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A DISCRETE ( )Dθ  ALGORITHM DESIGNED TO INCREASE 
THE CONVERGENCE SPEED IN SOLVING TRANSPORT-

TYPE PROBLEMS 

Marius Marinel STĂNESCU1, Petre STAVRE2, Dumitru BOLCU3,  
Sabin RIZESCU4, Marcela URSACHE5 

In this article, we propose a discrete algorithm that can be used to solve 
transport-type problems. The real improvement brought by applying this original 
algorithm consists in obtaining a completely filtered and kind of optimal program, 
following a small number of steps, comparing with other existing algorithms. The 
outcome will be that the computer memory and the implementation costs will be 
reduced. The solution is based upon combinatorial methods, and it addresses a 
certain transport capacity X  that is bounded both above and 

below ( )DXd ≤≤ . As a concrete example, we also present a ( ) ( )3,3, =mn  
numerical application corresponding to a situation of  3  suppliers and 3  of their 
beneficiaries. 
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1. Introduction 

A transport-type problem of classical kind (see [1-2]) usually supposes 
that the necessary transport capacities are satisfied, whatever the initial 
transportation planning-program is (unlimited capacities). In fact, the most 
comprehensive transport-related issues are those with pre-determined transport 
capacities. The mathematical model is classical. Further, we add the inequalities: 

iaiaia Sxd ≤≤ ,                                                (1) 
where iax  represents the transport capacity from the supplier iF  to the 

beneficiary aB , nima ,1;,1 == ; this capacity cannot be less than iad  (because 
the transport must be economically justified), and it cannot be greater than 

iaS (the maximum transport capacity). 
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This is a bilateral kind of linear programming problem having both its 
boundaries (the lower and the upper limits) precisely specified.  

The inequalities (1) can be brought to the form: 
 .,,0 iaiaiaiaiaiaiaia dSDdxuDu −=−=≤≤                        (2) 

Such a transport-type problem is usually solved out, either by using the 
(D) algorithm (see [3]) or by adapting the Dantzig-Wolfe decomposition 
algorithm for this case (see for instance [4]). Moreover, in some other kind of 
programming models, d  and S  can be negative (but Sd <  and thus 0>− dS ). 

As a remark, if n  is “big” then mn ⋅  is also “big” (and it becomes even 
bigger when m  is “big”, too). Even for values of mn, , conveniently chosen, the 
value of mn ⋅  might be too big to be registered in the computing memory. This 
last case can be solved by keeping an ( )nm,  appropriate matrix in the memory of 
the computing device. 

Some examples where the Dantzig-Wolfe decomposition algorithm was 
adapted for classical transport-type problems can be seen in [5] and [6]. Both of 
them approach the case of two close indeed positioned cranes. These two cranes 
have to work together by adapting sequences in order to stack freight containers in 
a certain harbor. Those sequences require that each crane must not stop because of 
any action of the other one and both of them have to work at their maximum 
working capacity. 

In [7], a decomposition procedure for solving a class of transport-type 
problems with a linear fractional objective function is discussed. The technique 
provides not only a solution for the primal problem, but also for the dual problem. 

The work paper [8] presents an algorithm designed to minimize the necessary 
amount of investing expenses designed to increase the working capacity of a 
transportation network with many inputs and outputs (complex network). In [8], it is 
also given an example of a transportation network for water or gas distribution. 

All these papers contain algorithms that require performing a large number of 
steps in order to obtain the completely filtered and optimal program. This fact requires 
the achievement of some laborious calculus and also, a large computer memory. 

In order to eliminate the inconveniences related to linear programming with 
bounded variables, we have developed the following discrete algorithm. This new 
algorithm can be applied to all classical transport-type problems (technical and/or 
economical problems, like those arising from large domains such as constructions, 
design and so on) that fit mathematically (in terms of modelling) to such class of 
problems. 

Classical algorithms used to solve the transport-type problems are based on  
concepts like base programs filtering, inserting some compensation variables, and so on 
(see for example [12]). All these elements are added to problem restrictions and lead to 
a large number of unknown parameteres that require an increase in the computing 
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memory and a higher time to solve the problem. The proposed algorithm has the 
advantage of avoiding these difficulties.  

2. The discrete algorithm 

We start by pointing out that the proposed algorithm is a general type one. 
It could be applied in any practical model related to whatever transport-type 
problem is, with no limitations. 

In what follows, we consider a transport-type problem having the 
restrictions iaia Dx ≤≤0 . It is necessary to determine an initially 

0
X  completely 

filtered program. This program can be directly obtained or we can obtain a basis 
program of the system just with the restrictions 0≥X  and after that, if this 
program is not filtered, we can filter it (see for instance [3]). 

In the case we are considering, we adjust the method of minimal cost. 
Thus, we will have: 

    a) We consider ( )mixD
n

a
iai ,1

1
== ∑

=

 and ( )naxN
m

i
iaa ,1

1
== ∑

=

. When the 

transport cost, denoted by iac , has to be minimal (compared to the other transport 
costs), we shall allocate a merchandise quantity like this 

{ }.,,min iaaiia DNDx =                                           (3) 
    b) We modify iD  and respectively aN  and we return to a), with another c  and 
the new ND,  ( c  is the smallest among those remaining, without iac  of a). 

Thus, we obtain a completely filtered program that can have at most 
( )1−+ nm  positive components, but ( )1−+−⋅ nmmn  components have the 
form: 

( ) ( )0
1

0
,;0 Kbjx jb ∈=  or ( ) ( )0

2
0

,; KdkDx kdkd ∈= .                       (4) 

    c) We arrange ( )1−+ nm  as basic values, denoted by ( ) ( )0

0
,, Iaixia ∈

⎭
⎬
⎫

⎩
⎨
⎧

; first, 

among them, there will be extracted iaia Dx <
0

 and, next, we will choose the rest 

of them up to ( )1−+ nm  values, from scsc Dx =
0

, in ascending values of costs 

scc . The other values rlrl Dx =
0

 are considered secondary, ( ) ( )0
2, Klr ∈ . With this 

completely filtered program 
0
X  and with the established ( ) ( )0

2
0

1 , KK , we may start 

the algorithm. 
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Having at our disposal a non-degenerated base program, we want to obtain 
an algorithm that, using a small number of "steps", leads us to a base program of 
optimal kind (compared with the classical methods of solving the transport-type 
problems). This fact is favorable, because the computer memory used in solving 
such kind of problems is reduced.  

Let f  be the associated function of the transport-type problem. For a good 
understanding, we shall define the algorithm that makes possible the passing from 
the initial step to the next step. 

    0) We have ( ) ( ) ( ) ( )0
2

0
100

0
0

0
,,,,, KKXxaiIfX ia

⎭
⎬
⎫

⎩
⎨
⎧

∈= . 

    1) a) We write ( ) ( ) ( ){ }.00
1 IiacC ia ∈=  

b) We calculate ( )
( ) ( )

{ } jbia
Iia

ccc ==
∈ 0

max0
1  and we write: 

 
( ) ( ) ( ) ( ) ,0,0;,,, 0

1
00

0
1 KxxjibdibjdK ibjd ⊂

⎭
⎬
⎫

⎩
⎨
⎧

==≠≠=  

 ( ) ( ) ( ) ( ).,;,,, 0
2

00

0
2 KDxDxjibdibjdK ibibjdjd ⊂

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==≠≠=  

c) We write ( )1
01

±== σσ
jbjb xx  and we pass to the point 2). 

    2) )1a  We calculate 
( )( ) ( )

{ } ( )0
,min

0
1

ccc ibjd
Kibjd

=
∈

 ( jcc  or rbc ). 

    )2a  We calculate 
( )( ) ( )

{ } ( )0
,max

0
2

ccc ibjd
Kibjd

=
∈

 ( jlc  or kbc ). 

    )3a  We calculate ( ) ( ) ( ) ( ) ( ).,min 00
1

00
1

0 Vcccc =
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−−  

If ( ) ( ) ( )0
1

00 ccV −= , then we pass to the point ( 1b ). 

If ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−= 0

1

0
0 ccV , then we pass to the point ( 2b ). 

    ( 1b ) We write += θ
1
x  instead of 

( )0c  in 
0
X  and we pass to ( 1c ). 

    ( 2b ) We write θ−=
01
xx  instead of 

( )0
c  in 

0
X  and we pass to ( 2c ), where 

0
x  is 

the upper border D . 
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    ( 1c ) We have ( 1b ). We admit that ( )
jccc =

0  and, thus, += θ
1
jcx . We seek for 

a cycle starting with ( )−==→ −+ σθ
01
jbjb xx  so that we have 

    (1) ∑∑ −+ −=Δ ccf0  where +c  are the values ( )c  of the cycle 

corresponding to 
0
+x  and −c  are the values ( )c  of the cycle corresponding to 

0
−x . 

    ( 11c ) If 00 ≤Δf  then we may estimate: 

    (2) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= − cyclethetoinxasincludedxr iaia
0

0 min ; 

    (3) ( ) ;min
00

0
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= +
iaiaiaia xascyclethetoinappearsxifxDR  

    (4) ( ) ( ){ }.,,min 00 RrD jc=θ  
With θ  chosen in this way, we have obtained a new completely filtered 

program 
1
X  and .0001 ffff ≤Δ+=  With 

1
X , we resume the algorithm 

( ).0;1: ≥+= ppp  We have removed jbc . 
Remark 1. At this moment, in order to increase the convergence of the 

algorithm (by reducing the number of steps to get the optimally completed filtered 
program), we shall search all cycles that begin with 

0

−+ → jbxθ also having 

00 ≤Δf  and we will choose the one where 00 ≤Δf  has the smallest values. 
    ( )12c  If there is not a cycle with 00 ≤Δf , then we make 

( ) ( ) ( ) { }jcact cKKK −=
0

1
0

1
0

1 ,  and we resume the algorithm to ( ) ( ) ( ).,,, 0
2

0
1

0
10

KKCX act  

    ( )2c  We have .
01

θ−= xx  Let be 
( )

( ) ( ).,, 0
2

0
Kcjcc jc ∈=  We write 

θ−= jcjc Dx
1

 (because jcjc Dx =
1

) and we note .
1

−= jcjc Dx  

    ( )21c  We build the cycles that start with ( )+=→ +− σ
0
jbjc xD  having 00 ≤Δf ,  

each of them. If these exist, we choose θ , then through (4) we shall obtain a new 



128                M. M. Stănescu, P. Stavre, D. Bolcu, S. Rizescu, Marcela Ursache  

program 
1
X  with .0001 ffff ≤Δ+= θ  We remove jbc  and we resume the 

algorithm. 
    ( )22c  If a cycle with 00 ≤Δf  does not exist, then we bring up to date 

( ) ( ) ( ) { }jcact cKKK −=
0

2
0

2
0

2 , . With the new data ( ) ( ) ( )0
2

0
1

0
11

,,, actKKCX , we resume 

the algorithm. 
    3) If after the updates made at ( ) ( )2211 , cc  we obtain 

( ) ( )
Φ=Φ=

0
...2

0
...1 , actactactact KK , then we bring ( )0

1C  up-to-date, or specifically: 
( ) ( ) { }.0

1
0

1 jbact cCC −=  

With the new brought-to-date ( )0
10

, actCX , the algorithm will be resumed. 

Proposition If all values 
00
Xxia ∈  are fixed, namely ( ) Φ=0

...1 actactC , then 

STOP 
0
X  is a completely filtered and optimal program (or for 0>p , if 

( ) Φ=0
...1 actactC , then 

0
X  is optimal). 

Proof. No matter what the case )1b  or )2b  is, the equality 001 fff Δ+=  
must remain in place and if 00 <Δf , then 01 ff < , meaning that 

0<−∑∑ −+ cc . 
In the case )1b , a cycle starts with ( )0

01
>−=→+ θθθ jbjb xx  and in 

that cycle, we shall have a vertex fulfilling θ−
0
rsx  as well as θ+

0
rsx  (noted by 

0
−x  and 

0
+x  respectively). 

For 
⎭
⎬
⎫

⎩
⎨
⎧

− θ
0
rsx  we insert the condition 0

0
≥−θrsx  or θ≥

0
rsx  , or being 

even more specific: ( )0

0
min rx

def

rs =
⎭
⎬
⎫

⎩
⎨
⎧≤θ . 

For 
⎭
⎬
⎫

⎩
⎨
⎧

+ θ
0
rsx  we insert the condition rsrs Dx ≤+θ

0
, ( )( )sr,∀ , and 

0
rsrs xD −≤θ , namely: ( )0

0
min RxD

def
rsrs =
⎭
⎬
⎫

⎩
⎨
⎧

−≤θ . 
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But 
1
jcx=θ  (or 

1
rbx=θ ) so the conditions (2), (3), (4) are fulfilled. 

If 0=θ , then we make ( ) ( ) ( ) { }jcact cKKK −=
0

1
0

1
0

1 ,  and we resume the 
algorithm. 

We shall proceed in the same way as we did in the cases )2b  and )2c . 
Because θ−= jcjc Dx

1
, it results that θ+=

01
jbjb xx , and in the ongoing 

cycle, we will only have the terms θθ +−
00

, rsrs xx . If we put the conditions: 

,,,0,0
0001

rsrsjbjbrsjc DxDxxx ≤+≤+≥−≥ θθθ  then the relations (2), (3), (4) 

will result again. 

3. Numerical Applications 

Remark 2. In order to understand better how the algorithm steps are 
checked, and not to load the paper with a large volume of calculus, we shall 
consider a simple numerical application. 

In addition, choosing a different number of suppliers and beneficiaries is 
not relevant for transport-type problems. Anyway, our discrete algorithm presents 
a general situation in which n  and m  can take any integer values. 

To justify the choice of a "small" example as a numerical application and 
somehow, to highlight a certain advantage of the proposed algorithm (small 
number of variables and reduced working time) compared with classical 
algorithms, we have to point out that the number of variables in the case we will 
choose (for 3== nm ) is actually equal to nm ⋅ , meaning 9 for our algorithm. 
This is quite an improvement comparing to the classical case where, to this 
number, the compensation variables nm + , meaning 6, are added, resulting in a 
total number of 15 variables. If m and n increase, the number of variables in the 
classical variant, increase almost exponentially (for example, if we consider the 
parameters 3=m  and 5=n , for the proposed algorithm, we have to deal with 15 
variables which is considerably better than for the classical situation where we 
have to deal with 23 variables). 

Problems of such kind might indeed be balanced or not. When the problem 
is not balanced, it can always be solved as a balanced one by imaginary adding a 
supplier or, depending on the case, a beneficiary, in order to take over the 
remaining amount of „supply” that will never actually be „supplied” or „demand” 
that, in fact, will never be „demanded”. 

In the following table ( )T , we give the data of a transport-type problem 
(balanced), with the restrictions iaia Dx ≤≤0 . We have considered the situation of 
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three suppliers iF  and three beneficiaries ( )3,1, =aiBa .  Each and every cell of the 

table contains the ratio ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ia

ia

D
c , the numbers iac  meaning the unitary transport costs. 

 

 
Indeed, we have obtained a completely filtered program 

0
X , because there 

are ( )1−+ nm  components iaia Dx ≤≤0 , and the other secondary values are 0  
or D . We can write: 
    ( ) )0 0  ( ) ( ) ( ) ( ) ( ) ( ){ },33,32,31,12,21,154, 0

00
== IfX ( ) ( ) ( ) ( ){ },23,22,130

1 =K ( ) ( ){ }.110
2 =K  

Obviously, we can organize ( )0
2K  by any couple ( )ia  that satisfies the 

equality: iaia Dx =
0

. For )21()( =ia  and for )33()( =ia  as well, we will show 

how the algorithm works: 
    ( ) ))1 0 a  We write ( )( ) { }1,8,4,5,2 3332311211

0
1 ====== cccccDC . 

    )b  We choose ( )
32

1
0 8 cC == . It results that ( ) ( ){ } ( )

Φ==
0

2
0

1 ,22 KK . 

    )c  We write ( )11
0
32

1
32 ±=== σσσxx . 

    ( ) ))2 1
0 a  We calculate 

( )( ) ( )
{ } 2223

23
7,min

0
1

ccc ia
Kia

==
∈

. 

    )2a  We calculate 
( )( ) ( )

{ }23
23

,max
0

1
ia

Kia
cc

∈
. Because on the line 3 and column 2, a 

secondary value beyond the upper border ( )
⎟
⎠
⎞

⎜
⎝
⎛ Φ=

0
2K  does not exist, we choose: 
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    )1c  −+ == 1,
1
32

1
22 xx θ  that generate a cycle, so we have:  

( ) 0144870 <−=−+−=Δ θf . 

We calculate: ( ) { } ( ) { } 27,2min,110,1min 00 ==== Rr  and { } 12,1,2min ==θ . 
A new completely filtered program 

1
X  results with 

,1531 001 =Δ⋅+= fff  where: 

 
With 

1
X , we resume the algorithm 

    ( ) )0 1  ( ) ( ) ( ) ( ) ( ) ( ){ },33,22,12,31,21,, 1
1

1
=IfX  ( ) ( ) ( ){ },23,131

1 =K  ( ) ( ){ }111
2 =K  

(and here ( )1
2K  can be ( ) ( ){ }.331

2 =K  

    ( ) ))1 1 a  We write ( ) { }.1,7,5,4,4 3322123121
1

1 ====== cccccC  

    )b  ( ) .722
1

1 == cC  It results that ( ) ( ){ } ( ) .,23 1
2

1
1 Φ== KK  

    )c  We write ( ).11
1
22

2
22 ±=== σσσxx  

    ( ) ))2 1
1 a  We calculate 

( )( ) ( )
{ } .9,min 2322

22
1

1

ccc ia
Kia

==
∈

 

    )2a  
( )( ) ( )

{ } .,max 22
22

1
2

Φ=
∈

ia
Kia

cc  

It results that .;1; 23
2
22

+− ==−= θσ xx  

Because −+ →1θ  does not accomplish a complete algorithm and on the 
line of 122 =x , respectively on its column do not exist ( )c  secondary values 

different from 923 =c , we may write: ( ) ( ) { } .22
1

1
1

1 Φ=−= cKK act  Because 
( ) ( )

Φ=Φ=
1
2

1
1 , KK act , we bring up-to-date ( ),1

1C  or being even more specifically: 
( ) ( ) { } { }.1,4,5,4 3331121122

1
1

1
1 =====−= cccccCC act  

    ( ) ))1 1 aact  ( ) ;, 1
11 actCX  
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    )b  ( ) ( ) ( ){ } ( ) ( ){ }.11,135 1
2

1
112

1
1 ==⇒== KKcC act  

    )c  We write ( ).112
2
12 ±== σσx  

    ( ) ))2 1
1 a  

( )( ) ( )
{ } .4,min 1321

21
1

1

ccc ia
Kia

==
∈

 

    )2a  
( )( ) ( )

{ } 2,max 1121
21

1
2

==
∈

ccc ia
Kia

 (because ( ) ( )1
211 K∈ ). 

    )3a  ( ){ } ( ).1352,154min 1
1213 Vcc =−=−==−−−=−  We step to )1b . 

    )1b  We write ( ).12)
2
121

2
13 −==⇒= −+ σθ xcx  

But −+ → 12θ  does not achieve a cycle with .01 ≤Δf  We will fix this. 

We bring up-to-date 
( )1
1actK  or, more specific: ( ) ( ) { } Φ=−= 13

1
1

1
.1 cKK actactact . 

Because ( ) ( ){ }111
2 =K  has an element on the line of 1212 =x , we may 

continue: 

    ( ) ))1 1
. aactact  ( ) ( ) ( ) ( ){ }.11,,, 1

2
1

.1
1

11
=Φ= KKCX actactact  

    )b  ( ) .5 12
1

1 cC act ==  We write .12
2
12

+=x  

    ( ) )2 1
.act  Because ( )

Φ=
1

.1 actactK  we may step right to )2a  and it results that 
211 =c . 

    )2b  We write ;3
1
11

2
11

−− == xx  ++ == 12
1
12

2
12 xx . 

We have formed a cycle: 

 
We calculate: 

{ } ( );11,3min 1r== { } ( );11213,913min 1R==−−  ( ) ( ){ } 1,,3min 11
11 === RrDθ . 

It results a new completely filtered program 
2
X  with 15312 == ff . 
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and we resume the algorithm. (We have considered 22c  as fixed, because 

122 == xθ ). We have eliminated 12cc jb = . 

We have ( ) ( ) ( ) Φ=Φ≠ 2
2

2
1

2
2

,,, KKIX , because only ( ) 51 =−− nm  basic 

values do exist (
2
X  is already a filtered base program). 

We resume the algorithm and we immediately obtain that 
( ) Φ=2

..1 actactactC  STOP, 
2
X  is kind of optimal and identical with 

1
X , because 

153min21 === fff . 

 
Fig. 1.  The optimal allocation graphs 

21
, XX . 

4. Conclusions 

In ( ) ( )3311
1

,, BFBFX  are saturated (at maximum capacity) and in 
2
X , 

( ),21BF  ( ),12BF  ( )33BF  are saturated (at maximum capacity). From an 
economical point of view (see for instance [9-16]) we will choose the path 
allocation that fits the best, considering the spreading of transport capacities. 

More else, resuming a linear convex connection between 
1
X  and 

2
X , we 

can find more other optimal allocations (diversifying the optimal allocations). We 
will retain the only value that does fit with different more other requests 
(spreading of capacities). 

( ) [ ].1,0,
1208
010
0132

1
21

∈
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

−+
=−+= aaa

aa
XaXaX  

If we want only integer-numbers solutions, the only optimal programs will 
be 

1
X  and 

2
X . 
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Remark 3. If after 
2
X  is obtained, we take into account that 

4,9 1323 == cc  will be eliminated, then it will directly result that 
( ) Φ=2

..1 actactactC , so any other step will be simply unnecessary to be done. 
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