

SOME NOTIONS OF AMENABILITY OF WEIGHTED SEGAL ALGEBRAS

Ali Jabbari¹, Ali Ebadian²

This paper considers amenability and weak amenability of Beurling Segal algebras, Beurling group algebras and Lebesgue weighted L^p -algebras on locally compact groups. We show that approximate amenability of Beurling Segal algebra implies that amenability of Beurling group algebra $L_\omega^1(G)$. Furthermore, character amenability of the mentioned Banach algebras is considered.

Keywords: amenable group, approximately amenable, Beurling algebra, Segal algebras, weak amenability.

MSC2010: Primary 46H20; Secondary 43A20.

1. Introduction

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A} -bimodule. A derivation $D : \mathcal{A} \longrightarrow X$ is a linear map which satisfies $D(ab) = a \cdot D(b) + D(a) \cdot b$ for all $a, b \in \mathcal{A}$. A derivation δ is said to be inner if there is a $x \in X$ such that $\delta(a) = \delta_x(a) = a \cdot x - x \cdot a$ for all $a \in \mathcal{A}$, and it is called approximately inner if there is a net $(x_\alpha)_\alpha$ in X such that $\delta(a) = \lim_\alpha a \cdot x_\alpha - x_\alpha \cdot a$. Let $Z^1(\mathcal{A}, X)$ be the space of all continuous derivations from \mathcal{A} into X and let $N^1(\mathcal{A}, X)$ be the space of all inner derivations from \mathcal{A} into X . We consider the quotient space $H^1(\mathcal{A}, X) = Z^1(\mathcal{A}, X)/N^1(\mathcal{A}, X)$, which is called the *first Hochschild cohomology* group of \mathcal{A} with coefficients in X .

The concept of amenability for Banach algebras was introduced by Johnson in 1972 [19]. The Banach algebra \mathcal{A} is said to be amenable if $H^1(\mathcal{A}, X^*) = \{0\}$ for all Banach \mathcal{A} -bimodule X , where X^* is the first dual of X . The concept of weak amenability of Banach algebras was first introduced by Bade, Curtis and Dales in [2] for commutative Banach algebras. The Banach algebra \mathcal{A} is called weakly amenable if $H^1(\mathcal{A}, \mathcal{A}^*) = \{0\}$. The Banach algebra \mathcal{A} is called n -weakly amenable ($n \in \mathbb{N} \cup \{0\}$) or permanently weakly amenable if $H^1(\mathcal{A}, \mathcal{A}^{(n)}) = \{0\}$, where $\mathcal{A}^{(n)}$ is the n -th dual of Banach algebra \mathcal{A} . Dales, Ghahramani and Grønbæk in [9], showed that C^* -algebras are permanently weakly amenable. Permanent weak amenability of $L^1(G)$ for any locally compact group G is proved by Choi, Ghahramani and Zhang in [6]. The Banach algebra \mathcal{A} is called approximately weak amenable if every bounded derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ is approximately inner.

¹Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran, e-mail: jabbari_al@yahoo.com

²Department of Mathematics, Payame Noor University, Po. Box 19395-3667, Tehran, Iran, e-mail: ebadian.ali@gmail.com

Let G be a locally compact group with identity e . A weight on G is a continuous function $\omega : G \rightarrow (0, \infty)$ such that

$$\omega(st) \leq \omega(s)\omega(t), \quad \omega(e) = 1,$$

for all $s, t \in G$. For $1 \leq p < \infty$, a Beurling space on a locally compact group G is defined as follows

$$L_\omega^p(G) := \{f : f \in L^p(G), f \cdot \omega \in L^p(G)\}.$$

For $n = 1$, $L_\omega^1(G)$ is the set of all λ -measurable (λ is the Haar measure on G) functions f such that $\int_G |f(t)|\omega(t)d\lambda(t) < \infty$. For abbreviation we write dt instead of $d\lambda(t)$. $L_\omega^1(G)$ becomes a Banach algebra with convolution multiplication

$$(f * g)(x) = \int_G f(y)g(y^{-1}x)dy,$$

and with the following norm

$$\|f\| = \int_G |f(t)|\omega(t)dt.$$

The augmentation ideal of $L_\omega^1(G)$ is $I_0 = \{f \in L_\omega^1(G) : \int_G f(x)dx = 0\}$ which is of codimension one. The space $L_{1/\omega}^\infty(G)$ is the set of all measurable functions φ on G , such that $\varphi/\omega \in L_\omega^\infty(G)$ and with the norm $\|\cdot\|_\infty$ defined by

$$\|\varphi\|_\infty = \sup_{x \in G} \frac{|\varphi(x)|}{\omega(x)}$$

is a Banach algebra. $L_{1/\omega}^\infty(G)$ is the dual of $L_\omega^1(G)$. For more details see [10]. It is known that $L_\omega^1(G)$ is a closed ideal of

$$M_\omega(G) = \{\mu : \mu \in M(G), \int_G \omega d|\mu| < \infty\}.$$

We denote the set of all continuous functions on G with compact support by $C_C(G)$. Then, for each $f \in C_C(G)$, f is λ -measurable. Moreover, $C_C(G)$ is norm-dense in $L_\omega^1(G)$.

Weak amenability of Beurling algebras has been studied in [2] and [16]. When $G = \mathbb{Z}$, $\ell_\omega^1(\mathbb{Z})$ is weakly amenable if and only if $\inf_n \frac{\omega(n)\omega(-n)}{n} = 0$ [16]. Dales and Lau showed that if $\omega \geq 1$ is almost invariant and satisfies $\inf_n \frac{\omega(nt)}{n} = 0$ for all $t \in G$, then $L_\omega^1(G)$ is 2-weakly amenable (Theorem 13.8, [10]), and conjectured that $L_\omega^1(G)$ is 2-weakly amenable if one only assumes that $\inf_n \frac{\omega(nt)}{n} = 0$ for all $t \in G$. For a weight $\omega \geq 1$, let $\omega_1(s) = \limsup_{t \rightarrow \infty} \frac{\omega(t+s)}{\omega(t)}$. Ghahramani and Zabandan proved that $L_\omega^1(G)$ is 2-weakly amenable if $\inf\{\frac{\omega(nt)}{n} | n \in \mathbb{N}\} = 0$ and ω_1 is bounded [15]. Samei [24], showed that there exists weight σ_ω on G which is closely related to ω_1 such that σ_ω is bounded if and only if ω_1 is bounded and he studied 2-weakly amenability of $L_\omega^1(G)$, when $\omega \geq 1$ and σ_ω is bounded.

Approximate amenability of Banach algebras were introduced by Ghahramani and Loy in [13]. The Banach algebra \mathcal{A} is called approximately amenable if for every Banach \mathcal{A} -bimodule X and every bounded derivation $D : \mathcal{A} \rightarrow X^*$ there is a net (x_α) of in X^* such that $D(a) = \lim_\alpha a \cdot x_\alpha - x_\alpha \cdot a$ for all $a \in \mathcal{A}$, and it is boundedly approximately amenable if (x_α) is bounded net. The Banach algebra \mathcal{A} is boundedly

approximately contractible, if for every Banach \mathcal{A} -bimodule X and derivation $D : \mathcal{A} \rightarrow X$, there is a bounded net $(x_\alpha)_\alpha \subseteq X$ such that $D(a) = \lim_\alpha a \cdot x_\alpha - x_\alpha \cdot a$, for every $a \in \mathcal{A}$.

2. Amenability and Approximate Amenability

Cigler [7] introduced the notion of Weighted Segal algebra. Let $S_\omega^1(G)$ be a subalgebra of $L_\omega^1(G)$. Then $S_\omega^1(G)$ is called a weighted Segal algebra, if it satisfies the following conditions:

- S1) $S_\omega^1(G)$ is dense in $L_\omega^1(G)$.
- S2) $S_\omega^1(G)$ is a Banach algebra under some norm $\|\cdot\|_{S_\omega^1}$, and invariant under translations.
- S3) $\|L_a f\|_{S_\omega^1} \leq \omega(a) \|f\|_{S_\omega^1}$ for all $a \in G$ and every $f \in S_\omega^1(G)$.
- S4) For every $f \in S_\omega^1(G)$ and $\varepsilon > 0$, there is a neighborhood U of the unit element $e \in G$ such that $\|L_y f - f\|_{S_\omega^1} < \varepsilon$ for every $y \in U$.
- S5) $\|f\|_{1,\omega} \leq \|f\|_{S_\omega^1}$ for every $f \in S_\omega^1(G)$.

Proposition 2.1. *Let ω be a weight on G , and $\Omega(t) = \omega(t)\omega(t^{-1})$. Then $S_\omega^1(G)$ has a bounded approximate identity if and only if $S_\omega^1(G) = L_\omega^1(G)$. Furthermore, $S_\Omega^1(G)$ has a bounded approximate identity if and only if $S_\Omega^1(G) = L_\Omega^1(G)$.*

Proof. Suppose that $S_\omega^1(G)$ has a bounded approximate identity. Then Burnham's Theorem ([5, Theorem 1.2]) implies that $S_\omega^1(G) = L_\omega^1(G)$ (algebraically). Let $(e_\alpha)_\alpha$ be a bounded approximate identity for $L_\omega^1(G)$. Without loss of generality assume that $(e_\alpha)_\alpha$ is bounded by 1. For every $f, g \in L_\omega^1(G)$, there exists $C > 0$ such that $\|f * g\|_{S_\omega^1} \leq C \|f\|_{1,\omega} \|g\|_{S_\omega^1}$. Then for every $f \in L_\omega^1(G)$ we have

$$\|f\|_{1,\omega} = \lim_\alpha \|e_\alpha * f\|_{1,\omega} \leq C \lim_\alpha \|e_\alpha\|_{1,\omega} \|f\|_{S_\omega^1} \leq C \|f\|_{S_\omega^1}.$$

Therefore $S_\omega^1(G)$ is isomorphic to $L_\omega^1(G)$. The converse is trivial. \square

Corollary 2.1. *$S_\omega^1(G)$ is amenable if and only if $S_\omega^1(G) = L_\omega^1(G)$.*

Generally, for every Banach algebra \mathcal{A} and abstract Segal algebra \mathcal{B} in \mathcal{A} , if I is a closed left (right) ideal of \mathcal{A} , then $I \cap \mathcal{B}$ is a closed left (right) ideal of \mathcal{B} . Moreover, if J is a closed left (right) ideal of \mathcal{B} , the closure of J in \mathcal{A} is a closed left (right) ideal of \mathcal{A} (for more details see [21, 23]). We rewrite Willis Theorem ([25, Theorem 5.2]) as follows:

Theorem 2.1. *Let ω be a weight on G and $\Omega(t) = \omega(t)\omega(t^{-1})$. If Ω is bounded on non-amenable locally compact group G , then no finite codimensional, closed, left ideal in $L_\Omega^1(G)$ has multiple right approximate identity.*

Theorem 2.2. *Let ω be a weight on G and $\Omega(t) = \omega(t)\omega(t^{-1})$. If $S_\Omega^1(G)$ is approximately amenable (pseudo-amenable) and Ω is bounded on G , then $L_\omega^1(G)$ and $L_\Omega^1(G)$ are amenable.*

Proof. According to Theorem 0 of [17], it is sufficient to show that G is amenable. Assume that G is not amenable. Let I_0 be the augmentation ideal in $L_\Omega^1(G)$. Set $J = I_0 \cap S_\Omega^1(G)$. Therefore J is a maximal ideal in $S_\Omega^1(G)$. Since $S_\Omega^1(G)$ is approximately amenable (pseudo-amenable) then by lemma 2.2 of [13], J has an approximate identity. Then by Proposition 5.4 of [6], I_0 has an approximate identity

which by Theorem 2.1 is a contradiction. Therefore G is amenable, and the proof is complete. \square

Ghahramani et al. proved that for every boundedly approximately contractible Banach algebra, every closed two-sided ideal of codimension one has a bounded approximate identity [14, Theorem 2.1]. It is known that the augmentation ideal $I_0(G)$ has a bounded approximate identity if and only if G is amenable. Consider the non-amenable locally compact group $SL(2, \mathbb{R})$ (group of all 2×2 matrices on \mathbb{R} with determinant 1). Therefore $L^1(SL(2, \mathbb{R}))$ is not boundedly approximately contractible. Moreover, in light of Corollary 2.2 of [14], for any weight ω on $SL(2, \mathbb{R})$, $L_\omega^1(SL(2, \mathbb{R}))$ is not boundedly approximately contractible. Furthermore by Theorem 2.2 we have the following result.

Corollary 2.2. *$S_\omega^1(SL(2, \mathbb{R}))$ and $S^1(SL(2, \mathbb{R}))$ (ordinary Segal algebra) are not approximately amenable.*

Let G be a locally compact group, and ω be a weight on G . Abtahi in [1], introduced a new class of Lebesgue Banach algebras $\mathcal{L}_\omega^{1,p}(G) := L^1(G) \cap L_\omega^p(G)$, $1 \leq p < \infty$, and studied amenability of these algebras. He proved that for $1 < p < \infty$, amenability of $\mathcal{L}_\omega^{1,p}(G)$ implies that G is discrete and amenable ([1, Theorem 3.1]), and the converse is true when ω is bounded on G ([1, Corollary 3.2]).

As we know amenability of $L_\omega^1(G)$ implies amenability of $L_\Omega^1(G)$ and vice versa, for any locally compact group G , but this not true for $\mathcal{L}_\omega^{1,p}(G)$. Then in light of Theorem 3.1 and Corollary 3.2 of [1], we have

Proposition 2.2. *Let ω be a weight on G , $\Omega(t) = \omega(t)\omega(t^{-1})$ and $1 < p < \infty$. Then*

- (i) *Let ω be bounded on G and $\mathcal{L}_\Omega^{1,p}(G)$ be amenable; then $\mathcal{L}_\omega^{1,p}(G)$ is amenable.*
- (ii) *Let Ω be bounded on G and $\mathcal{L}_\omega^{1,p}(G)$ be amenable; then $\mathcal{L}_\Omega^{1,p}(G)$ is amenable.*

Ghahramani and Loy proved that the group algebra $L^1(G)$ is approximately amenable if and only if G is amenable ([13, Theorem 3.2]). We consider approximate amenability of $\mathcal{L}_\omega^{1,p}(G)$ as follows.

Proposition 2.3. *Let ω be a weight on G , $1 < p < \infty$, and let $\mathcal{L}_\omega^{1,p}(G)$ has a bounded approximate identity. If $\mathcal{L}_\omega^{1,p}(G)$ is approximately amenable, then G is amenable. The converse is true when ω is bounded.*

Proof. By Proposition 2.4 of [1], G is discrete and thereby $\mathcal{L}_\omega^{1,p}(G)$ is algebraically isomorphic to $\ell^1(G)$. Thus, $\ell^1(G)$ is approximately amenable, and G is amenable. For the converse, similarly to the proof of Corollary 3.2 of [1], $\mathcal{L}_\omega^{1,p}(G) \simeq \ell^1(G)$. Therefore $\mathcal{L}_\omega^{1,p}(G)$ is approximately amenable. \square

According to Theorem 2.1 of [1], the dual of $\mathcal{L}_\omega^{1,p}(G)$ is $L^\infty(G) + L_{1/\omega}^q(G)$; by this fact and Theorem 2.7.1 of [3], we have the following result:

Theorem 2.3. *Let G be a locally compact group, ω be a weight on G , and $1 \leq p < \infty$. Then $\mathcal{L}_\omega^{1,p}(G)^{**} = L^1(G)^{**} \cap L_\omega^p(G)$.*

In [12, Theorem 1.3], it is shown $L^1(G)^{**}$ is amenable if and only if G is finite, and Ghahramani and Loy generalized it to approximate amenability [13, Theorem 3.3]. We have a similar result as follows.

Theorem 2.4. *Let G be a locally compact group, ω be a weight on G , and $1 < p < \infty$. Then $\mathcal{L}_\omega^{1,p}(G)^{**}$ is amenable if and only if G is finite.*

Proof. Let $\mathcal{L}_\omega^{1,p}(G)^{**}$ be amenable. Therefore, in light of Theorem 1.8 of [12], $\mathcal{L}_\omega^{1,p}(G)$ is amenable. Thus, G is discrete and amenable. Then the identity map from $\mathcal{L}_\omega^{1,p}(G)^{**}$ into $\ell^1(G)^{**}$ is an algebraic isomorphism, thereby $\ell^1(G)^{**}$ is amenable if and only if G is finite. \square

3. Weak and n -Weak Amenability

In this section we consider weak and n -weak amenability of Beurling algebras, and by the derivations we mean the bounded derivations.

Theorem 3.1. *Let G be an abelian group, and let ω be a weight on G such that ω is almost invariant and $\inf_{n \in \mathbb{N}} \omega(nt)/n = 0$ for each $t \in G$. Then $S_\omega^1(G)$ is 2-weakly amenable.*

Proof. Let $D : S_\omega^1(G) \rightarrow S_\omega^1(G)^{**}$ be a derivation bounded by 1. Consider the canonical projection $\jmath : S_\omega^1(G)^{**} \rightarrow S_\omega^1(G)$. Then for every $f, g \in S_\omega^1(G)$ we have

$$\jmath \circ D(f * g) = f \jmath \circ D(g) + \jmath \circ D(f)g,$$

this means that $\jmath \circ D$ is a bounded derivation. Since $L_\omega^1(G)$ is a semisimple Banach algebra, $S_\omega^1(G)$ is too [5, Theorem 2.1]. Then Corollary 2.7.20 of [8], $\jmath \circ D = 0$. Therefore $D(S_\omega^1(G)) \subseteq \ker \jmath$. The rest of the proof is nothing else but the proof of Theorem 13.1 of [10]. \square

Proposition 3.1. *Let ω be a weight on locally compact group G . Then if $L_\omega^1(G)^{**}$ is weakly amenable, then $M_\omega(G)$ is weakly amenable. Moreover, if G is discrete then weak amenability of $\ell_\omega^1(G)^{**}$ implies weak amenability of $\ell_\omega^1(G)$.*

Proof. By Proposition 7.17 of [10], we have $LUC_{\frac{1}{\omega}}(G) = L_\omega^1(G) \cdot L_{\frac{1}{\omega}}^\infty(G)$. Then

$$LUC_{\frac{1}{\omega}}^*(G) = (L_\omega^1(G) \cdot L_{\frac{1}{\omega}}^\infty(G))^*.$$

Since $L_\omega^1(G)^{**}$ is weakly amenable, by Corollary 4.2 of [18], $LUC_{\frac{1}{\omega}}^*(G)$ is weakly amenable. Moreover, by the similar method of [11], we have

$$LUC_{\frac{1}{\omega}}^*(G) = M_\omega(G) \oplus C_{0,\frac{1}{\omega}}(G)^\perp,$$

where $C_{0,\frac{1}{\omega}}(G)^\perp$ is the space of all functionals in $LUC_{\frac{1}{\omega}}^*(G)$ that annihilate $C_{0,\frac{1}{\omega}}(G)$. Lemma 2.3 of [20], implies that $M_\omega(G)$ is weakly amenable. \square

Amenability and weak amenability of Beurling Banach sequence algebras have been studied in [2, 10, 16] and [24]. By these references and above Proposition we have the following results.

Corollary 3.1. *Let ω be a weight on \mathbb{Z} , such that*

$$\sup_{m,n \in \mathbb{Z}} \frac{\omega(m+n)(1+|n|)}{\omega(m)\omega(n)(1+|m+n|)} < \infty,$$

then $\ell_\omega^1(\mathbb{Z})^{(2n)}$ is not weakly amenable.

Proof. Apply Proposition 3.1 and Theorem 2.3 of [2]. \square

Corollary 3.2. *Let $\omega_\alpha(n) = (1 + |n|)^\alpha$ be a weight on \mathbb{Z} , then for $\alpha \geq \frac{1}{2}$, $\ell_{\omega_\alpha}^1(\mathbb{Z})^{(2n)}$ is not weakly amenable.*

Proof. Apply Proposition 3.1 and Theorem 2.4 of [2]. \square

The proof of the following Theorem is similar to the proof of Theorem 5.7 of [6].

Theorem 3.2. *Let G be a locally compact group, ω be a weight on G and $S_\omega^1(G)$ has a central approximate identity that is bounded in $L_\omega^1(G)$. If $L_\omega^1(G)$ is n -weakly amenable for $n \in \mathbb{N}$, then $S_\omega^1(G)$ is approximately n -weakly amenable.*

4. The Character Amenability

Let G be a locally compact group and ω be a weight on G . A character on G is a nonzero map $\varphi : G \rightarrow \mathbb{C}$ such that $\varphi(st) = \varphi(s)\varphi(t)$ for all $s, t \in G$. We denote the space of characters on G by $\Delta_G(G)$. Each character of $L_\omega^p(G)$ ($1 \leq p < \infty$) can be expressed via the corresponding function φ by the formula

$$\widehat{\varphi}(f) = \int_G f \varphi d\lambda \quad (f \in L_\omega^p(G)).$$

The character $\varphi \in \Delta_G(G)$ is called an augmentation character if $\varphi(s) = 1$ for all $s \in G$. We denote identity map from G into G by id_G , and the augmentation character on G by $\mathbf{1}$. Then we define the augmentation character on $L_\omega^p(G)$ by

$$\widehat{\mathbf{1}}(f) = \int_G f \mathbf{1} d\lambda = \int_G f d\lambda \quad (f \in L_\omega^p(G)).$$

Note, that the kernel of the augmentation character is the augmentation ideal I_0 which is defined in the first section and $\mathbf{1} \in L_\omega^1(G)^*$. Clearly, any $\widehat{\varphi} \in \Delta(L_\omega^1(G))$ is a character on $S_\omega^1(G)$. On the other hand, if $\psi \in \Delta(S_\omega^1(G))$, then there is an element $f_0 \in S_\omega^1(G)$ such that $\psi(f_0) = 1$. We extend ψ to $L_\omega^1(G)$ by $\tilde{\psi}(f) = \psi(f * f_0)$. It is easy to see that $\tilde{\psi}$ is a unique extension of ψ and $\tilde{\psi} \in \Delta(L_\omega^1(G))$. Therefore,

$$\Delta(S_\omega^1(G)) = \{\psi|_{S_\omega^1(G)} : \psi \in \Delta(L_\omega^1(G))\}.$$

Proposition 4.1. *Let G be a locally compact group, ω be a weight on G and $\Omega(t) = \omega(t)\omega(t^{-1})$.*

- (i) *If $L_\omega^1(G)$ is character amenable, then G is amenable.*
- (ii) *If $S_\omega^1(G)$ is character amenable, then $S_\omega^1(G) = L_\omega^1(G)$ and $L_\omega^1(G)$ is character amenable.*
- (iii) *If Ω is bounded on G , then $L_\omega^1(G)$ is character amenable if and only if G is amenable*

Proof. (i) Let $\widehat{\mathbf{1}}$ be the augmentation character on $L_\omega^1(G)$. Since $L_\omega^1(G)$ is character amenable, Theorem 2.3 of [22] implies that there is a $m \in (L_\omega^1(G))^{**}$ such that $m(\widehat{\mathbf{1}}) = 1$. This means that G is amenable.

(ii) If $S_\omega^1(G)$ is character amenable, then by means of Theorem 2.3 of [22], $S_\omega^1(G)$ has a bounded approximate identity. Now, apply Proposition 2.1.

(iii) Apply the case (i) and Theorem 0 of [17]. \square

Proposition 4.2. *Let G be a locally compact group, and ω be a weight on G . If the Lebesgue Banach algebras $\mathcal{L}_\omega^{1,p}(G) := L^1(G) \cap L_\omega^p(G)$, $1 < p < \infty$ is character amenable, then G is amenable and discrete.*

Proof. Character amenability of $\mathcal{L}_\omega^{1,p}(G)$ implies that it has a bounded approximate identity and due to Proposition 2.4 of [1], G is discrete and this follows that $\mathcal{L}_\omega^{1,p}(G)$ is algebraically isomorphic with $\ell^1(G)$. Thus $\ell^1(G)$ is character amenable, so that G is amenable [22, Corollary 2.4]. \square

Acknowledgments

The authors wish to thank referee for his/her invaluable comments.

REFERENCES

- [1] *F. Abtahi*, Lebesgue weighted L^p -algebra on locally compact groups, *Acta Math. Hungar.*, **133**(2011), No. 4, 324-331.
- [2] *W. G. Bade, P. C. Curtis and H. G. Dales*, Amenability and weak amenability for Beurling and Lipschitz algebras, *Proc. London Math. Soc.*, **55**(1987), No. 2, 359-377.
- [3] *J. Bergh and J. Löfström*, Interpolation spaces, an introduction, Springer-Verlag, Berlin, 1976.
- [4] *P. Bharucha*, Approximate weak amenability of $I_0(SL(2, \mathbb{R}))$, *Bull. Aust. Math. Soc.*, **82**(2010), 18-21.
- [5] *J. T. Burnham*, Closed ideals in subalgebras of Banach algebras. I, *Proc. Amer. Math. Soc.*, **32**(1972), 551-555.
- [6] *Y. Choi, F. Ghahramani and Y. Zhang*, Approximate and pseudo-amenability of various classes of Banach algebras, *J. Funct. Anal.*, **256**(2009), 3158-3191.
- [7] *J. Cigler*, Normed ideals in $L^1(G)$, *Indag. Math.*, **31**(1969), 273-282.
- [8] *H. G. Dales*, Banach algebras and automatic continuity, London Math. Society Monographs, Volume 24, Clarendon Press, Oxford, 2000.
- [9] *H. G. Dales, F. Ghahramani and N. Grønbæk*, Derivations on iterated duals of Banach algebras, *Studia Math.*, **128**(1998), No. 1, 19-54.
- [10] *H. G. Dales and A. T. Lau*, The second duals of Beurling algebras, *Mem. Amer. Math. Soc.*, **177**(836)(2005).
- [11] *F. Ghahramani, A. T. Lau and V. Losert*, Isometric isomorphisms between Banach algebras related locally compact groups, *Trans. Amer. Math. Soc.*, **32**(1990), No. 1, 273-283.
- [12] *F. Ghahramani, R. J. Loy and G. A. Willis*, Amenability and weak amenability of second conjugate Banach algebras, *Proc. Amer. Math. Soc.*, **124**(1996), 1489-1497.
- [13] *F. Ghahramani and R. J. Loy*, Generalized notions of amenability, *J. Funct. Anal.*, **208**(2004), No. 1, 229-260.
- [14] *F. Ghahramani, E. Samei and Y. Zhang*, Generalized notions of amenability, *J. Aust. Math. Soc.*, **89**(2010), 359-376.
- [15] *F. Ghahramani and G. Zabandan*, 2-Weak amenability of a Beurling algebra and amenability of its second dual, *Int. J. Pure Appl. Math.*, **16**(2004), No. 1, 75-86.
- [16] *N. Grønbæk*, A characterization of weakly amenable Banach algebras, *Studia Math.*, **94**(1989), 150-162.
- [17] *N. Grønbæk*, Amenability of weighted convolution algebras on locally compact groups, *Trans. Amer. Math. Soc.*, **319**(1990), No. 2, 765-775.
- [18] *A. Jabbari, M. S. Moslehian and H. R. E. Vishki*, Constructions preserving n -weak amenability of Banach algebras, *Mathematica Bohemica*, **134**(2009), 349-357.

- [19] *B. E. Johnson*, Cohomology in Banach algebras, Mem. Amer. Math. Soc., Providence, R.I., **127**(1972).
- [20] *A. T. Lau and R. J. Loy*, Weak amenability of Banach algebras on locally compact groups, J. Funct. Anal., **145**(1997), 175-204.
- [21] *M. Leinert*, A contribution to Segal algebras, Manuscripta Math., **10**(1973), 207-306.
- [22] *M. S. Monfared*, Character amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., **144**(2008), 697-706.
- [23] *H. Reiter*, L^1 -algebras and Segal algebras, Lecture notes in Mathematics, Vol. 231, Springer, Berlin, 1971.
- [24] *E. Samei*, Weak amenability and 2-weak amenability of Beurling algebras, J. Math. Anal. Appl., **346**(2008), 451-467.
- [25] *G. A. Willis*, Approximate units in finite codimensional ideals of group algebras, J. London Math. Soc., **26**(1982), No. 2, 143-154.