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CENTRALIZED AND DISTRIBUTED H. STATE FEEDBACK
CONTROL LAWS FOR MULTI-AGENT SYSTEMS WITH
TIME-DELAY COMMUNICATION NETWORKS

Serena Cristiana STOICU (VOICU)!, Adrian-Mihail STOICA!

The main objective of this paper is to design a distributed controller for multi-
agent networks. The design of this controller involves solving two specific Riccati
equations and its structure depends on the connection between agents. Using the H.
control method, the influence of communication time delays on system stability is
analyzed. The characteristics of the designed controller are highlighted through two
configurations with a variable number of identical agents and with distinct
possibilities of their interconnection. Through the presented case study, it is shown
that the structure of the obtained distributed controller complies with the
interconnection mode of the agents.

Keywords: multi-agent systems, He type control, distributed controller, time
delays.

1. Introduction

Over the last decades, the interest in multi-agent systems (MAS)
development has increased significantly. Due to their capabilities to solve complex
problems, MAS are found in multiple applications of engineering control.
Therefore, these systems are widely used in various aerial and space missions like
search and rescue, surveillance and monitoring. Recent progress of this topic is
treated in surveys, such as [1], [2], [3], [4], where many aspects of these systems
are described. A few challenges faced by the control theory of multi-agent systems
are presented in [5].

In recent literature, the solutions proposed for networked control systems
refer to centralized and distributed controllers. A comparative study of these
methods is presented in [6]. The centralized controller design involves
interconnection of all agents. This fact implies process data difficulties as a control
decision-maker has to access information from all networked agents. This type of
control requires high performance of the central controller, becoming ineffective
for a large number of agents. Therefore, a single error of the central controller
influences the behavior of the entire network.
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Compared to the centralized case, distributed control requires a particular
structure, namely, the information transmission is achieved between certain agents.
The communication manner is described by specific matrix forms of graphs. Data
transmission is provided by communication channels. Many significant theoretical
results in distributed control of multi-agent systems are reviewed in [7].

Although the last period has contributed to the appearance of a considerable
amount of works regarding the distributed control, only a few of them are surveyed
in this paper. [8] uses the robustness properties of Linear Quadratic Regulator
(LQR) to guarantee the robust stability of multi-agent systems. This approach is
based on the distributed LQR results given in [9], where it is proved that the optimal
solution depends on the stabilizing solutions of two Riccati equations. It provides a
numerical example for a network of a large number of identical and dynamically
decoupled agents. The determination of the solution for the LQR problem for both
centralized and distributed control is treated in [10]. In order to emphasize the
differences between these approaches, two different configurations are considered
as a case study.

Distributed control has been treated in various works such as [11], [12],
[13], [14], [15], using different approaches and assumptions. For instance, the
results presented in [14] focuses on coupled Linear Matrix Inequalities to design a
distributed feedback controller to achieve H., performances. The aim of [15] is to
determine a distributed control law for a formation of autonomous vehicles with
double-integrator dynamics.

Due to recent developments in communication theory, the applications field
of distributed systems has been considerably extended. The present paper focuses
on distributed control features for multi-agent systems. To design the control
algorithms for networked control systems, the H. design method is used, taking
into consideration potential time delays in the communication channels.

In this paper, the distributed control characteristics are analyzed for two
different types of flight formation configurations, with variable number of agents
and distinct possibilities of interconnection. To reveal the capabilities of this design
approach, the presented numerical simulations use the decoupled dynamics of an
agent. Therefore, the performances of the networked system members for the
longitudinal motion are analyzed.

This paper is divided in several sections as follows. A few relevant notions
regarding H. standard problem that are used throughout this work are briefly
reminded in the second part. The following section concerns on the problem
formulation, specifying the required steps in centralized and distributed controller
design. The next part presents the proposed approach illustrated by a comparative
analysis of two different network configurations. The numerical simulations reveal
the time evolutions for each agent taking into consideration the time delays in
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communication channels. The concluding remarks are stated in the last section of
the paper.

2. Preliminaries

Consider a network of identical agents for which the dynamics of each one
1s written as:
y1(£) = Cx(t) + Duy(¢) (1)
y.(t) =x(t),t =0

where x € R™ is the state vector, u; € R™ denotes the exogenous input vector,
u, € R™2 represents the control variable, y; € RP1 is the quality output and y,
stands for the measured output. Furthermore, two conditions are assumed to be true:
C"D = 0 and DD = I. For DT D invertible, if the previous assumptions are not
satisfied, the control variable u can be changed and written as follows:

1
u=—(DTD)'DTCx + (D"D)zii 2)

Thus, the above conditions are fulfilled for the new control variable %. In order to
determine the solution of the Hx problem for the system (1), the following theorem
is proved in [16] for the more general case when the system (1) is corrupted with
state dependent noise.

Theorem 1. There exists a state-feedback gain F € R™2*™ 5o that the closed-loop
system obtained from (1) with u(t) = Fy,(t), namely

x(t) = (A+ ByF)x(t) + Byuy(t)
y1(8) = (C + DF)x(t)

3)

is stable and it has the property that for x(0) = 0 and for a given valuey > 0,
[ @ =P de <o @)

0
for allVu, € L%([0, ), R™) where L?([0, ), R™) denotes the space of all m,-
dimensional square-integrable functions f(t) if the Riccati equation

ATX + XA+ vy 2XB,BTX — XB,BIX +CTC =0 (5)

has a stabilizing solution X = 0 and

F = —-BIx. (6)
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3. Multi agent systems state feedback H- Control; Centralized and
Distributed Structures

Consider a network consisting of N identical agents with dynamics of form
(1), namely:
%, (t) = Ax;(t) + Byug(£) + Byuy(t)
y1i(t) = Cx;(t) + Duy(£) (7)
i (t) = x;(t),t =0,i=1,..,N

holding the two conditions CTD = 0 and DTD = I. The above dynamic system can
be written in a compact form as:

J1(t) = Cx(t) + Dty (¢) (8)
Y2(8) =x(0),t =20
where A=Iy®A B,=Iy®B,B, =1y ®B,,C=Iy,QCD=Iy®
~ T _ T _ T
D% =[x]..xy], %y =[u], ..ul,], @ =[u}, ..uj], ¥1=
[y{1 y{N]T, Yy = [yg1 ygN]T, where @ denotes the Kronecker product.
For y > 0, the following cost function is defined:

](ull; ey Uy, Uz, ---'uZN) = fooo[ LUy = v2uu(01») + (9)
+ 22 T (e (0) — 25 (0)T Qyy (i (1) — x5 (E)]dt

where Qy, i,j =1, ..., N are positive semidefinite weighting matrices. Using the
previous notations, one may check that (9) can be rewritten as follows:

@) = [ (H:OF - Pl ©F + 7O H0) de
0 . (10)
- [ (7080 - On® + BO®RO)d
with ’

N
Qi =C"C+ Z Qij

j=1,j#i
Qij =—Qiyi#j,i,j=1,..,N.

(1)
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Choosing Q;; of form Q; = P'P,i,j=1,..,N,i #j with P >0, the
matrix Q becomes:

C7C + (N — 1)PTP —PTP _PTP
~ T _ T _pT
g = _PTP CTC+(N=DPTP - PTP 12)
_pTp _pTp s CTC+ (N — 1)PTP

Following [16], we can define P € R*NV*nN

satisfying the equality
5TH — 7 _ T
P'P=Q-IyQCC. (13)

Then direct algebraic computations show that the cost function (10) may be
rewritten as

S i) = [ 12@F - yln @ (14)
0
where Z(t) = €X(t) + Dii,(t) and where

5 . 33 . On-Nxmz-N
€= [1N®c]andD'_l Iy®D l (1)

The matrices € and D defined above satisfy the conditions ETD = 0 and D™D = I
and thus one may use Theorem 1 for the multi-agent system

2(t) = A%(t) + Byiiy () + B,iy (t)
Z(t) = Cx(t) + D, (1) (16)
7.(t) =%(t),t =0

Using a similar reasoning as in [16] where it was assumed that the agents
dynamics include state-dependent noises, one obtains the following result
concerning the structure of the centralized H.. controller.

Theorem 2. There exists F € R™2N*™ g6 that the closed loop system obtained from
(16) with u(t) = FX(t), namely

x(t) = (A + B,F)%(t) + Bii,(t)
#(t) = (C + DPYX(8) (17

has the property that for X(0) = 0 and for a given value y > 0,
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[ Gzor - vim@md<o ()
0
for all Wy € LE ([0, ), R™N) ifthe Riccati type equation
ATX + XA+ y~2XBBTX — XB,BIX+ Q70 =0 (19)
has a stabilizing solution X > 0, and in this case,

F=-BIX. (20)

Furthermore, the stabilizing solution of the Riccati type equation (19) has
the following structure:

)?1 )?2 Xz

g=|X X - X 1)

where X1 = X1+ (N —1)X, and X, is the stabilizing positive semidefinite
solution of the Riccati equation

ATX, + X, A+ X,(y?B;BT — B,BDX, + CTC =0 (22)

and X, = X5, where Xy is the stabilizing solution of the following Riccati
equation:

(A+ (y®BiBi — B;B;)X1)" X, + X,(A+ (y"®B1B{ — B,B;)X;) (23)
+ NX,(y~%B,BI — B,B)X, + PTP = 0.

Then the centralized H state-feedback gain of the multi-agent system has
the expression

F, F, -« F,
F= F:'z F:l F:'z ’ (24)
F, F, - F

where

F= _B;(Xl + (N - 1)X2) (25)
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F, = BIX,.

In the following, one will focus the attention on the distributed controller
of the multi-agent system. The systems interconnection is defined by graph theory,
the communication way between agents being described by a matrix form.
Therefore, a data communication network is established between its agents, defined
as a graph described by the pair G = (V, E) where V represents the set of nodes that
define the network agents, V = {1, 2, ..., N},and E € V X V is the set of edges that
represent the interconnection between a pair of members, E € {(i,j):i,j € V,j #
i}. Each edge is marked by a pair of different nodes (V;, V;). If (V,-, V]-) €EE &
(17]-, V,-) € E, the graph is called symmetric (undirected) [18].

Several notions regarding graph theory and matrix properties are treated in
[18], [19], [20]. Some necessary specific matrix forms are briefly mentioned in this
section. According to [8], if i,j € V and i,j € E, then the agent i and the agent j
indicate two adjacent nodes.

The degree matrix, denoted D(G) € RV*N is a diagonal matrix consisting
of the number of connections for each agent. The adjacency matrix, A(G) € RV*N,
indicates the mode of connection between the nodes, namely if the pair of agents is
interconnected. The Laplacian matrix, L(G) € RV*N | defines the connection way
of the graph, given by L(§) = D(G) — A(G). These matrix forms are explained as
follows:

. . a;; = 0, Vievy
D(G) = {deg(vi),z =) A ={a;=0,(.j) €EVijeV,i*];

0,i #j a;j=1,(i,j)) EE,ViL,jEV,i#] (26)
deg (Vl)rl =]
L(G) ={-1,i#}], (Vi,Vj) adjacent

0, otherwise

The distributed control requires a certain structure, rather, the information
transmission is possible only between certain agents. Due to the limited
interconnection between agents, the feedback gain expression may be written using
the adjacency matrix defined above, as follows:

Fp=Iy®F +AG) ®F, (27)

The presence of null terms in the adjacency matrix introduces a new feature,
namely, if the obtained distributed controller guarantees the system stability and the
required Ho performances. Adopting as in [9] the parameterization

Fp=IyQF +aly®F, +bA(G) QF, (28)
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one will determine the domain of the parameters a and b for which the multi-agent
closed loop system is stable. One can notice that for a = 0 and b = 1, the gain
expressed in (28) coincides with (24). Using the expressions (25), it follows that:

FD =-Iy® (BzTX1) —((N,—1-=a)ly —bA(G) ® (BZTXZ) (29)

where N; = 1 4 d ;105 and d 4, 1S the maximum number of connections for an
agent.
Denoting Mg = (N — 1 — a)Iy — bA(G), the above expression becomes:

Fp=-Iy® (BzTX1) - Na,b b3y (BzTXZ)- (30)

Taking into account that By (W, ® (B3X2)) = Nap ® (B2B3X>), it
follows that:

AD =Iy® (A- BszTX1) - Na,b ® (BszTXZ)- 31

In order to determine the domain (a, b) for which the matrix 4 is Hurwitz
one may use Proposition 2 of [9] which states that if A = I,,®A4 and C = BQC
where 4,C € R™™ and B € R™™, then A(A+ C) = UL, A(A+ 2;(B)C) in
which A(+) denotes the spectrum of (+) and 4;(B) stands for the i — th eigenvalue
of B. Denoting by 4;,i=1,...,N the eigenvalues of Ng,;, from the above-
mentioned result it follows that

A(Ap) = UL, A(A - B,BYX, — 4;B,B}X,).
(32)

On the other hand, using the definition of V' it results that its eigenvalues

have the expressions:
Al-zNL—l—a—bui,izl,...,N (33)

where p;, i = 1, ..., N denote the eigenvalues of the adjacency matrix A(G). Then
the following algorithm proposed in [16] is used to determine the two parameters.
Step 1. Determine 87 < 0 and 8, > 0 such that A(Ap) € C, V8 € [y, 8;];
Step 2. Solve the systems of inequalities:
66+1—N,+a+bu, <0
6,+1—N, +a+byu; >0 (34)
b>0
and
S;+1—N,+a+bu, <0
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6,+1—N,+a+bu, >0 (35)
b<O0

where u; = min;u; and u, = max;u,;.

Although time delays represent a recently treated subject, the challenge
consists in developing command algorithms for multi-agent systems taking into
consideration their influences on the behavior of its members. According to [17],
the delays in the communication channels are defined as the time difference
between the moment when the information is transmitted and the one when it is
correctly received. Hence, in order to analyze their influence, one considers the
first-order delay modeled using the Padé approximation, whose transfer function is
defined as follows:
trs 2T TS (36)

C2+71s
where 7 is the time delay. Since the term x;(t — 7) is needed, it is obtained as:

4
xi(t—1) = ;xpi(t) — x; (1) (37)

e

with x,, — the state vector of the Padé approximation for agent i and Xp,(t) =
2
- ;xm(t) + x;(1).

4. Case studies

This part includes a comparative analysis of the time evolutions for each
agent. The influence of time delays in case of increasing the number of members
and modifying their interconnection is studied. Therefore, the two different network
configurations presented in Fig. 1 are considered.

Fig. 1 Network configurations

In order to emphasize the characteristics of this approach, the numerical
simulations use the decoupled dynamics of the system. In references as [21], [22],
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the complete dynamics of an agent is elaborated. Furthermore, the linearized model
of an air vehicle given in [23] is considered. Thus, the performances of the agents
are analyzed for the longitudinal dynamics characterized by the state vector x =
[u w q 6 h]T approximated by the linear system:

[‘ll W CI 0 h]TzAlong[u w q 0 h]T+Blong[5E (ST]T (38)

The capacity of the agents to maintain imposed values for certain states (u
and h) is guaranteed by the introduction of the integrators whose states are denoted
by 14 and 1,. The resulting system of form (1) is written as:

[ X ] Along 0 Ofrx 0 0 u Blong

. 5

ml=1-c, o ol|lm|+]|1 o][h“”“]+[ 0 ][5‘5]

11, —~C, 0 oflm] lo 1l7em 0 T
—A—/ Bl —'—BZ

K 0 1 0 X 0 0 (39)

T2l _10 0 1n1+0055]

8 0 0 0|, 1 0|l6;

|67 | 0 o ol"'* 0 1

y, =T ny T

Defining the system in this way, one can check that the two conditions
C"D = 0 and D'D = I are fulfilled. The adjacency matrix corresponding to the
configuration in Fig. 1a is given below.

A(G) =

= O
= O

(40)

_ oo
_ oo K

0 0

In order to obtain the distributed controller, the Riccati equations (22) and
(23) are solved for y = 100. The set of parameters (a, b) satistying the inequalities
(34) arce a=2 and b = 0.1, with §; = —0.3, 6, = 0.3. The stability of the
network is proved by Re(4d) <0 for the eigenvalues of the matrix (31)
corresponding to the closed loop system. The distributed controller obtained for this
configuration has the following structure:

F,L, F, F, 0
. | R o0 R
F=lr, 0 F F, (41)

0 F, F, F
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For the obtained simulations, null initial conditions (altitudes and velocities)
of the agents are considered. The performances of the controller are to achieve and
maintain certain imposed constrains (h = 10 m and u = 3 m/s) during flight
simulation. The time evolutions are identical for all members due to the equal
number of connections for each agent and the same initial conditions. The offset
described by the red line (denoted by the index D) is caused by the introduction of
time delay in the communication channels. The delay has been introduced using the
Padé approximation (36) with T = 0.15 sec. These features are illustrated in the
comparative representations of velocity (Fig. 2) and altitude (Fig. 3).
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Fig. 2 Time response of velocity Fig. 3 Time response of altitude

For the configuration in Fig. 1b where d,,,,,, = 7, the way of agents’
interconnection is defined by the following adjacency matrix.

0 1 11 11110 0
1000 111111
100 00 0O0O0UO0TUO
100 00 0O0O0UO0UO
|11 00 00 0 0 0 0
‘A(g)_11oooooooo (42)
11000 000UO0TO0
11000 000O0O0
0100 00UO0TUO0TU 0O
0 1. 0 0 000 0 0 O

The values of the parameters for which inequalities (34) hold are: a =
6.92,b = 0.15,6; = —0.5,6, = 0.5. The structure of the distributed controller is
obtained of form (43).

Analyzing the configuration in Fig. 1b, one can see that agent 1, with the
maximum number of connections, is not connected with agents 9 and 10. This fact
is denoted by the terms F(1,9) = 0 and F(1,10) = 0 in the controller structure. For
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all positions corresponding to failure communication, the related terms in form (43)
are null.

F, F F, F, F, F;, F, F, 0 0]
F, \ o 0 F,b F, F, F, F, F,
FF o OFR 0 0 0 0 0 0 O
F 19 o FF o 0 0 0 0 O
= _|F, 2. 0 0o FL 0 0 O 0 O
F= Fb 2.0 0 o b 0 0 0 O (43)
F, , 0 0 0o o F O 0 O
Fb 2 0. 0 0 0 0 F 0 0
lo F, 0 0 0 0 0O 0 0O F

Maintaining the same imposed conditions, the comparative time
representations of the two states (altitude and velocity) illustrated in Fig. 4 and Fig.
5 are obtained. One can note the offset caused by the time delay, without affecting
the network stability and the achievement of imposed objectives.

a5 Time response of velocity 12 . Time responss of altituds
T T T T

s L L L L L ' ' ' '
o 1 2 3 4 5 5 7 8 9 10 i 1 2 3 a 5 & 5/ 3

Time [s]

Fig. 4 Comparative time response of velocity Fig. 5 Comparative time response of altitude

5. Conclusions

The present paper focuses on the solution of He problem for multi-agent
systems. The distributed controller design takes into consideration the presence of
time delays in communication channels. The numerical results presented in this
work assume the comparative analysis of the agents’ behavior. In order to highlight
the characteristics of the obtained controller, two different configurations with
variable numbers of agents and with distinct interconnection possibilities are
considered.

The new issue introduced by the failure communication refers to the
capability of the designed controller to guarantee the system stability. Regarding
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the structure of distributed controller for both analyzed configurations, it can be
observed that the absence of connections between agents according to the
corresponding adjacency matrices is denoted by the null terms in the gain matrices.

The results show the influence of time delays on the two states stabilization,
their introduction being described by the offset between the case with
communication delays and the ideal one. Regarding the required time to stabilize at
certain imposed values, the sensitivity of the latter configuration to time delays is
observed, for which slower evolutions are identified. Furthermore, it is proved that
regardless the presence or absence of time delays, the multi-agent system stability
is obtained.
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