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STRUCTURE FROM MOTION USING UNORDERED SETS
OF IMAGES

Ruxandra TAPU', Bogdan MOCANU?, Ermina TAPU®, Teodor PETRESCU*

In this paper we propose a novel method for interest point extraction and
matching with high confidence scores in the context of 3D object reconstruction
from multiple images taken from the same video camera. We start by using
pyramidal FAST algorithm to detect image features that are further described using
SIFT method. Then, we determine high confident matching by employing the
RANSAC technique. Finally we propose a recursive algorithm that extends the set of
inliers using local homographies. Our framework is able to handle important
camera movement, object occlusions and image noise. The experimental evaluation
performed on various challenging image sets shows significant improvements of the
SfM when applying the proposed strategy.

Keywords: Structure from motion, interest point matching, RANSAC algorithm,
local homography estimation

1. Introduction

Three-dimensional representation and reconstruction of real life objects
starting from multiple views has been an active topic of research in the area of
artificial intelligence. The process, also known as Structure from Motion (SfM) is
based on photogrammetric principles. So, by using a set of images, taken by an
uncalibrated camera that represents different perspective of the same rigid object
or scene, the objective is to automatically recover the 3D structure of the
environment [1]. Increasing demands from the virtual reality, navigation, robotics,
medical and film production industries have resulted in major developments over
the last twenty years.

In this paper we tackle the issue of SfM focusing our attention on feature
point matching, represented by interest points selected from each individual
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image, which can severely alter the reconstructed objects especially for large
reconstruction of 3D scenes. Thus, we propose a novel method to address it. In the
presence of occlusion, image noise, fast camera movements, motion blur or object
leaving the camera’s field of view, occasional feature mismatching or dropouts
may appear. These problems make developing a robust feature matcher system
very challenging. To our very best knowledge the impact of inconsistent feature
matching in the framework of SfM has not been thoroughly studied in the
technical literature.

The rest of the paper is organized as follows: Section II presents a short
review of the technical literature dedicated to 3D reconstruction. In Section III we
introduce a novel framework for structure from motion, dedicated to rigid objects,
using unordered image sets. Section IV presents the experimental results obtained
on various datasets publically available in the state of the art literature. Finally,
Section V concludes the paper and provides perspectives for further development.

2. State of the art review

Various structure from motion algorithms were proposed in the technical
literature trying to estimate the photographic camera parameters and to develop a
sparse 3D representation of the scene geometry by using ordered/unordered image
sets. The first step of the framework is images overlapping and correspondences
matching across different perspective of the scene. In the second step, by using
the correspondences between interest points the view are geometrically related.
Finally, base on the epipolar geometry the camera parameters and the 3D scene
structure can be estimated with some degree of error.

The problem of image correspondence was intensely studied on the last
couple of years leading to the development of sequential matching algorithms.
Some approaches as [2] and [3] detect local features and match them using local
descriptors: SIFT (Scale Invariant Feature Transform) [4] or SURF (Speeded Up
Robust Features) [5]. Different authors in [6] and [7] propose using tracking
algorithms as LK (Lucas-Kanade) [8] in order to create small baseline
triangulation.

The algorithms based on invariant features and Lucas Kanade tracker are
sensitive to occlusions, reflection, zoom level, etc. Generally, sequential matchers
are not robust to important camera movement, which translates into large image
transformation. The problem becomes particularly difficult in the presence of
repetitive elements that give rise to multiple and ambiguous correspondence.
Unfortunately, such correspondence between image matches makes the scene
structure estimation an unstable process and potentially will lead to poor
reconstruction results. In [9] by using the graph-connectivity across huge image
collection, Hartley identifies links between image pairs viewing the same or
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similar objects. In [10] the authors propose to use typically observed redundancy
and implement a graph structure to encode visual relation in images. By chaining
the (reversible) transformations over cycles in this graph, they build a suitable
statistics to identifying inconsistent loops and infer false matches. However, the
authors are not consistent in treating the problem of repetitive structures, which
can severely influence the quality of the reconstructed scene.

In order to overcome the above limitation different authors [11] use
ASIFT [12] descriptors to improve the feature matching performance under
substantial viewpoint change. In [13] Engels proposed integrating wide-based
local features to improve the Structure from Motion (SfM). The method is able to
correctly create small and independent submaps but only for a reduced number or
images. In a large dataset the method cannot produce long and accurate point
tracks. In comparison, the method proposed in this paper can effective develop
high-quality point track estimation.

3. Proposed approach

We start our framework by using the pyramidal FAST algorithm [14] in
order to detect interest features in a given set of NV images (/) which represent
different views of the same object. The interest points are further described using
the SIFT algorithm firstly introduced in [4]. The features from one image /, are
matched against all features extracted from the set of images. One of the
advantages of working with representative points consists on the system
obliviousness to the scene content (i.e. the scene can have any structure with any
texture as long as the motion is a single rigid body).

Given f, an interest point in image /, and its associated descriptor d(f,), we
used a two-nearest-neighbor search strategy in order to determine if in another
image /,+; exists a corresponding similar point f,+; characterized by its associated
descriptor d(f,+;). So, we establish the 2NN features for f, in image /,+; by using
the L2 norm distance between descriptor vectors. We denote them with N,""(f;)
and N,""'(f;,). Then, we compute a matching confidence score (¢) in order to
establish the global distinctiveness between correspondent features:

c= ||d(N1n+1(fn) - d(fn))”
”d(N%H-l(fn) - d(fn))”

(1
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If ¢ < Th; we consider the match of f, with f;+; = N,/""/(f,) as correct
(Fig. 1a). We set in our experiments 7/; = 0.7. The computational complexity of
this step is O(Nr,Nr,.;), where Nr, is the number of features in image /.
However, when repetitive structures are presented in the scene or images are
distorted by noise it becomes difficult to find correct matches even in very similar
images.

Now, we propose to determine high confidence matches between images
(1, and I,+;) and remove outlier points. We used the RANSAC algorithm [15] to
determine the fundamental matrix F),,+; that estimates the geometrical
transformation parameters from one image to another. We randomly select a
minimal set of features from the entire set of correspondences, estimate a
transformation and then determine how well the computed matrix works for the
entire set of matches (Fig. 1b). Interest points satisfying the transformation are
labeled as inliers (€2). The minimal set of points considered is eight, which proves
to be more stable in the presence of noise.

However, if significant image distortion exists, the above strategy
significantly reduces the number of inliers that translates into a low quality of the
reconstructed 3D object. To address this problem, we introduce next a reinsertion
method that robustly identifies missed matches.

Fig.1. Matching strategy comparison. (a). Interest points resulted when applying the global
distinctiveness constraint. 11183 features are extracted using FAST detector, but after this step
only 454 matches are retained; (b). Matches between interest points that satisfy the geometrical
transformation (340); (c). Final results obtained after applying our algorithm (1690 matches are

conserved); (d). Results obtained using the ASIFT descriptor (880 matches are retained).

Because many interest points can present similar motions we extend the
set of inliers using local homographies {H,?’n+1|k =1,.., M} estimated on image
regions. We introduce a recursive algorithm that uses as inputs the set of inliers Q.
Then, we apply the RANSAC algorithm to estimate the homography H ,?'"” that

determines the maximum number of inliers (€2). A new set { Q,} = {Q} \ {Q;} is
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obtained by removing the points satisfying the transformation from Q. If the size
of Q, < Th, the process stops, otherwise is repeated recursively with Q, as a new
input.

Then, we consider the initial set of features (f,) detected in image 7, using
the pyramidal FAST algorithm and we rectify them with every local homography

. n+1 . . . .- ..
matrix H ,'(1 ™% in order to estimate their position in image /,+;.

Pt = (™ pp k=1, M) -

where pr [X7,, Vr,, 1]7is the point position expressed in homogenous coordinates
and M is the total number of homographic matrices obtained between two image
pairs.

The matching error is defined as the difference between the estimated
location of the interest points and the actual position determined using the brute
force matching strategy:

err(Dft, Pruss) = IPEE, = Prual 3)

est

If err(pfn+1,pfn . 1) < Ths, the corresponding point is reinserted into the

inliers set. Incorrect homographies are unlikely to return high confidence matches.
In our experiments we set Thyvalue to 1.5 pixels. In Fig. 1c we present the
experimental results obtained after applying our strategy. Fig. 1d gives the
matching results of the ASIFT [12] descriptor.

After reinserting all correct matches we estimated next the camera poses.

In the following section, we present our method to estimate the interest
points positions in the 3D space starting from 2D matches obtained between any
image pairs from the dataset. Because, the 3D estimation starting from 2D is not
an invertible process the task of 3D reconstruction from images is very
challenging. In our development we have considered the perspective rays
converging into the camera center which translated into 3D point projection on an
image plane.

The pinhole camera model establishes a relation between the 3D point and
its correspondence on the 2D image. First, the rigid body transformation is
computed. This relates the 3D point (Pt3p) expressed in homogenous coordinates
Pt;p~[XY Z1]Tto the point Ptcc expressed in the camera coordinate
system Ptoo~[X. Yo Zo 1]7:
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Xc X
Ye R T\ |y
Zc [0 1 |z|’ )
1 1

where T is a tridimensional vector representing the camera translation, R is a 3 x
3 rotation matrix that giving the camera orientation, while ~ defines an equality
up to scale.

The correspondence between Ptoo~[X. Y Z- 1] and the 2D point
(Ptyp~[x ¥ 1]7) on the camera image plane is determined based on the 3D to 2D
transformation:

Py = £ )
X = —_—; = —_— ,
7.V 7z,

where f'is the camera focal length. The focal length can be considered in direct
correlation with the scale factor encountered in the camera calibration process.
Then Eq.4 can express as:

X7 [1 000 ))(,C
[y]~[0100-zc, (6)
11 loo1o0 1C

Finally a 2D to 2D transform is performed that relates points in the camera
plane to pixel coordinates Pt,pp~[u v 1]T as follow:

u X a, S Uyl [X
b6 5 g o
1 1 0O 0 1 1

where @, and a,, are the scale factors, Pt,py = [ug v |7 is the principal point and
s is the skew. Equation (4)-(7) can be combined into a single linear equation:

X
U Ay S U
R T
4 o D]
1 0 0 1 1

where P is a 3 x 4 projection matrix.
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Now, by knowing the projection of a 3D point into an image, its projection
into a second image is restricted to the epipolar line.

So, given a Pt in the coordinates system of a camera C' its position Pt
in the coordinate system of the camera C can be computed as:

Ptcc=R-Pt;c+T o 0=Ptl - [Tl -R-Pt,; = Ptl.-E- Pt =0,(9)

where E~[T]y - R is a 3 x 3 essential matrix and [T]y is the cross product
matrix. Equation (9) holds also for image points, giving the epipolar constraint.

From equation (7) image points Pt,p can determine the pixels position
Pt,pp by using inverse camera calibration matrix Pt,pp~K™! - Pt,p. Applying
this observation to the epipolar constrains results that:

(K™ - Ptypp)” - E - (K™ Ptypp)” = 0 & Ptjpp - F - Pthp = 0,(10)

where F~K~1T - E - K'~1 is a 3 x 3 matrix of rank 2 entitled fundamental matrix.
Then, by knowing the camera calibration matrixes K and its inverse K’ we can
recover from F the essential matrix E:

E=KT-F-K (11)

Using the Singular Value Decomposition algorithm, matrix E can be
decomposed into a skew symmetric matrix corresponding to translation and an
orthonormal matrix corresponding to rotation between views.

Finally, the triangularized vertices are used to construct a depth map which
is iteratively refined with bundle adjustment [16].

4. Proposed approach evaluation

We tested the proposed SfM methodology on various real world data
acquired in indoor and outdoor scenarios. Fig. 2 presents the results obtained on
benchmark images from [17] with varying complexity of the underlying
symmetries. The image collections, called Fountain-P11, Leuven castle —LC9,
Herzjesu — H8 and Medusa — M19 include 11, 9, 8 and 19 images, respectively.
For each sequence, the output model includes the computed camera positions as
well as the set of observed 3D points.

In Table 1 we give a complete evaluation of the proposed method, on the
considered dataset, in terms of mean reprojection error (MRE) and N3D (number
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of 3D points), with respect to the ASIFT descriptor.

Table 1

Number of 3D points and mean reprojection error (pixels) of the proposed method
compared with the ASIFT descriptor

Model name No of images ASIFT Proposed method

MRE N3D MRE N3D
Fountain 11 1.576 21480 1.247 27528
Leuven castle 9 0.981 28452 0.924 30824
Herzjesu 8 0.813 15205 0.786 15415
Medusa 19 1.572 37184 1.518 58864
Venus de Milo 71 4315 215013 3.543 245278
Duomo in Pisa 56 2.984 123856 2.776 143586
Notre Dame de Paris 55 2.885 103213 2.432 143870
Temple 78 3432 278217 3.183 310284
Dino 37 2.471 89431 2.511 120843

Let us analyze the reconstructed models illustrated in Fig. 2. The camera is
moving around different objects existent in the real life, in order to capture all
perspectives of models. Note: it is important to mention that our method is
designed for static objects of interest. Other moving objects existent in the scene
will not influence the overall performance of the system.

We present the experimental results obtained in two independent situations
when extracting and matching feature points based on: (a) the ASIFT descriptor
[12] and (b) the strategy introduced in this paper using the pyramidal FAST
detector. In order to offer a qualitative evaluation of the proposed methodology
we analyze the system performance in terms of mean reprojection error (MRE
expressed in pixels) and the total number of 3D points (N3D) of the SfM model.
In both cases we assume the set of image unordered.

As is can be observed, from Fig. 2, our system returns a MRE of 1.247
pixels for Fountain-P11 and 0.786 pixels for Herzjesu — H8, while for ASIFT the
MRE is 1.576 and 0.813 pixels for the considered set of images. Regarding the
number of reconstructed 3D points our system increase the SfM quality with more
than 6000 points for the Fountain-P11 and 21000 for Medusa — M 19, respectively.
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Sample view ASIFT algorithm Proposed method

Leuven castle model

s u

No. Points = 28452 No. Points = 30824
MSE = 0,981 MSE = 0.924

Herzjesu model

No. Points = 15205 No. Points = 15415
MSE =0.813 MSE = 0.786

Medusa model

No. Points = 37184 No. Points = 58864
MSE = 1.572 MSE = 1.518

Fountain model

e~ g

No. Points = 21480 No. Points = 27528
MSE = 1.576 MSE = 1.247

Fig. 2. Structure from motion experimental results comparison when using our algorithm and
ASIFT feature descriptor.
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The system is implemented in C++ and run on an Intel Xeon Machine
3.6 GHz machine, 16 GB RAM with NVIDIA Quadro 4000 video board under
Windows 7. The average processing time for 11 images with the resolution 768 x
576 pixels is around 28 seconds.

5. Conclusions and perspectives

In this paper we propose a complete framework for 3D reconstruction of
rigid scenes and objects. The system introduces a novel algorithm for robust
estimation and matching of interest points, extracted using FAST and further
described using SIFT methods, between image pairs. The proposed technique
conserved the local homographs between images and develops a strategy for
interest point reinsertion based on high confidences. Different from the classical
matcher (LK) we introduce a method of establishing invariant features that allows
reducing the matching sensitivity to noise and image distortion.

The experimental evaluation performed on various outdoor scenarios
demonstrates the improvement brought by our system in the context of SfM
applications for middle and large scale reconstruction of 3D scenes and objects.

For future work we consider extending the proposed system to handle non-
rigid (deformable) or dynamic objects and to transfer it on a smartphone device.
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