂.
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We will adopt the assumptions (i)− (iii) from Section 3, along with the introduction
of the following additional assumption, which will be consistently assumed hereafter:

(iv) For all n integer, the linear operator V : L2([0, n],D) → D defined by

VU =

∫ n

0

xc−1S
(nc − xc

c

)
BU(x)dx,

possesses a pseudo-invertible operator Ṽ−1, which maps functions from L2([0, n],D)
to the space L2([0, n],D) excluding the kernel of V, and is bounded. Additionally, B
is bounded, satisfying:

∥B∥ ≤ Ñ and ∥Ṽ−1∥ ≤ Ñ1.

(v) There exists a continuous function function KV : [0, n] → R+ such that: for any

bounded subset F ⊂ D, we have : A(Ṽ−1(F)(s)) ≤ KV(s)A(F), s ∈ I and K′ :=
sups∈I

∫ s
0
tc−1KV(t)dt <∞ for all 0 < c ≤ 1.

Theorem 3.4. Assume that (i)−(v) hold. If max{McÑÑ1
nc

c +(Y∗+McO
∗)[1+McÑÑ1

nc

c ], (Y
∗+

McO
∗)(1 +McÑ K′)} < 1, then the problem (3)− (4) is controllable on [−b,+∞).

Proof.Convert problem (3)−(4) into a fixed-point problem. We examine the operator
M : BC∞([−b,+∞),D) → BC∞([−b,+∞),D), defined as:

M(ψ)(s) =


η(s), if s ∈ [−b, 0];
C
(
sc

c

)
[η(0)− Y(0, η(0))] +S

(
sc

c

)
ϑ+ Y(s, ψs)

+
∫ s
0
tc−1S

(
sc−tc
c

)
Ψ(t, ψt) dt,+

∫ s
0
tc−1S

(
sc−tc
c

)
BU(t)dt, if s ∈ I;

Using assumption (iv), for arbitrary function ψ(·), we define the control

Uψ(s) = Ṽ−1

[
ψ̂ − C

(nc
c

)
[η(0)− Y(0, η(0))]−S

(nc
c

)
ϑ− Y(n, ψn)

−
∫ n

0

tc−1S
(nc − tc

c

)
Ψ(t, ψt) dt

]
(s)

Noting that, we have

|Uψ(s)| ≤ Ñ1

[
|ψ̂|+MC

c (1 + Y∗)∥η∥+MS
c ∥ϑ∥+ (MS

c O
∗ + Y∗) ∥ψ∥BC∞

]

The operator M maps BC∞ into BC∞. Specifically, the mapping N(ψ) is continuous on
[−b, n] for any ψ ∈ BC∞ we have:

|M(ψ)(s)| ≤ ∥C
(sc
c

)
∥[|η(0)|+ |Y(0, η(0))|] + ∥S

(sc
c

)
∥∥ϑ∥+ |Y(s, ψs)|

+

∫ s

0

tc−1∥S
(sc − tc

c

)
∥|Ψ(t, ψt)|dt+

∫ s

0

tc−1∥S
(sc − tc

c

)
∥∥B∥ |Uψ(t)|dt

≤ (MC
c (1 + Y∗)∥η∥+MS

c ∥ϑ∥)(1 +MS
c ÑÑ1

nc

c
) + ∥ψ∥BC∞

[
MS
c ÑÑ1

nc

c

+ (MS
c O

∗ + Y∗)(1 +MS
c ÑÑ1

nc

c
)
]
.

Which imply M ∈ BC∞.

Furthermore, suppose l ≥ (MC
c (1+Y∗)∥η∥+MS

c ∥ϑ∥)(1+MS
c ÑÑ1

nc

c )

1−
[
MS

c ÑÑ1
nc

c +(MS
c O∗+Y∗)(1+MS

c ÑÑ1
nc

c )

] , and let Bl denote the
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closed ball in BC∞ centered at the origin with radius l. Let ψ ∈ Bl and s ∈ I, we get

|M(ψ)(s)| ≤ l
[
MS
c ÑÑ1

nc

c
+ (MS

c O
∗ + Y∗)(1 +MS

c ÑÑ1
nc

c
)
]

+ (MC
c (1 + Y∗)∥η∥+MS

c ∥ϑ∥)(1 +MS
c ÑÑ1

nc

c
).

Thus, ∥M(ψ)∥BC∞ ≤ l.
We now aim to demonstrate that M : Bl → Bl fulfills the prerequisites of Meir-

Keeler’s fixed-point Theorem.

Firstly, we establish that M exhibits continuity within Bl. Let {ψk} be a sequence
such that ψk → ψ in Bl. We have

|M(ψk)(s)−M(ψ)(s)| ≤ |Y(s, (ψs)k)− Y(s, ψs)|+MS
c

∫ s

0

tc−1|Ψ(t, (ψt)k)−Ψ(t, ψt)|dt

+MS
c Ñ

∫ s

0

tc−1|Uψk
(t)− Uψ(t)|dt

≤ |Y(s, (ψs)k)− Y(s, ψs)|

+MS
c

(
1 +MS

c ÑÑ1
nc

c

)∫ n

0

tc−1|Ψ(t, (ψt)k)−Ψ(t, ψt)|dt

+MS
c ÑÑ1

nc

c

[
|ψ̂k − ψ̂|+ |Y(n, (ψn)k)− Y(n, ψn)|

]
Using (i) and (iii), we have Ψ(s, (ψs)k) → Ψ(s, ψs) and Y(s, (ψs)k) → Y(s, ψs) as k →
+∞ for almost every s ∈ [0, n]. Then, by the Lebesgue dominated convergence Theorem:
∥M(ψn)−M(ψ)∥BC∞ → 0, as n→ ∞. Thus, M is continuous.

Secondly, we observe that M(Bl) ⊂ Bl, which is evident.
Moving on, we note that M(Bl) demonstrates equicontinuity on every compact inter-

val X ′ = [0, n] , let x1, x2 ∈ X ′ with x2 > x1 we have

|M(ψ)(x1)−M(ψ)(x2)| ≤ ∥C
(xc2
c

)
− C

(xc1
c

)
∥B(D) (1 + Y∗)∥η∥

+ ∥S
(xc2
c

)
−S

(xc1
c

)
∥B(D) ∥ϑ∥+ |Y(x1, ψx1)− Y(x2, ψx2)|

+

∫ x1

0

tc−1∥S
(xc2 − tc

c

)
−S

(xc1 − tc

c

)
∥B(D) |Ψ(t, ψt)|dt

+MS
c

∫ x2

x1

tc−1 |Ψ(t, ψt)|dt

+

∫ x1

0

tc−1∥S
(xc2 − tc

c

)
−S

(xc1 − tc

c

)
∥B(D) ∥B∥∥Uψ(t)∥dt

+MS
c Ñ

∫ x2

x1

tc−1 ∥Uψ(t)∥dt

As x1 → x2, the uniformly continuity property of C(s) and S(s) indicate that the right part
of the previous inequality converges to zero. This confirms the equicontinuity of M.

Additionally, we establish the equiconvergence of M(Bl). For s ∈ X ′ and ψ ∈ Bl, we
find

|M(ψ)(s)| ≤ (MC
c (1 + Y∗)∥η∥+MS

c ∥ϑ∥)(1 +MS
c ÑÑ1

nc

c
) + l

[
MS
c ÑÑ1

nc

c

+ (MS
c

∫ s

0

xc−1O(x)dx+ Y∗)(1 +MS
c ÑÑ1

nc

c
)
]
.
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Consequently, |M(ψ)(s)| → l′, as s → +∞. Where l′ ≤ (MC
c (1 + Y∗)∥η∥ + MS

c ∥ϑ∥)(1 +

MS
c ÑÑ1

nc

c )+l
[
MS
c ÑÑ1

nc

c +(MS
c O

∗dx+Y∗)(1+MS
c ÑÑ1

nc

c )
]
. Here O∗ := sups∈I

∫ s
0
xc−1O(x)dx.

Therefore,
|M(ψ)(s)−M(ψ)(+∞)| → 0, s→ +∞.

Finally, we confirm that the Meir-Keeler type condition is satisfied.
For any given β > 0, there exists µ > 0 such that if β < AI(R) < β+µ, then AI(M(R)) ≤ β
for any R ⊂ Bl where AI(R) = maxs∈I A(R(s)). We have

A(UR(s)) ≤ KV(s)(Y∗ +MS
c O

∗)AI(R),

which imply

A(M(R)(s)) ≤ Y∗AI(R) +MS
c

∫ s

0

tc−1O(t)AI(R)dt

+MS
c Ñ

∫ s

0

tc−1KV(t)(Y∗ +MS
c O

∗)AI(R)dt

≤ (1 +MS
c Ñ K′)(Y∗ +MS

c O
∗)AI(R)

Since M(R) is bounded and equicontinuous of all R ⊂ Bl. Then

AI(M(R)) = max
s∈I

A(M(R)(s)).

Therefore AI(M(R)) ≤ (1+MS
c Ñ K′)(Y∗+MS

c O
∗)AI(R) ≤ β ⇒ AI(R) ≤ β

(1+MS
c Ñ K′)(Y∗+MS

c O∗)
.

Then for any given β > 0 and taking µ =
(

1−(1+MS
c Ñ K′)(Y∗+MS

c O∗)

(1+MS
c Ñ K′)(Y∗+MS

c O∗)

)
β − ϵ such that ϵ > 0,

we obtain
β < AI(R) < β + µ⇒ AI(M(R)) ≤ β, for any R ⊂ Bl

Hence M is a Meir-Keeler condensing operator.
Through these steps, we ensure that the conditions required for Meir-Keeler’ s fixed-point
Theorem [8] are satisfied by M : Bl → Bl. Therefore, we may conclude that M has a fixed
point ψ that provides the controllability of the problem (3)− (4).

4. Examples

Example 4.1. To showcase the practical application of our results, let E denote a nonempty
bounded open set in R2. We explore the following conformable fractional differential equa-
tion:

D
2
3
s [D

2
3
s ψ(s, x)− Y(s, ψ(s− b, x))] = D2

x[ψ(s, x)− Y(s, ψ(s− b, x))] + Ψ(s, ψ(s− b, x)),

x ∈ E, s ∈ [0,+∞); (5)

ψ(s, x) = 0, s ∈ [0,+∞), x ∈ ∂E; (6)

ψ(s, x) = η(s, x); D
2
3
s [ψ(0, x)] = ϑ, s ∈ [−b, 0], x ∈ E. (7)

Here, b > 0 and we have

Ψ(s, ψ(s− b, x)) =
exp−s

7
sinψ(s− b, x),

Y(s, ψ(s− b, x)) =
exp−s

2
tanhψ(s− b, x),

taking D = L2(E) and defining P as follows: Pψ = D2
xψ, ψ ∈ D(P) and

D(P) = {ψ ∈ H(D), ψ(x)|x∈∂E = 0}
It is well know the operator P generates a cosine family ((C(s))s∈R, (S(s))s∈R). Additionally,
it follows that

∥C(s)∥ ≤ 1 and ∥S(s)∥ ≤ 1, for all s ∈ [0,+∞).
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Thus, to apply our Theorems on existence and attractivity, we require Y∗ + O∗ < 1.
The function Ψ(s, ψ(s− b, x)) = exp−s

7 sinψ(s− b, x) is carathéodory and

|Ψ(s, ψ1(s− b, x))−Ψ(s, ψ2(s− b, x))| ≤ exp−s
7

|ψ1(s− b, x)− ψ2(s− b, x)|

thus O(s) = exp−s
7 . Moreover, we have

O∗ = sup{
∫ s

0

x−
1
3
exp−x

7
dx, s ∈ [0,+∞)} =

Γ( 23 )

7
⋍ 0.19302, Ψ0 = 0.

Also, Y(s, ψ(s− b, x)) = exp−s
2 tanhψ(s− b, x) is carathéodory and

|Y(s, ψ1(s− b, x))− Y(s, ψ2(s− b, x))| ≤ 1

2
|ψ1(s− b, x)− ψ2(s− b, x)|

thus Y∗ = 1
2 . Moreover, we have

Y(s, 0) =
exp−s

2
tanh(0) = 0 = Y′.

Thus Y∗ + O∗MS
c ≤ 1

2 +
Γ( 2

3 )

7 ⋍ 0.693 < 1.
Then, by [15, 24], the problem (1)-(3) is an abstract formulation of the problem (5)-(7), and
conditions (i)−(iii) are satisfied. Theorem 3.3 implies that the problem (5)-(7) has a unique
mild solution on BC, which is attractive by Theorem 3.4.
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