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RELATION-THEORETIC CONTRACTION PRINCIPLE IN SYMMETRIC
SPACES
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In this paper, we prove two contraction mapping theorems in symmetric
spaces under a binary relation which generalize a multitude of fized point theorems of
the existing literature. Examples have been furnished to substantiate the utility of our
newly proved results.
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1. Introduction

In 1922, Polish mathematician Banach [1] formulated one of the most natural and
useful theorems ever proved in analysis often referred as the Banach contraction principle
which asserts that every contraction map on a complete metric space admits a unique fixed
point. This classical result continues to inspire researchers of metric fixed point theory and
due to its simplicity and applicability, this principle has been generalized and improved in
various ways.

One way of improving the celebrated Banach contraction principle is to enlarge the
class of underlying spaces and generalizing the principle on those larger classes of spaces.
This has led to the extension of fixed point theory to several variants of metric spaces,
e.g., rectangular metric spaces [10], generalized metric spaces [11H13|, partial metric spaces
[14-16], b-metric spaces [17H19], partial b-metric spaces [20], symmetric spaces [3], quasi
metric spaces [21], quasi-partial metric spaces [22] and many more.

In 1976, Cicchese [3] initiated the study of fixed points for contraction mappings in
symmetric spaces. Indeed the idea of such spaces is due to Wilson [2|. By now, there exists
a considerable literature on fixed point theory in symmetric spaces. For the work of this
kind one can be referred to [26{{28]. In several noted articles written in subsequent years,
numerous fixed point results in this setting were established which include Jachymski et al.
[29], Hicks and Rhoades [30], Aamri and El Moutawakil [31], Aamri et al. [32], Aliouche [33]
and Imdad et al. [34]. In 2014, Bessenyei and Pales [8] proved a novel fixed point theorem
for regular symmetric spaces which inspires our results of the present paper.

On the other hand, in 2004, Ran and Reurings [5] obtained a very useful generalization
of the Banach contraction principle in a partially ordered complete metric space under a
relatively weaker contraction condition which is required to hold merely on the elements
which are comparable with respect to the associated partial ordering. In doing so, they were
essentially motivated by Turinici [4]. The result of Ran and Reurings was further improved
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by Nieto and Rodriguez-Lépez in 2005 [6] and in 2007 [7]. Subsequently, in 2015, Alam and
Imdad [23] presented a natural extension of the Banach contraction principle in a complete
metric space equipped with an arbitrary binary relation (not necessarily a partial ordering).

In this paper, our aim is to extend the relation-theoretic analogue of the Banach
contraction principle due to Alam and Imdad [23] to the class of symmetric spaces possessing
the property (W3). We also deduce the corresponding result for regular symmetric spaces.

2. Symmetric Spaces

In this section, we collect some relevant background materials (especially about sym-
metric spaces) to make our presentation possibly self-contained. Throughout the paper
N, Ny, Q,R, and Rt denote the set of natural numbers, whole numbers, rational numbers,
real numbers and nonnegative real numbers respectively.

Firstly, we summarize some basic ideas on symmetric spaces essentially due to Wilson
2].
Definition 2.1. Let E be a nonempty set and p a mapping from E x E to RT satisfying
the following azioms:
(i) p(r,s) =0 if and only if r = s,
(ii) p(r,s) = p(s,r) for eachr,s € E.
Then p is a symmetric on E and the pair (E, p) is called a symmetric space.
In such spaces, the notions of convergent and Cauchy sequences are defined in the
usual way. A sequence {r,} C E is said to be convergent to r € E if lim p(r,,r) = 0.
n—oo

Also, a sequence is Cauchy if for each € > 0 there exists some N € N such that p(r,,rm,) <
€ Vn,m > N. The space F is said to be complete if every Cauchy sequence in E converges.
For an open ball with center at p snd radius €, we use the notation B(p,€). The diameter of
B(p, €) is the supremum of distances taken over the pairs of points of the ball. The topology
of such spaces is the topology induced by the open balls.

In this context, due to the absence of triangle inequality, the following problems arise:

(a) there is nothing to assure the uniqueness of limits of convergent sequences and conse-
quently these spaces are not Hausdorff in general,

(b) a convergent sequence is not necessarily a Cauchy sequence,

(c¢) the mapping p: E X E — R is not continuous in general.

To avoid the aforementioned difficulties, we need some additional axioms to establish
fixed point theorems in such spaces. The following axioms have been quite instrumental in
the literature.

e (W3): For {r,},r and s in E;
p(rn,r) = 0 and p(r,,s) -0 = r=s.

o (W,): For {r,},{sn} and r in E;

p(rn, ) = 0 and p(ry, sp) =0 = p(sp,r) = 0.
e (HE): For {r,},{sn} and r in E;

p(rn, ) = 0 and p(sp,r) >0 = p(ry, $n) — 0.
e (1C): For {r,},r and s in E;

p(rn,m) = 0 = p(ry,s) = p(r,s).

If (E, p) satisfies the property (1C') then the symmetric p is called 1-continuous.
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e (CC): For {r,},{sn} and r and s in F;
p(rn,m) = 0 and p(s,,s) = 0 = p(rp, s,) — p(r,s).
If (E, p) satisfies the property (CC) then the symmetric p is called continuous.
We observe that
(CC) = (10), (W) = (W3) and (1C) = (W),

but the converse of the above implications are not true in general. Moreover, (CC') implies
all the other four conditions, namely (Ws), (W;), (HE) and (1C).

Assuming these additional axioms optimally, several fixed point results have been
established in the setting of symmetric spaces. Cicchese [3] firstly established a variant of
the Banach contraction principle on bounded symmetric spaces having the property (Ws).
A slightly modified version of this classical result on symmetric space (without boundedness)
is available in literature, which runs as follows:

Theorem 2.1. Let (E,p) be a symmetric space which is complete and enjoys the property
(Ws). Let f be a self mapping on E and there exists some a € (0,1) such that

p(fr, fs) < ap(r, s)
Vr,s € E. If there exists 1o € E such that

6(p’ fa TO) = Sup {p(fiTOa fJTO)} < 00,
i,jEN

then f possesses a unique fized point T € E. Moreover, the sequence {f"ro} converges to T.

Recently, Bessenyei and Péles [8] recognized a new class of symmetric spaces and
termed such spaces as regular symmetric spaces.

Definition 2.2. [§] Let (E, p) be a symmetric space. A function ¢ : Ei — Ry is called a
triangle function with respect to the symmetric p if

(i) ¢ is symmetric,
(i) ¢ is monotonically increasing in both the arguments,
(iii) ¢(0,0) =0,
(iv) p(r,s) < o(p(r,t),p(s,t)) for allr,s,t € E.
Proposition 2.1. [8§] Every symmetric space (E, p) admits a unique triangle function @,
such that ®, < ¢, where ¢ is any other triangle function with respect to p.

Such a unique triangle function @, is called the basic triangle function.

Definition 2.3. /8] A symmetric space (E,p) is said to be a regular space if the basic
triangle function with respect to the symmetric p is continuous at the origin (0,0).

The following lemma ensures the adequacy of the topology of regular symmetric
spaces.

Lemma 2.1. (8] The topology of a regular symmetric space is always Hausdorff. A conver-
gent sequence in a reqular symmetric space possesses a unique limit and it has the Cauchy
property. Moreover, a symmetric space (E, p) is regular if and only if

lim sup diam B(p,€) = 0.
e—0 pGE

We begin with the following crucial observation.

Proposition 2.2. Fvery reqular symmetric space possesses the property (Ws).
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Proof. Let (E,p) is a regular symmetric space. Let ®, : @i — R, be the basic triangle
function. From definition of regular spaces we know that ®, is continuous at the origin
(0,0).

Let {r,} be a sequence in E such that p(r,,r) — 0 and p(r,,s) — 0. We want to
show that r = s. Let € be any arbitrarily chosen positive number. As ®,(0,0) = 0, there is
a neighbourhood V' of the origin such that ®,(u,v) < € V(u,v) € V. In other words, 36 > 0
such that, ®,(u,v) < € Vu,v : 0 < u,v < §. Using property (iv) of triangle functions, we
have

p(’l", S) S ‘I)p (p(’l‘, Tn)) p(Tm S)) .
Now, as p(ry,r) — 0 and p(r,,s) — 0, there exist N, M € N such that

p(rn,r) <6 ¥n > N and p(r,,s) <6 Vn > M.
Therefore, for n > max{N, M}, we have
p(r,s) < ®,(0,0) <e.
€ being arbitrary, we conclude r = s. Thus we see that (F, p) has the property (Ws3). O

Recently, Bessenyei and Péles [§] proved a fixed point theorem under nonlinear con-
traction on regular symmetric spaces. Its variant under linear contraction assumes the
following form.

Theorem 2.2. Let (E,p) is a regular symmetric space which is complete and f a self-
mapping on E. Suppose that there exists some « € (0,1) such that the following holds:

p(fr, fs) < a(p(r, 8)) Vr,s € E.
Then f has a unique fized point.

3. Relation-theoretic Notions

Before we proceed to the main results, we recall some relevant notions regarding
binary relations which will be needed in our main results.

Definition 3.1. [39] A binary relation R on a nonempty set F is a subset of E x E. For
r,s € E when (r,s) € R, we say r is related to s. Sometimes, we write TRs instead of
(r,s) € R. If (r,s) ¢ R, we say r is not related to s. A binary relation R is said to be
connected if either (r,s) € R or (s,r) € R for allr,s € E.

Definition 3.2. [{/0] Let E be a nonempty set and R be a binary relation on E. For
r,s € E, we say that r and s are R-comparative if either (r,s) € R or (s,7) € R. Whenr
and s are R-comparative, we denote it by [r, s] € R.

The following result is immediate directly from symmetry of p.

Proposition 3.1. (23] Let f be a self mapping on a symmetric space (E,p) endowed with
a binary relation R. Then the following conditions are equivalent:

(i) p(fr. fs) < a(p(r,s)) Y(r,s) € R,

(ir) p(fr, fs) < a(p(r,s)) Vi s] € R.
Definition 3.3. [36] Let E be a nonempty set endowed with a binary relation R. A sequence
{rn} C E is said to be R-preserving if (rn,rn+1) € R Vn € N.

Definition 3.4. [23] Let E be a nonempty set endowed with a binary relation R and f a
self-mapping on E. The relation R on E is said to be

o f-closed if (for anyr,s € E)
(r,s) € R= (fr, fs) e R.
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o f-transitive if (for any r,s,t € E)
(fr, fs), (fs, ft) € R = (fr, ft) € R.

Definition 3.5. [39] Let E be a nonempty set endowed with a binary relation R and U C E.
Then the restriction of R to U is the set RN U? and is denoted by R|y.

Definition 3.6. [24] Let E be a nonempty set endowed with a binary relation R. The
relation R is said to be locally transitive if for any R-preserving sequence {r,} C E the
binary relation R|y is transitive, where U = {r,|n € Np}.

Definition 3.7. [24] Let E be a nonempty set endowed with a binary relation R and f a
self-mapping on E. The relation R is said to be locally f-transitive if for any R-preserving
sequence {rn,} C f(E) the binary relation R|y is transitive, where U = {r,|n € Ng}.

Definition 3.8. [25,/40] Let E be a nonempty set endowed with a binary relation R. A
subset U of E is said to be R-connected if for each pair r,s € U, there is a finite sequence
{r1,72, ...} C E satisfying the following conditions:

(i) ro =71 and ri = s,

(i) (ri,rix1) € R for each i (0 <i<k—1).
The sequence {ri,7a,...,Tk} is called a path in R from r to s.

Definition 3.9. [24] Let E be a nonempty set endowed with a binary relation R. A
subset U of E is said to be R®-connected if for each pair r,s € U, there is a finite sequence
{r1,r2, ...,k } C E that satisfies the following conditions:

(i) ro =1 and ri = s,

(i) [ri, 1] € R for eachi (0 <i<k—1).

Now, we define the analogues of the notions of p-self-closedness, R-continuity and
R-completeness due to [241|25] in the framework of symmetric spaces.

Definition 3.10. A binary relation R on a symmetric space (E, p) is said to be p-self-closed
if for every R-preserving sequence {r,} in E converging to r, there exists a subsequence {r,, }
of {rn} with [ry, 7] € R.

Definition 3.11. Let (E,p) be a symmetric space endowed with a binary relation R. A
mapping f : E — E is R-continuous at r € E if for any R-preserving sequence {r,} (in E)
converging to r, we have fr, — fr. Moreover, f is called R-continuous if it is so at each
point of E.

Definition 3.12. Let (E,p) be a symmetric space endowed with a binary relation R. We
say that (E, p) is R-complete if every R-preserving Cauchy sequence in E converges.

The following notations will be used in this paper:

(i) Fiz(f):={reE: f(r)=r},
(i) E(f,R):={re E:(r, fr)eR}.

4. Main Results
Our main result remains a relation theoretic variant of Theorem [2.1]

Theorem 4.1. Let (E,p) be a symmetric space which enjoys the property (Ws3) and R a
binary relation on E. Let f be a self-mapping on E and the following conditions hold:

(a) (E,p) is R-complete,

(b) R is locally f-transitive and f-closed,

(c) either f is R-continuous or R is p-self-closed,

(d) there is 1o € E(f,R) such that 6(p, f, ro):_sup o(firg, firg) < oo,

i,jEN



92 Based Ali, Mohammad Imdad, Aftab Alam

(e) there exists some o € [0,1) such that
p(fr, fs) < a(p(r,s)) Vr,s € E with (r,s) € R.
Then f possesses a fized point in E. In addition, if

(f) f(E) is connected.
Then the fixed point of f in E is unique.

Proof. In view of (d), there is some ro € E such that

5(p7 f7 TO) = Ssup p(fi”n07fjr0) < Q.
i,jEN
Set M := §(p, f,79). Then, 0 < M < co. As R is f-closed, for the given rq € E(f,R) we
obtain (using induction)

(fr07 f2’l"0), (f2T07 f3T0)7 ceey (fnTO7 f7L+1T()), ... € R,

which shows that the sequence {f"rq} is R-preserving. As R is locally f-transitive, we have
(f™rg, frg) € R ¥n > m. Using the contraction condition (e), we get

p(f" 7o, [ o) < ap(f7 g, f1H 7 ).
Therefore,
8(p, f, f"ro) < ad(p, f, o).
Similarly, we obtain
ad(p, f, [ ?ro)
ad(p, f, [ ?ro)

3(p, £ f"" o)
3(p, £ f""ro)

INIA

6(/)7 fv fQTO) S 06(5([), fv fTO)
(5(p, f7 frU) S aé(p, f7T0)7

so that
5(p, f, o) < a"6(p, f,m0) = ™M — 0 as n — oc.

Now, p(f*"Hrg, f*1mrg) < 6(p, f, f"ro) and §(p, f, f*ro) — 0. Thus we conclude that
the sequence {f™ro} is Cauchy. Also, the sequence {f"ro} is R-preserving. Hence, R-
completeness of (E, p) guarantees the existence of some r € E such that f™ry — r.

If f is R-continuous, then f(f"rg) — fr,ie., f*lrqg — fr. We observe that f"ro — r
and f"rg — fr. As (E, p) possesses the property (W3s), we conclude fr =r. Hence {f"r¢}
converges to a fixed point of f.

On the other hand, if R is p-self-closed, then there is a subsequence { f™*rq} of { f"ro}
such that (f™rg,r) € R Vk € N. Hence,

p(fnk+1T07 f’l”) = p(f(fnkro)v f”n) < O‘P(fnkTm T)'
As p(f™rg,r) — 0, we obtain p(f™*1rq, fr) — 0. Owing to property (W3) of E, we obtain
fr =r. Hence {f"ro} converges to a fixed point of f.

For uniqueness part; let r, s be two fixed points of f such that r # s. We see that
r,s € f(E) asr = f(r) and s = f(s). Now, f(F) being connected [r, s] € R. Therefore,

p(r,s) = p(fr, fs) < ap(r;s) < p(r, s);

which is a contradiction. Hence the fixed point of f is unique. This accomplishes the
proof. O
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Corollary 4.1. Under the universal relation Theorem reduces to Theorem [2.]]
Observe that when R = E? the hypotheses of Theorem hold trivially.

Proposition 4.1. Let R a binary relation on a regular symmetric space (E,p) and f a
self-mapping on E. Let R be f-closed and locally f-transitive. If there exists o € (0,1) such
that

p(fr, fs) < a(p(r, S)) V(r,s) € R,
then for each ro € E(f,R)

8(p, for0) = sup {p(f'ro, f/10)} < o0,

2,JEN

provided R is locally f-transitive and f-closed.

Proof. Consider 1o € E(f,R). From the definition of E(f,R), we have (ro, fro) € R. If
f(ro) = 7o, then we are done; as

5(p, f, o) = sup p(firo, firo) = sup p(ro,r0) =0 < 0.
i5EN i,jEN

Suppose that frg # ro. Since (rg, fro) € R and R is f-closed, we get by induction on n that
(f"ro, f""tro) € R Vn € N.
Construct the sequence {r,} of Picard iterates with initial point r, i.e.,
rn = f"(ro), so that (r,,7,+1) € RV n € No.

Therefore, the sequence {r,} is R-preserving. R being locally f-transitive (ry,,r,) € R Vm >
n. Observe that the sequence p(r,, r,+x) tends to zero for all fixed k € N,

P(rn,TrH.k) = p(frn—lafrn+k—1)
a(ﬂ(’/‘n_1, Tn+k—1))

o®(p(rn—2,Tnir—2))

IN A

IN

a"p(ro,ri) — 0 as n — 0.

Now, we prove that {r,} is Cauchy. Let € > 0 be any positive number. As (E, p) is regular,
the basic triangle finction @, is continuous at the origin (0,0). Therefore, there exists a
neighbourhood U of the origin such that ®,(u,v) < € V(u,v) € U. In other words, 36 > 0
such that, ®,(u,v) < e Vu,v : 0 < u,v < 5. We take 6 < e. We can find N € N such that
aNe < §. Set T = fN. We can see that

p(Tr,Ts) = p(fNr, fNs) < aMp(r,s) when (r,s) € R.
Define my, : p(ry, f¥Tr,) < & ¥n > my, and set m = max{mq, my, ..., mx}.
IV ={rm, "m+1, "ma2, -, "'m+k, ---} then for any s € B(r,,,€) NV, s # rp,
p(fkTTm, fkTS) = p(TfkT‘m, Tfks) < aNp(fkrma fks) as (fkrmz fks) eR
< aNap(rm, s) < a¥p(rm,s) < a™e <,
yielding thereby

P(fkT'S: Tm) e, (p(fkTs, fkTTm)a p(fkTva Tm))

<
< 3,(5,0)Vk=0,1,2,..,N

which implies that
p(fF*Ts, ) < €,Vk=0,1,2,...,N.
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Also, for s = 70, p(f¥T7m,7m) <6 <e,Vk=0,1,2,...,N.

Thus we see that f*T maps V N B(r,,, ) into itself for all k = 0,1,2,..., N. In particular,
each iterate of T maps V N B(r,, €) into itself (as T = f). Now, if n > m be an arbitrarily
given natural number, i.e., n = Nk + M where k € Ny and 0 < M < N, then

AT = pNIEMp _ Mkt
Henceforth,
fPT(VNB(ry,e) = MYV N B(rm,e)
= MT(T*(V N B(ry,e))
C MT(VNB(rm,e)
C VNB(rm,e); as0 <M< N.
Therefore, f"T(ry,) € B(rm,€) Vn > m, i.e., rminN+k € B(rm,€) Vk € N.

As (E,p) is regular, diam(r,,,e) — 0 when ¢ — 0, which means the sequence {r,} is a
Cauchy sequence. Therefore, for each 7o € E(f,R)

8(p, f,ro) = sup p(f'ro, firo) = sup p(ri, ;) < oo,
1,J€EN i,jEN

as p(r;, ;) — 0 when ¢, j — oco. This accomplishes the proof. |

In view of Propositions 2.2 and Theorem [4.1] yields the following consequence.

Corollary 4.2. Let (E,p) be a regular symmetric space endowed with a binary relation R.
Let f be a self-mapping on E and the following conditions hold:

(a) E(f,R) is nonempty,

(b) (E,p) is R-complete,

(c) R is locally f-transitive and f-closed,

(d) either f is R is p-self-closed or R-continuous,

(e) there exists o € (0,1) satisfying the following:

p(fr, fs) < a(p(r,s)) Y(r,s) € R.

Then T possesses a fized point. Moreover, if
(f) f(E) is connected,
then the fized point of f is unique.

Proof. As (FE,p) is a regular space, using Proposition we infer that it has the property
(W3). Also, in view of condition (a), there is some ro € E(f,R). From proposition
we have d(p, f,79) < co. Hence we observe that all the hypotheses of Theorem hold.
Therefore, f possesses a unique fixed point in F. O

Theorem 4.2. In the hypotheses of Corollary if we replace assumption (f) by the
following weaker condition:

(f") f(E) is R¥-connected;

then the fixed point of f is unique.

Proof. Existence of fixed point is guaranteed from the assumptions (a)-(e) of Corollary
To show uniqueness let r, s be two fixed points of f such that r # s. We see that r,s € f(E)
as r = f(r) and s = f(s). As f(E) being R*-connected, there exist rg,r1,7r2,....,7x € E
satisfying the following conditions:

(i) ro=r,1x = s;
(ii) [rs,7it1] € Rforeach i (0 <i<k—1).
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Now, due to condition (ii), we have p(fr;, friv1) < a(p(ri,ri41)). Using induction, we

obtain p(f™r;, friy1) < &”p(ry,rip1). For € > 0, 36 > 0 such that
P, (u,v) < €Vu,v:0 < u,v <.

Let 0y =6 and define 6; (2<i <k —1):P,(u,v) < di—1 Yu,v:0 <wu,v <5
and set ’Y:min{51, 52, ceuy 5k—1}-
Also, set M'=max{Ny, No, ..., Ny_1} where,

p(f" 1 friv1) < a”p(risrigr) <y Vn > N;.
Hence, for n > M’, we have,

p(f"rr—1, ["5)

p(f"re—1, [Mrr) <7 < Op—1

p(frr—a, [s) < @, (p(f"rr2, fMrh—1), p(f" 71, [7'S))
< D7, 0k-1) < Pp(0p—1,0k-1) < dp—2
p(fri—s, f7s) < @, (p(f"rr—s, [ Th—2), p(f"Th—2, ["S))
< D,(y,0k—2) < Pp(0k—2,0k—2) < Ok—3
p(fre, f7s) < @, (p(f"r1, frr2), p(f 12, [7s))
< B,(7,60) < B, (6, 85) < 61
p(f'r, f's) < ®,(p(f"a, 1), p(f"71, f75))
< D,(7,601) < P,(61,01) <e.

This is true for any ¢ > 0. Therefore, p(f™r, f"s) = p(r,s) = 0, i.e., r = s. Hence, fixed
point of f is unique. O

Corollary 4.3. Under the universal relation Corollary[{.3 reduces to Theorem[2.3
Clearly, under the universal relation R = E? the hypotheses of Comllary@ hold trivially.

Finally, we present two examples in support of our newly proved theorems.
We adopt the example below to exhibit that Theorem is genuinely different as
compared to Corollary [£.2] as well as Theorem [£.2]

Example 4.1. Let E =[0,1). Define p: E x E — R* by

r+sifr#s,
plr,s)={ 1ifr=s#0,
0ifr=s=0.

Here, it easy to check that (E, p) is a symmetric space having the property (Ws). Consider
the binary relation R on E as given below:

1 1
=4 (—, = < .
R {(m,n)|m,neN75_m<n}
Also, define f: E — E such that

Then, for all (r,s) € R, we have
] r s 1
p(fr,fs) = d(i, 5) =+ - < —p(rs).
1

It follows that f is a contraction for the elements related by R with Lipschitz constant o = 5.

It can be easily seen that rest of the hypotheses of Theorem [[.1] are also satisfied and hence
f possesses a fived point. We can see that 0 is a fixed point of f.
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Observe that this map f in the above erxmaple is not a contraction on E for any
€ (0,1) but remains a relational contraction.

Here, it is worth mentioning that the above considered symmetric space (E, p) is not
a regular one as the associated basic triangle function ®, is not continuous at the origin
(0,0). The proof is simple and runs as follows:

The basic triangle function @, :Ei — Ry is defined as (see [§])
®,(u,v) =sup{p(r,s)| It € E: p(t,r) <wu, p(t,s) < v}

Consider u=v = L for some n(>2) € N, then

.

S|

11 1
@, (0 =) = sup{p(rys)| € B p(t,r) < - plt,s) <

Then forr =s= 3%1, there exists t = ﬁ € E=10,1) such that

1 1 1
t = t = — —_— —
plET) = pltys) = 5=+ 5= < =

so that 11 L1
O, (=, =) > pley —) = 1.
p(n7 n) - p(3n7 3n)
This is true for allm > 2. Therefore, lim ®,(L, 1) £ 0=®,(0,0). Thus we conclude that
n—oo

u}ggo (I)P(ua U) 7£ CI)P(Oa 0)'

Thus it is established that ®, is not continuous at the origin (0,0).

Now, we give another example to substantiate the utility of Theorem

Example 4.2. Consider E = R and define a symmetric p on E by p(r,s) = (r — 5)?, then
(E,p) is a regular symmetric space which is complete. Take a binary relation R on E as
follows:

R={(r,s) eR*:r >s5>0,r€Q}.
Define a mapping f : E — E by

£(r) { 2r, if r <0,

g, ifr>0.
Consider (r,s) € R, then

r s r o os\2 1 1
s :d—7—:<7—7) <7 — 2:7 5
o fs) =d(5,5) = (5-35) <5009 = 5(r,9)

i.e., f is a contraction (with Lipschitz constant o = % < 1) for those elements which are
related. It can be easily shown that all the hypotheses of Corollary [{.9 hold and hence f
possesses a unique fized point.

We note that the map f considered in the above exmaple is not a contraction on the
1

whole space (E, p) for any a € (0,1) but remains a relational contraction for o = 5.

An observation (on the existing results) we have made is presented below. Under the
universal relation R = E? Proposition reduces to the following result.

Proposition 4.2. Let (E,p) be a reqular symmetric space and f is a contraction mapping
on E. Then for each rg € E,

8(p, f.10) = sup p(f'ro, fire) < oo.
i,jEN



Relation-theoretic contraction principle in symmetric spaces 97

Henceforth, by using Propositions 2.2 and it can be concluded that the Theorem
which is in fact a variant (under linear contraction) of the fixed point theorem of
Bessenyei and Péles [8], becomes a corollary of Theorem [2.1

5. Conclusions

The existing literature already contains a multitude of fixed point theorems in sym-
metric spaces; especially using EA property, common EA property and common limit range
property (see [26] and references cited therein). Recently, the authors in [8] proved a fixed
point theorem in regular symmetric spaces without using the observations of Wilson [2] in
the form of some special properties; namely, (W3), (Wy), (HE), (1C), (CC) etc. Our results
are the first of their kind owing to the use of relational contractions to obtain fixed point
theorems in symmetric spaces. Also, our newly proved results exhibit that the two above
mentioned approaches are independent of each other.

Our results deduce many well known fixed point theorems if the underlined binary
relation is universal. The ideas used in our paper may be utilized in many relatively more
general situations (e.g. [37,[38]) by slightly varying the involved conditions. Thus there is
every possibility for similar results in near future.
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