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NEW ITERATION PROCESS AND NUMERICAL RECKONING FIXED

POINTS IN BANACH SPACES

Kifayat Ullah1, Muhammad Arshad2

In this paper we propose a new iteration process, called M∗ iteration pro-
cess, for approximation of fixed points. Some weak and strong convergence theorems
for fixed point of Suzuki generalized nonexpansive mappings are proved in the setting of
uniformly convex Banach spaces. A numerical examples is given to show the efficiency

of M∗ iteration process. Our results are the extension, improvement and generalization
of many known results in the literature of iterations in fixed point theory.
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1. Introduction

Numerical reckoning fixed points for nonlinear operators is nowadays an active re-
search direction of nonlinear analysis. This because they found applications to: variational
inequalities, equilibrium problems, computer simulation, image encoding and much more.
Classical iterations such as Picard, Mann and Ishikawa represent pioneers research work in
this regard; please, see Mann [12] and Ishikawa [9]. Nowadays, this research direction is
developed by: Agarwal et al. [2], Noor [13], Abbas et al. [1], Phuengrattana et al. [16],
Karahan et al. [10], Chugh et al. [4], Sahu et al. [17], Khan [11], Gursoy et al. [8], Thakur
et al. [21, 22, 23, 24, 25, 26] and Yao et al. [27, 28, 29, 30].

Motivated by above, in this paper, we introduce a new iteration process namely M∗

iteration process for numerical reckoning fixed points of nonlinear mappings. An example
of Suzuki generalized nonexpansive mapping is given which is not nonexpansive. Since we
found that the speed of convergence of Picard-S iteration process [8] and Thakur New itera-
tion process [22] are almost same so numerically we compare the speed of convergence of our
new M∗ iteration process with two-step Agarwal iteration process and leading three-step
Picard-S iteration process for given example. Finally we prove some weak and strong conver-
gence theorems for Suzuki generalized nonexpansive mappings, which is the generalization
of nonexpansive as well as contraction mappings, in the setting of uniformly convex Banach
spaces.
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2. Preliminaries

A Banach space X is called uniformly convex [7] if for each ε ∈ (0, 2] there is a δ > 0
such that for x, y ∈ X,

∥x∥ ≤ 1,
∥y∥ ≤ 1,

∥x− y∥ > ε

 =⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ δ.

A Banach space X is said to satisfy the Opial property [14] if for each sequence {xn}
in X, converging weakly to x ∈ X, we have

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥ ,

for all y ∈ X such that y ̸= x.
A point p is called fixed point of a mapping T if T (p) = p, and F (T ) represents the set

of all fixed points of mapping T. Let C be a nonempty subset of a Banach spaceX. Amapping
T : C → C is called contraction if there exists θ ∈ (0, 1) such that ∥Tx− Ty∥ ≤ θ ∥x− y∥ ,
for all x, y ∈ C. A mapping T : C → C is called nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all
x, y ∈ C, and quasi-nonexpansive if for all x ∈ C and p ∈ F (T ), we have ∥Tx− p∥ ≤ ∥x− p∥.
In 2008, Suzuki [20] introduced the concept of generalized nonexpansive mappings which is
a condition on mappings called condition (C). A mapping T : C → C is said to satisfy
condition (C) if for all x, y ∈ C, we have

1

2
∥x− Tx∥ ≤ ∥x− y∥ implies ∥Tx− Ty∥ ≤ ∥x− y∥ .

Suzuki [20] showed that the mapping satisfying condition (C) is weaker than nonex-
pansiveness and stronger than quasi nonexpansiveness. The mapping satisfy condition (C)
is called Suzuki generalized nonexpansive mapping. Suzuki also obtained fixed point the-
orems and convergence theorems for Suzuki generalized nonexpansive mapping. Recently,
fixed point theorems for Suzuki generalized nonexpansive mapping have been studied by
a number of authors see e.g. [22] and references therein. We now list some properties of
Suzuki generalized nonexpansive mapping.

Proposition 2.1. Let C be a nonempty subset of a Banach space X and T : C → C be any
mapping. Then

(i). [20, Proposition 1] If T is a nonexpansive then T is a Suzuki generalized nonex-
pansive mapping.

(ii). [20, Proposition 2] If T is a Suzuki generalized nonexpansive mapping and has a
fixed point, then T is a quasi-nonexpansive mapping.

(iii). [20, Lemma 7] If T is an Suzuki generalized nonexpansive mapping, then
∥x− Ty∥ ≤ 3 ∥Tx− x∥+ ∥x− y∥ for all x, y ∈ C.

Lemma 2.1. [20, Proposition 3] Let T be a mapping on a subset C of a Banach space X
with the Opial property. Assume that T is a Suzuki generalized nonexpansive mapping. If
{xn} converges weakly to z and limn→∞ ∥Txn − xn∥ = 0, then Tz = z. That is, I − T is
demiclosed at zero.

Lemma 2.2. [20, Theorem 5] Let C be a weakly compact convex subset of a uniformly
convex Banach space X. Let T be a mapping on C. Assume that T is a Suzuki generalized
nonexpansive mapping. Then T has a fixed point.

Lemma 2.3. [18, Lemma 1.3] Suppose that X is a uniformly convex Banach space and
{tn} is any real sequence such that 0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Let {xn} and
{yn} be any two sequences of X such that lim supn→∞ ∥xn∥ ≤ r, lim supn→∞ ∥yn∥ ≤ r and
lim supn→∞ ∥tnxn + (1− tn)yn∥ = r hold for some r ≥ 0. Then lim n→∞ ∥xn − yn∥ = 0.



New iteration process and numerical reckoning fixed points in Banach spaces 115

Let C be a nonempty closed convex subset of a Banach space X, and let {xn} be a
bounded sequence in X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

∥xn − x∥ .

The asymptotic radius of {xn} relative to C is given by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C},
and the asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.
It is known that, in a uniformly convex Banach space, A(C, {xn}) consists of exactly

one point.

3. M∗ iteration Process and Convergence Results

Through out this section, we have n ≥ 0 and {αn} and {βn} are real sequences in
[0, 1], C be any non-empty subset of Banach Space X.

Agarwal et al. [2] introduced the following iteration process with the claim that it
converges at a rate that is the same as that of the Picard iteration process and faster than
the Mann iteration process for contraction mappings; x0 ∈ C

yn = (1− βn)xn + βnTxn

xn+1 = (1− αn)Txn + αnTyn

(1)

The iteration process (1) is also known as S iteration process.
Recently Gursoy and Karakaya in [8] introduced new iteration process called Picard-S

iteration process, as follow 
x0 ∈ C

zn = (1− βn)xn + βnTxn

yn = (1− αn)Txn + αnTzn
xn+1 = Tyn

(2)

They proved that the Picard-S iteration process can be used to approximate the fixed
point of contraction mappings. Also, by providing an example, it is shown that the Picard-S
iteration process converge faster than all Mann [12], Ishikawa [9], Agarwal [2], Noor [13],
Abbas [1], SP [16], S∗ [10], CR [4], Normal-S [17], and Picard Mann [11] iteration processes.

After this in 2015, Thakur et. al. [22] used the following new iteration process, we
will call it Thakur-New iteration process,

x0 ∈ C
zn = (1− βn)xn + βnTxn

yn = T ((1− αn)xn + αnzn)
xn+1 = Tyn.

(3)

With the help of numerical example they proved that (3) is faster than Picard, Mann,
Ishikawa, Agarwal, Noor and Abbas iteration process for a Suzuki generalized nonexpansive
mappings. We note that the speed of convergence of iteration process (2) and (3) is almost
same.

Inspired from above, we introduce the following new iteration process known as ”M∗

iteration Process” 
x0 ∈ C

zn = (1− βn)xn + βnTxn

yn = T ((1− αn)xn + αnTzn)
xn+1 = Tyn

(4)
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First we prove weak and strong convergence results for Suzuki generalized nonexpan-
sive mappings and for the sequence generated by iteration process (4). After this we will
show that our new iteration process (4) is more efficient comparatively to other iteration
processes.

Lemma 3.1. Let C be a nonempty closed convex subset of a Banach space X, and let
T : C → C be a Suzuki generalized nonexpansive mapping with F (T ) ̸= ∅. For arbitrary
chosen x0 ∈ C, let the sequence {xn} be generated by (4), then limn→∞ ∥xn − p∥ exists for
any p ∈ F (T ).

Proof. Let p ∈ F (T ) and z ∈ C. Since T is a Suzuki generalized nonexpansive mapping,

1

2
∥p− Tp∥ = 0 ≤ ∥p− z∥ implies that ∥Tp− Tz∥ ≤ ∥p− z∥ .

So by Proposition 2.1(ii), we have

∥zn − p∥ = ∥(1− βn)xn + βnTxn − p∥
≤ (1− βn) ∥xn − p∥+ βn ∥Txn − p∥
≤ (1− βn) ∥xn − p∥+ βn ∥xn − p∥
= ∥xn − p∥ . (5)

Using (5), we get

∥yn − p∥ = ∥T ((1− αn)xn + αnTzn)− p∥
≤ ∥(1− αn)xn + αnTzn − p∥
≤ (1− αn) ∥xn − p∥+ αn ∥Tzn − p∥
≤ (1− αn) ∥xn − p∥+ αn ∥zn − p∥
≤ (1− αn) ∥xn − p∥+ αn ∥xn − p∥
= ∥xn − p∥ . (6)

Similarly, by using (6) we have

∥xn+1 − p∥ = ∥Tyn − p∥
≤ ∥yn − p∥
≤ ∥xn − p∥ . (7)

This implies that {∥xn − p∥} is bounded and non-increasing for all p ∈ F (T ). Hence
limn→∞ ∥xn − p∥ exists, as required. �

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex Banach
space X, and let T : C → C be a Suzuki generalized nonexpansive mapping. For arbitrary
chosen x0 ∈ C, let the sequence {xn} be generated by (4) for all n ≥ 1, where {αn} and
{βn} are sequence of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1. Then F (T ) ̸= ∅
if and only if {xn} is bounded and limn→∞ ∥Txn − xn∥ = 0.

Proof. Suppose F (T ) ̸= ∅ and let p ∈ F (T ). Then, by Lemma 3.1, limn→∞ ∥xn − p∥ exists
and {xn} is bounded. Put

lim
n→∞

∥xn − p∥ = r. (8)

From (5) and (8), we have

lim sup
n→∞

∥zn − p∥ ≤ lim sup
n→∞

∥xn − p∥ = r. (9)

From Proposition 2.1(ii), we get

lim sup
n→∞

∥Txn − p∥ ≤ lim sup
n→∞

∥xn − p∥ = r. (10)
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On the other hand by using (5), we have

∥xn+1 − p∥ = ∥Tyn − p∥
≤ ∥yn − p∥
= ∥T ((1− αn)xn + αnTzn)− Tp∥
≤ ∥(1− αn)xn + αnTzn − p∥
≤ (1− αn) ∥xn − p∥+ αn ∥Tzn − Tp∥
≤ (1− αn) ∥xn − p∥+ αn ∥zn − p∥
= ∥xn − p∥ − αn ∥xn − p∥+ αn ∥zn − p∥ .

This implies that

∥xn+1 − p∥ − ∥xn − p∥
αn

≤ ∥zn − p∥ − ∥xn − p∥ .

So

∥xn+1 − p∥ − ∥xn − p∥ ≤ ∥xn+1 − p∥ − ∥xn − p∥
αn

≤ ∥zn − p∥ − ∥xn − p∥ ,

implies that
∥xn+1 − p∥ ≤ ∥zn − p∥ .

Therefore
r ≤ lim inf

n→∞
∥zn − p∥ . (11)

Using (9) and (11), we have

r = lim
n→∞

∥zn − p∥

= lim
n→∞

∥(1− βn)xn + βnTxn − p∥

= lim
n→∞

∥βn(Txn − p) + (1− βn)(xn − p)∥ . (12)

From (8), (10), (12) and Lemma 2.3, we have that lim
n→∞

∥Txn − xn∥ = 0.

Conversely, suppose that {xn} is bounded and limn→∞ ∥Txn − xn∥ = 0. Let p ∈
A(C, {xn}). By Proposition 2.1(iii), we have

r(Tp, {xn}) = lim sup
n→∞

∥xn − Tp∥

≤ lim sup
n→∞

(3 ∥Txn − xn∥+ ∥xn − p∥)

≤ lim sup
n→∞

∥xn − p∥

= r(p, {xn}).
This implies that Tp ∈ A(C, {xn}). Since X is uniformly convex, A(C, {xn}) is a

singleton set and hence we have Tp = p. Hence F (T ) ̸= ∅. �

Theorem 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach
space X with the Opial property, and let T : C → C be a Suzuki generalized nonexpansive
mapping. For arbitrary chosen x0 ∈ C, let the sequence {xn} be generated by (4) for all
n ≥ 1, where {αn} and {βn} are sequence of real numbers in [a, b] for some a, b with
0 < a ≤ b < 1 such that F (T ) ̸= ∅. Then {xn} converges weakly to a fixed point of T .

Proof. F (T ) ̸= ∅ implies that {xn} is bounded and limn→∞ ∥Txn − xn∥ = 0. Since X is
uniformly convex and hence reflexive, by Eberlin’s theorem there exists a subsequence {xnj}
of {xn} which converges weakly to some q1 ∈ X. Since C is closed and convex, by Mazur’s
theorem q1 ∈ C. By Lemma 2.1, q1 ∈ F (T ). Now, we show that {xn} converges weakly



118 Kifayat Ullah, Muhammad Arshad

to q1. In fact, if this is not true, then there must exist a subsequence {xnk
} of {xn} such

that {xnk
} converges weakly to q2 ∈ C and q2 ̸= q1. By Lemma 2.1, q2 ∈ F (T ). Since

limn→∞ ∥xn − p∥ exists for every p ∈ F (T ). By Theorem 3.1 and Opial’s property, we have

lim
n→∞

∥xn − q1∥ = lim
j→∞

∥∥xnj − q1
∥∥

< lim
j→∞

∥∥xnj − q2
∥∥

= lim
n→∞

∥xn − q2∥

= lim
k→∞

∥xnk
− q2∥

< lim
k→∞

∥xnk
− q1∥

= lim
n→∞

∥xn − q1∥ ,

which is a contradiction. So q1 = q2. This implies that {xn} converges weakly to a fixed
point of T . �

Next we prove the strong convergence theorem.

Theorem 3.3. Let C be a nonempty compact convex subset of a uniformly convex Banach
space X, and let T : C → C be a Suzuki generalized nonexpansive mapping. For arbitrary
chosen x0 ∈ C, let the sequence {xn} be generated by (4) for all n ≥ 1, where {αn} and
{βn} are sequence of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1. Then {xn}
converges strongly to a fixed point of T .

Proof. By Lemma 2.2, we have that F (T ) ̸= ∅ and so by Theorem 3.1 we have limn→∞ ∥Txn − xn∥ =
0. Since C is compact, there exists a subsequence {xnk

} of {xn} such that {xnk
} converges

strongly to p for some p ∈ C. By Proposition 2.1(iii), we have

∥xnk
− Tp∥ ≤ 3 ∥Txnk

− xnk
∥+ ∥xnk

− p∥ , for all n ≥ 1.

Letting k → ∞, we get Tp = p, i.e., p ∈ F (T ). By Lemma 3.1, limn→∞ ∥xn − p∥
exists for every p ∈ F (T ) and so xn converge strongly to p. �

Senter and Dotson [19] introduced the notion of a mappings satisfying condition (I)
as.

A mapping T : C → C is said to satisfy condition (I), if there exists a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r > 0 such that ∥x− Tx∥ ≥
f(d(x, F (T ))) for all x ∈ C, where d(x, F (T )) = infp∈F (T ) ∥x− p∥.

Now we prove the strong convergence theorem using condition (I).

Theorem 3.4. Let C be a nonempty closed convex subset of a uniformly convex Banach
space X, and let T : C → C be a Suzuki generalized nonexpansive mapping. For arbitrary
chosen x0 ∈ C, let the sequence {xn} be generated by (4) for all n ≥ 1, where {αn} and {βn}
are sequence of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1 such that F (T ) ̸= ∅.
If T satisfies condition (I), then {xn} converges strongly to a fixed point of T .

Proof. By Lemma 3.1, limn→∞ ∥xn − p∥ exists for every p ∈ F (T ) and limn→∞ d(xn, F (T ))
exists. Assume that limn→∞ ∥xn − p∥ = r for some r ≥ 0. If r = 0 then the result follows.
Suppose r > 0. From the hypothesis and condition (I),

f(d(xn, F (T ))) ≤ ∥Txn − xn∥ . (13)

Since F (T ) ̸= ∅, by Theorem 3.2, we have limn→∞ ∥Txn − xn∥ = 0. So (13) implies
that

lim
n→∞

f(d(xn, F (T ))) = 0. (14)
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Since f is nondecreasing function, so from (14) we have limn→∞ d(xn, F (T )) = 0.
Thus, we have a subsequence {xnk

} of {xn} and a sequence {yk} ⊂ F (T ) such that

∥xnk
− yk∥ <

1

2k
for all k ∈ N.

So Using (7), we get ∥∥xnk+1
− yk

∥∥ ≤ ∥xnk
− yk∥ <

1

2k
.

Hence

∥yk+1 − yk∥ ≤ ∥yk+1 − xk+1∥+ ∥xk+1 − yk∥

≤ 1

2k+1
+

1

2k

<
1

2k−1
→ 0, as k → ∞.

This shows that {yk} is a Cauchy sequence in F (T ) and so it converges to a point p.
Since F (T ) is closed, p ∈ F (T ) and then {xnk

} converges strongly to p. Since limn→∞ ∥xn − p∥
exists, we have that xn → p ∈ F (T ). �

4. Numerical example

For numerical interpretations first we construct an example of a Suzuki generalized
nonexpansive mapping which is not nonexpansive.

Example 4.1. Define a function T : [0, 1] → [0, 1] by

Tx =

{
1− x if x ∈

[
0, 1

9

)
x+8
9 if x ∈

[
1
9 , 1

]
.

We need to prove that T is Suzuki generalized nonexpansive but not nonexpansive.
If x = 11

100 , y = 1
9 , then we have

∥Tx− Ty∥ = |Tx− Ty|

=

∣∣∣∣1− 11

100
− 73

81

∣∣∣∣
=

91

8100

>
1

900
= ∥x− y∥ .

Hence T is not a nonexpansive mapping.
To verify that T is a Suzuki generalized nonexpansive mapping, consider the following

cases:
Case I: Let x ∈

[
0, 1

9

)
. Then 1

2 ∥x− Tx∥ = 1−2x
2 ∈

(
7
18 ,

1
2

]
. For 1

2 ∥x− Tx∥ ≤
∥x− y∥ we must have 1−2x

2 ≤ y − x, i.e., 1
2 ≤ y and hence y ∈

[
1
2 , 1

]
. We have

∥Tx− Ty∥ =

∣∣∣∣y + 8

9
− (1− x)

∣∣∣∣ = ∣∣∣∣y + 9x− 1

9

∣∣∣∣ < 1

9
,

and

∥x− y∥ = |x− y| >
∣∣∣∣19 − 1

2

∣∣∣∣ = 7

18
.

Hence 1
2 ∥x− Tx∥ ≤ ∥x− y∥ =⇒ ∥Tx− Ty∥ ≤ ∥x− y∥ .
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Table 1. Sequences generated by M∗, Picard-S and S iteration processes.

M∗ Picard-S S
x0 0.9 0.9 0.9
x1 0.998765432098765 0.998765432098765 0.988888888888889
x2 0.999991770471429 0.999986900558966 0.998938945276278
x3 0.999999976046138 0.999999871532179 0.999906346958218
x4 1 0.999999998800067 0.999992127236521
x5 1 0.999999999989159 0.999999359857410
x6 1 0.999999999999904 0.999999949193996
x7 1 0.999999999999999 0.999999996041233
x8 1 1. 0.999999999695968
x9 1 1. 0.999999999976922
x10 1 1. 0.999999999998265

Case II: Let x ∈
[
1
9 , 1

]
. Then 1

2 ∥x− Tx∥ = 1
2

∣∣x+8
9 − x

∣∣ = 8−8x
18 ∈

[
0, 55

162

]
. For

1
2 ∥x− Tx∥ ≤ ∥x− y∥ we must have 8−8x

18 ≤ |y − x| , which gives two possibilities:

(a). Let x < y. Then 8−8x
18 ≤ y − x =⇒ y ≥ 8+10x

18 =⇒ y ∈
[

73
162 , 1

]
⊂

[
1
9 , 1

]
. So

∥Tx− Ty∥ =

∣∣∣∣x+ 8

9
− y + 8

9

∣∣∣∣ = 1

9
∥x− y∥ ≤ ∥x− y∥ .

Hence 1
2 ∥x− Tx∥ ≤ ∥x− y∥ =⇒ ∥Tx− Ty∥ ≤ ∥x− y∥ .
(b). Let x > y. Then 8−8x

18 ≤ x − y =⇒ y ≤ x − 8−8x
18 = 26x−8

18 =⇒ y ∈
[
− 37

162 , 1
]
.

Since y ∈ [0, 1], y ≤ 26x−8
18 =⇒ x ≥ 18y+8

26 =⇒ x ∈
[

4
13 , 1

]
. So the case is x ∈

[
4
13 , 1

]
an;8d

y ∈ [0, 1] .
Now x ∈

[
4
13 , 1

]
and y ∈

[
1
9 , 1

]
is already included in case (a). So let x ∈

[
4
13 , 1

]
and

y ∈
[
0, 1

9

)
. Then

∥Tx− Ty∥ =

∣∣∣∣x+ 8

9
− (1− y)

∣∣∣∣
=

∣∣∣∣x+ 9y − 1

9

∣∣∣∣ .
For convenience, first we consider x ∈

[
4
13 ,

1
2

]
and y ∈

[
0, 1

9

)
. Then ∥Tx− Ty∥ ≤ 1

18 and

∥x− y∥ ≥ 23
117 . Hence ∥Tx− Ty∥ ≤ ∥x− y∥ .

Next consider x ∈
[
1
2 , 1

]
and y ∈

[
0, 1

9

)
, then ∥Tx− Ty∥ ≤ 1

9 and ∥x− y∥ ≥ 7
18 .

Hence ∥Tx− Ty∥ ≤ ∥x− y∥ . So 1
2 ∥x− Tx∥ ≤ ∥x− y∥ =⇒ ∥Tx− Ty∥ ≤ ∥x− y∥ .

Hence T is a Suzuki generalized nonexpansive mapping.

In Table 1 we can see some of the first terms of a sequence generated by M∗, Picard-S
and S iteration processes for αn = 2n√

7n+9
, βn = 1√

3n+7
, where x0 = 0.9 and operator T is

that of Example 4.1. Set the stop parameter to ∥xn − 1∥ ≤ 10−15, where “1” is the fixed
point of T . Graphic representation in given in Figure 1. We can easily see that the new M∗

iterations are the first converging one than the S iterations and the Picard-S iterations.

In order to see how far from exactly “1” the value of xn is for a certainly value of n,
we resort to arbitrary precision calculations and get Figure 2.
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Figure 1. Convergence of iterative sequences generated by M∗ (dots),
Picard-S (dashes) and S (line) iteration processes to the fixed point 1 of
mapping T defined in Example 4.1.

Figure 2. Graphs for M∗, Picard-S and S iteration processes where the
value of k indicates that the value of the recursion after a certain number
of steps is only 10k units away from fixed point 1 of mapping T defined in
Example 4.1.

5. Conclusions

New iteration process (4) namelyM∗ iteration process is introduced for approximating
fixed points of Suzuki generalized nonexpansive mappings. Strong and weak convergence of
M∗ iteration process to the fixed point of Suzuki generalized nonexpansive mappings in the
setting of uniformly convex Banach spaces are proved. It is shown that our new iteration
process is moving faster than the leading S iteration process (1) and Picard-S iteration
process (2) using newly introduced Example 4.1. Our new iteration process is now available
for the engineers, computer scientists, physicists as well as mathematicians to solve different
problems more efficiently.
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