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STRUCTURE FROM MOTION USING UNORDERED SETS 
OF IMAGES  

Ruxandra ŢAPU1, Bogdan MOCANU2, Ermina ŢAPU3, Teodor PETRESCU4 

In this paper we propose a novel method for interest point extraction and 
matching with high confidence scores in the context of 3D object reconstruction 
from multiple images taken from the same video camera. We start by using 
pyramidal FAST algorithm to detect image features that are further described using 
SIFT method. Then, we determine high confident matching by employing the 
RANSAC technique. Finally we propose a recursive algorithm that extends the set of 
inliers using local homographies. Our framework is able to handle important 
camera movement, object occlusions and image noise. The experimental evaluation 
performed on various challenging image sets shows significant improvements of the 
SfM when applying the proposed strategy. 
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1. Introduction 

Three-dimensional representation and reconstruction of real life objects 
starting from multiple views has been an active topic of research in the area of 
artificial intelligence. The process, also known as Structure from Motion (SfM) is 
based on photogrammetric principles. So, by using a set of images, taken by an 
uncalibrated camera that represents different perspective of the same rigid object 
or scene, the objective is to automatically recover the 3D structure of the 
environment [1]. Increasing demands from the virtual reality, navigation, robotics, 
medical and film production industries have resulted in major developments over 
the last twenty years. 

In this paper we tackle the issue of SfM focusing our attention on feature 
point matching, represented by interest points selected from each individual 
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image, which can severely alter the reconstructed objects especially for large 
reconstruction of 3D scenes. Thus, we propose a novel method to address it. In the 
presence of occlusion, image noise, fast camera movements, motion blur or object 
leaving the camera’s field of view, occasional feature mismatching or dropouts 
may appear. These problems make developing a robust feature matcher system 
very challenging. To our very best knowledge the impact of inconsistent feature 
matching in the framework of SfM has not been thoroughly studied in the 
technical literature.  

The rest of the paper is organized as follows: Section II presents a short 
review of the technical literature dedicated to 3D reconstruction. In Section III we 
introduce a novel framework for structure from motion, dedicated to rigid objects, 
using unordered image sets. Section IV presents the experimental results obtained 
on various datasets publically available in the state of the art literature. Finally, 
Section V concludes the paper and provides perspectives for further development. 

2. State of the art review 

Various structure from motion algorithms were proposed in the technical 
literature trying to estimate the photographic camera parameters and to develop a 
sparse 3D representation of the scene geometry by using ordered/unordered image 
sets. The first step of the framework is images overlapping and correspondences 
matching across different perspective of the scene. In the second step, by using 
the correspondences between interest points the view are geometrically related. 
Finally, base on the epipolar geometry the camera parameters and the 3D scene 
structure can be estimated with some degree of error.  

The problem of image correspondence was intensely studied on the last 
couple of years leading to the development of sequential matching algorithms. 
Some approaches as [2] and [3] detect local features and match them using local 
descriptors: SIFT (Scale Invariant Feature Transform) [4] or SURF (Speeded Up 
Robust Features) [5]. Different authors in [6] and [7] propose using tracking 
algorithms as LK (Lucas-Kanade) [8] in order to create small baseline 
triangulation. 

The algorithms based on invariant features and Lucas Kanade tracker are 
sensitive to occlusions, reflection, zoom level, etc. Generally, sequential matchers 
are not robust to important camera movement, which translates into large image 
transformation. The problem becomes particularly difficult in the presence of 
repetitive elements that give rise to multiple and ambiguous correspondence. 
Unfortunately, such correspondence between image matches makes the scene 
structure estimation an unstable process and potentially will lead to poor 
reconstruction results. In [9] by using the graph-connectivity across huge image 
collection, Hartley identifies links between image pairs viewing the same or 
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similar objects. In [10] the authors propose to use typically observed redundancy 
and implement a graph structure to encode visual relation in images. By chaining 
the (reversible) transformations over cycles in this graph, they build a suitable 
statistics to identifying inconsistent loops and infer false matches. However, the 
authors are not consistent in treating the problem of repetitive structures, which 
can severely influence the quality of the reconstructed scene. 

In order to overcome the above limitation different authors [11] use 
ASIFT [12] descriptors to improve the feature matching performance under 
substantial viewpoint change. In [13] Engels proposed integrating wide-based 
local features to improve the Structure from Motion (SfM). The method is able to 
correctly create small and independent submaps but only for a reduced number or 
images. In a large dataset the method cannot produce long and accurate point 
tracks. In comparison, the method proposed in this paper can effective develop 
high-quality point track estimation. 

3. Proposed approach  

We start our framework by using the pyramidal FAST algorithm [14] in 
order to detect interest features in a given set of N images (I) which represent 
different views of the same object. The interest points are further described using 
the SIFT algorithm firstly introduced in [4]. The features from one image In are 
matched against all features extracted from the set of images. One of the 
advantages of working with representative points consists on the system 
obliviousness to the scene content (i.e. the scene can have any structure with any 
texture as long as the motion is a single rigid body).  

Given fn an interest point in image In and its associated descriptor d(fn), we 
used a two-nearest-neighbor search strategy in order to determine if in another 
image In+1 exists a corresponding similar point fn+1  characterized by its associated 
descriptor d(fn+1). So, we establish the 2NN features for fn in image In+1 by using 
the L2 norm distance between descriptor vectors. We denote them with N1

n+1(fn) 
and N2

n+1(fn). Then, we compute a matching confidence score (c) in order to 
establish the global distinctiveness between correspondent features: 
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If c < Th1 we consider the match of fn with fn+1 = N1
n+1(fn) as correct 

(Fig. 1a). We set in our experiments Th1 = 0.7. The computational complexity of 
this step is O(Nrn·Nrn+1), where Nrn is the number of features in image In. 
However, when repetitive structures are presented in the scene or images are 
distorted by noise it becomes difficult to find correct matches even in very similar 
images.  

Now, we propose to determine high confidence matches between images 
(In and In+1) and remove outlier points. We used the RANSAC algorithm [15] to 
determine the fundamental matrix Fn,n+1 that estimates the geometrical 
transformation parameters from one image to another. We randomly select a 
minimal set of features from the entire set of correspondences, estimate a 
transformation and then determine how well the computed matrix works for the 
entire set of matches (Fig. 1b). Interest points satisfying the transformation are 
labeled as inliers (Ω). The minimal set of points considered is eight, which proves 
to be more stable in the presence of noise.  

However, if significant image distortion exists, the above strategy 
significantly reduces the number of inliers that translates into a low quality of the 
reconstructed 3D object. To address this problem, we introduce next a reinsertion 
method that robustly identifies missed matches.  

 

 
 

Fig.1. Matching strategy comparison. (a). Interest points resulted when applying the global 
distinctiveness constraint. 11183 features are extracted using FAST detector, but after this step 
only 454 matches are retained; (b). Matches between interest points that satisfy the geometrical 
transformation (340); (c). Final results obtained after applying our algorithm (1690 matches are 

conserved); (d). Results obtained using the ASIFT descriptor (880 matches are retained). 
 

Because many interest points can present similar motions we extend the 
set of inliers using local homographies ൛ܪ௞

௡,௡ାଵ|݇ ൌ 1, … ,  ൟ estimated on imageܯ
regions. We introduce a recursive algorithm that uses as inputs the set of inliers Ω. 
Then, we apply the RANSAC algorithm to estimate the homography ܪ௞

௡,௡ାଵ that 
determines the maximum number of inliers (Ω1). A new set { Ω2} = {Ω} \ {Ω1} is 
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obtained by removing the points satisfying the transformation from  Ω. If the size 
of Ω2 < Th2 the process stops, otherwise is repeated recursively with Ω2 as a new 
input.  

Then, we consider the initial set of features (fn) detected in image In using 
the pyramidal FAST algorithm and we rectify them with every local homography 
matrix ܪ௞

௡,௡ାଵ in order to estimate their position in image In+1.  
 

௙೙శభ݌
௘௦௧ ൌ ൛ܪ௞

௡,௡ାଵ · ௙೙ห݇݌ ൌ 1, … ,  ൟ                               ሺ2ሻܯ

 

where ݌௙೙ሾݔ௙೙, ,௙೙ݕ 1ሿ்is the point position expressed in homogenous coordinates 
and M is the total number of homographic matrices obtained between two image 
pairs.  

The matching error is defined as the difference between the estimated 
location of the interest points and the actual position determined using the brute 
force matching strategy: 

௙೙శభ݌൫ݎݎ݁
௘௦௧ , ௙೙శభ൯݌ ൌ ฮ݌௙೙శభ

௘௦௧ െ  ௙೙శభฮ                                   ሺ3ሻ݌

 

If ݁ݎݎ൫݌௙೙శభ
௘௦௧ , ௙೙శభ൯݌ ൏ ݄ܶଷ, the corresponding point is reinserted into the 

inliers set. Incorrect homographies are unlikely to return high confidence matches. 
In our experiments we set ݄ܶଷvalue to 1.5 pixels. In Fig. 1c we present the 
experimental results obtained after applying our strategy. Fig. 1d gives the 
matching results of the ASIFT [12] descriptor.  

After reinserting all correct matches we estimated next the camera poses.  
In the following section, we present our method to estimate the interest 

points positions in the 3D space starting from 2D matches obtained between any 
image pairs from the dataset. Because, the 3D estimation starting from 2D is not 
an invertible process the task of 3D reconstruction from images is very 
challenging. In our development we have considered the perspective rays 
converging into the camera center which translated into 3D point projection on an 
image plane. 

The pinhole camera model establishes a relation between the 3D point and 
its correspondence on the 2D image. First, the rigid body transformation is 
computed. This relates the 3D point (Pt3D) expressed in homogenous coordinates 
 ଷ஽~ሾܺ ܻ ܼ 1ሿ் to the point PtCC expressed in the camera coordinateݐܲ
system ܲݐ஼஼~ሾܺ஼ ஼ܻ ܼ஼ 1ሿ்: 
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where T is a tridimensional vector representing the camera translation, R is a 3 x 
3 rotation matrix that giving the camera orientation, while ~ defines an equality 
up to scale.  

The correspondence between ܲݐ஼஼~ሾܺ஼ ஼ܻ ܼ஼ 1ሿ் and the 2D point 
(PtଶD~ሾ1  ݕ ݔሿ்) on the camera image plane is determined based on the 3D to 2D 
transformation: 

ݔ ൌ ݂
ܺ௖

ܼ௖
 ; ݕ ൌ ݂ ௖ܻ

ܼ௖
   ,                                        ሺ5ሻ 

 
where f is the camera focal length. The focal length can be considered in direct 
correlation with the scale factor encountered in the camera calibration process. 
Then Eq.4 can express as: 
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Finally a 2D to 2D transform is performed that relates points in the camera 

plane to pixel coordinates PtଶDP~ሾ1  ݒ  ݑሿ் as follow: 
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where ߙ௨ and ߙ௩ are the scale factors, PtଶD଴ ൌ ሾݑ଴  ݒ଴ ሿ்

 is the principal point and 
s is the skew. Equation (4)-(7) can be combined into a single linear equation: 
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where P is a 3 x 4 projection matrix. 
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Now, by knowing the projection of a 3D point into an image, its projection 
into a second image is restricted to the epipolar line.  

So, given a ܲݐ஼஼
ᇱ  in the coordinates system of a camera ܥᇱ its position ܲݐ஼஼ 

in the coordinate system of the camera ܥ can be computed as: 
 

஼஼ݐܲ ൌ ࡾ · ஼஼ݐܲ
ᇱ ൅ ࢀ ՞ 0 ൌ ࡯࡯ݐܲ

ࢀ · ሾࢀሿ௑ · ࡾ · ஼஼ݐܲ
ᇱ ൌ ࡯࡯ݐܲ

ࢀ · ࡱ · ஼஼ݐܲ
ᇱ ൌ 0, ሺ9ሻ 

 
where ࡱ~ሾࢀሿ௑ ·  ሿ௑ is the cross productࢀis a 3 x 3 essential matrix and ሾ ࡾ

matrix. Equation (9) holds also for image points, giving the epipolar constraint. 
From equation (7) image points PtଶD can determine the pixels position 

PtଶDP by using inverse camera calibration matrix PtଶDP~Kିଵ · PtଶD. Applying 
this observation to the epipolar constrains results that: 

 

ሺିܭଵ · PtଶDPሻ் · ࡱ · ሺܭᇱିଵ · PtଶDP
ᇱ ሻ் ൌ 0 ՞ PtଶDP

் · ࡲ · PtଶDP
ᇱ் ൌ 0, ሺ10ሻ 

 
where ିܭ~ࡲଵ் · ࡱ ·   .ᇱିଵ is a 3 x 3 matrix of rank 2 entitled fundamental matrixܭ
Then, by knowing the camera calibration matrixes ࡷ and its inverse ࡷ’ we can 
recover from F the essential matrix E:    
 

ࡱ ൌ ࢀᇱࡷ · ࡲ ·   ሺ11ሻ                                                ࡷ
 
Using the Singular Value Decomposition algorithm, matrix E can be 

decomposed into a skew symmetric matrix corresponding to translation and an 
orthonormal matrix corresponding to rotation between views.  

Finally, the triangularized vertices are used to construct a depth map which 
is iteratively refined with bundle adjustment [16].  

4. Proposed approach evaluation 

We tested the proposed SfM methodology on various real world data 
acquired in indoor and outdoor scenarios. Fig. 2 presents the results obtained on 
benchmark images from [17] with varying complexity of the underlying 
symmetries. The image collections, called Fountain-P11, Leuven castle –LC9, 
Herzjesu – H8 and Medusa – M19 include 11, 9, 8 and 19 images, respectively. 
For each sequence, the output model includes the computed camera positions as 
well as the set of observed 3D points.  

In Table 1 we give a complete evaluation of the proposed method, on the 
considered dataset, in terms of mean reprojection error (MRE) and N3D (number 
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of 3D points), with respect to the ASIFT descriptor. 
 
 

Table 1 

Number of 3D points and mean reprojection error (pixels) of the proposed method 
compared with the ASIFT descriptor 

Model name No of images ASIFT Proposed method 
MRE N3D MRE N3D 

Fountain  11 1.576 21480 1.247 27528 
Leuven castle 9 0.981 28452 0.924 30824 
Herzjesu 8 0.813 15205 0.786 15415 
Medusa 19 1.572 37184 1.518 58864 
Venus de Milo 71 4.315 215013 3.543 245278 
Duomo in Pisa 56 2.984 123856 2.776 143586 
Notre Dame de Paris 55 2.885 103213 2.432 143870 
Temple 78 3.432 278217 3.183 310284 
Dino 37 2.471 89431 2.511 120843 
 

Let us analyze the reconstructed models illustrated in Fig. 2. The camera is 
moving around different objects existent in the real life, in order to capture all 
perspectives of models. Note: it is important to mention that our method is 
designed for static objects of interest. Other moving objects existent in the scene 
will not influence the overall performance of the system.  

We present the experimental results obtained in two independent situations 
when extracting and matching feature points based on: (a) the ASIFT descriptor 
[12] and (b) the strategy introduced in this paper using the pyramidal FAST 
detector. In order to offer a qualitative evaluation of the proposed methodology 
we analyze the system performance in terms of mean reprojection error (MRE 
expressed in pixels) and the total number of 3D points (N3D) of the SfM model. 
In both cases we assume the set of image unordered. 

As is can be observed, from Fig. 2, our system returns a MRE of 1.247 
pixels for Fountain-P11 and 0.786 pixels for Herzjesu – H8, while for ASIFT the 
MRE is 1.576 and 0.813 pixels for the considered set of images. Regarding the 
number of reconstructed 3D points our system increase the SfM quality with more 
than 6000 points for the Fountain-P11 and 21000 for Medusa – M19, respectively. 
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Fig. 2. Structure from motion experimental results comparison when using our algorithm and 
ASIFT feature descriptor. 
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The system is implemented in C++ and run on an Intel Xeon Machine 

3.6 GHz machine, 16 GB RAM with NVIDIA Quadro 4000 video board under 
Windows 7. The average processing time for 11 images with the resolution 768 x 
576 pixels is around 28 seconds. 

5. Conclusions and perspectives 

In this paper we propose a complete framework for 3D reconstruction of 
rigid scenes and objects. The system introduces a novel algorithm for robust 
estimation and matching of interest points, extracted using FAST and further 
described using SIFT methods, between image pairs. The proposed technique 
conserved the local homographs between images and develops a strategy for 
interest point reinsertion based on high confidences. Different from the classical 
matcher (LK) we introduce a method of establishing invariant features that allows 
reducing the matching sensitivity to noise and image distortion. 

The experimental evaluation performed on various outdoor scenarios 
demonstrates the improvement brought by our system in the context of SfM 
applications for middle and large scale reconstruction of 3D scenes and objects.  

For future work we consider extending the proposed system to handle non-
rigid (deformable) or dynamic objects and to transfer it on a smartphone device.  
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