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THE CNOIDAL METHOD WITH APPLICATION TO SONIC
COMPOSITES

Ligia MUNTEANU', Valerica MOSNEGUTU?, Veturia CHIROIU®, Ruxandra
ILIE*

The sound attenuation in a sonic composite is studied by using the cnoidal
method combined with the features of the piezoceramic theory. The solutions of
nonlinear equations which govern the behavior of the sonic composites are written
as a sum of a linear and nonlinear cnoidal functions. A sonic composite consists of
an array of acoustic scatterers embedded in an epoxy matrix. Acoustic scatterers
are piezoceramic hollow spheres made from functionally graded materials - the
Reddy graded hollow spheres. The influence of the Reddy gradient index on the full
band-gap size is studied using the cnoidal representations of the solutions.

Keywords: cnoidal method, sonic composites, piezoceramic scatterers, full band-
gap.

1. Cnoidal method

The mathematical and physical structure of the inverse scattering
transform solutions has been extensively studied in both one and two dimensions
[1-4]. The theta-function representation of the solutions is describable as a linear
superposition of Jacobi elliptic functions and additional terms, which include
nonlinear interactions among them. The cnoidal method is a generalization of the
Fourier series with the cnoidal functions as the fundamental basis function [5].
This is because the cnoidal functions are much richer than the trigonometric or
hyperbolic functions, that is, the modulus m of the cnoidal function, 0 <m <1,
can be varied to obtain a sine or cosine function (m=0), a Stokes function

(m=0.5) or a solitonic function, sech or tanh (m =1).

Legendre was the first who works with Jacobi elliptic integrals of the first
and the second kinds E(z)and F'(z) respectively, being followed by Abel (1802—

1829) and Jacobi (1804—1851). Jacobi inspired by Gauss, discovered in 1820 that
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the inverse of F(z) is an elliptical double-periodic integral F~'(w)=sn(w)
Jacobi compares the integral
@
1
J.(1 msin 09)”2 M

where 0<m <1, to the elementary integral

4
dt
W__!.(l_tz)l/z @)
and observed that (2) defines the inverse of the trigonometric function sin if we
use the notations ¢#=sinf and y =sinw. He defines a new pair of inverse

functions from (1)
sny=sing, cnv=cos¢@. 3)
These are two of the Jacobi elliptic functions, usually written sn(v,m) and
cn(v,m) to denote the dependence on the parameter m . The angle ¢ is called
the amplitude @=amu. We also define the Jacobi elliptic function

dnv =(1-msin’ @)"*. For m =0, we have

cn(v,0) =cos @ = cosv, sn(v,0) =sin @ =sinv, dn(v,0) =1, (€3]
and for m =1
cn(v,1) = sechv, sn(v,1) = tanh v, dn(v,1) = sechv. &)
The functions snv and cnv are periodic functions with the period
2 dé’ /2 dg
J ———7 = J . The later integral is the complete elliptic
o (1—=msin” @)

o (1-msin® 0)"*
integral of the first kind

K(m) = ”J/z de

A 6
o (1-msin® 0)"* ©
The period of the function dnv is 2K . For m =0 we have K(0)=7x/2.

6 . Thus,

. . . . 1
For increasing of m, K(m) increases monotonically K(m) zalog

this periodicity of sn(v,1) and cn(v,1) =sechv is lost for m =1, so K(m) —> .
Now, let us consider the Weierstrass function g@(¢#) which verifies the
equation
8.02 24803_g250_g3~ (7
If e,e,,e, are real roots of the equation 4)’-g,y—g,=0 with

e, > e, > e, , then (7) can be written as
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Ioh =4(p-e)p-e)p-e), (3)
with g, =2(e +e; +¢}), g, =4ee,e,, e +e, +e, =0. IntroducingA = g; —27g>
when A >0, equation (9) admits the elliptic Weierstrass function as a particular
solution, which is reducing in this case to the Jacobi elliptic function cn

Pt+0"5g,,8,)=e—(e, —e3)cn2(‘/e1 —et+0") )

where &' is an arbitrary real constant. If we impose initial conditions

P0)=6,, 9'(0)=0,. (10)
then a linear superposition of cnoidal functions (9) is also a solution for (7)
0,, :2Zakcn2[a)kt;mk], (11)

k=0
where the angular frequencies @, , and amplitudes ¢, depend on 6,, 6, .

When A <0 the solution of (8) is
1+cn(2t\H, +9")
p=e+H, >
l1-cn(2tH, +0")

, H2=3622—%.

) 1
with m=——3i

2

Consider now a generalized Weierstrass equation with a polynomial of n
degree in 6(¢)

0> =P(0). (12)

The functional form of solutions of (12) is determined by the zeros of the
right-hand side polynomial.

Osborne [1] discussed this method for integrable nonlinear equations that
have periodic boundary conditions, and Munteanu and Donescu [5] have extended
this method to nonlinear partial differential equations that can be reduced to
Weierstrass equations of the type (12).

The general solution of (12) may be written in the terms of the theta

function representation [6]
2

2 d
e(xat):zdxz 10g®n(771,772’--"77;7)9 (13)

where A=a/6f,and O is the theta function defined as

.~ 1
®n(771>772="'=77n): Z eXP(le,ﬂﬁEZM,—BUM,—]’ (14)
i=1

M e(—0,0) i,j=1
with n the number of degrees of freedom for a particular solution of the KdV
equation, and
n=kx-—wt+¢, , 1<j<N. (15)
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In (15), &, are the wave numbers, the @, are the frequencies and the ¢, are

the phases. Let us introduce the vectors of wave numbers, frequencies and
constant phases
k=[k.k,,...k,],0=[0,0,,..0,],
$=1hroes, 11 = [0 1ssee, 1
The vector 77 can be written as 7 =kx—wt+¢.
Also, we can write Mn=Kx-Qt+®, M =[M,,M,,...M,], K =Mk,
Q=Moo ,d=M¢.
The integer components in M are the integer indices in (17). The matrix

B can be decomposed in a diagonal matrix D and an off-diagonal matrix O, that
is

(16)

B=D+0. (17)

THEOREM [5]. The solution 6(x,t) of equation (12) can be written as

2

20
0Cx.0) == —~10g®,01) = 6, (1) +6,, (7)., (18)

where 0, represents a linear superposition of cnoidal functions
20’ . 1
0,,(n)=——logG(n), G(n)= Zexp(ﬂ\/[n +—MTDMJ ,
A Ox m 2
and 6, represents a nonlinear interaction among the cnoidal functions
2
0, ()= 22 log | 1+ 7 |
ot G(n)
e Fn.C (19)
0, =22 log [ 1572 |
ot G(n)
C=exp(%MT0Mj—1. (20)

Consider now a nonlinear system of equations that govern the motion of a
dynamical system
%zFi(Q,HZ,...,HH), i=lL..,n, n=3, (21)

with xeR", t€[0,T], T € R, where F' may be of the form
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n
Za’l’ p Z ipq 17 + Z cipqrepeqer +

Pq=1 Pq,r=1 (22)

n

+ Z d,.0,0066+ > e, .00600,+.

ipgrl
psqsr,=1 psqsrslm=1

with i=1,2,...,n, and a,b,c... constants.

The system of equations has the remarkable property that it can be reduced
to Weierstrass equations of the type (12). In the following, we present the cnoidal
method, suitable to be used for equations of the form (21). To simplify the
presentation, let us omit the index i and note the solution by 6(¢) .

We introduce the function transformation
2

0= 2%10g®n(t), (23)
where the theta function ©, (¢) are defined as
0O, =1+exp(imt + B,)),
0, =l+exp(iwt+ B,)) +exp(io,t + B,,) +exp(o, + @, + B,,),
0, =1+exp(iot+ B, +exp(iw,t + By, ) +exp(iwyt + By;) + (24)
+exp(w, + o, + B),) +exp(w, + @, + B;) +exp(w, + @, + B,;) +

+exp(w, + o, + o, + B, + B, + B,;),

and
0,6 = Z exp(lea)tJr ZB MM ), (25)
M e(—0,0) 1</
2
@, o, 2
exp B, = ,exXpB, =w; . (26)
@, + a)

Further, consider (17) and write the solution (23) under the form
2

o(1) =2%log ®, (1) =0, (1) + 6, (). 27)

for 7 =—wt+¢. The first term 6,

lin

represents, as above, a linear superposition of
cnoidal waves. Indeed, after a little manipulation and algebraic calculus, (23)

gives
" k+1/2 i 2
a { cos(2k +1)—L ) 28
lm lzl 1 [ \/7 [ 21(+1 ( ) Kl ( )

In (28) we recognize the expression [7, §]
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6,, =Y aen’[wt;m], (29)
=1
with

!

K /2 du
I exp( i KJ,K K ’([ J1-msin’u
The second term 6,
among cnoidal waves. We write this term as
2d—2210g(1+F(t)Jz fien’(@t,m) (30)
dr G@)) l+ycen’(ot,m,)
If m, take the values O or 1, the relation (30) is directly verified. For

,K'(m)=K(m), m+m, =1.

represents a nonlinear superposition or interaction

0<m, <1, the relation is numerically verified with an error of |e|<5x107.
Consequently, we have

Zﬂkcnz[a)kt; m, |
0,,(x,1) == . (31)
1+ z Acn’lot;m, )

k=0

As a result, the cnoidal method yields to solutions consisting of a linear
superposition and a nonlinear superposition of cnoidal functions.

2. Formulation of the problem

In this paper we solve the nonlinear equations of a sonic composite by
using the cnoidal method. The task of our study is to analyze the influence of the
Reddy gradient index on the full band-gap size. The proposed task is investigated
by using the theory of piezoelectrics coupled with the cnoidal method.

A sonic composite is a finite size periodic array composed of scatterers
embedded in a homogeneous material [9-11]. A sonic composite exhibits the full
band-gaps, where the sound is not allowed to propagate due to complete
reflections. The band-gaps are defined by well-known Bragg reflections which
occur at different frequencies inverse proportional to the central distance between
two scatterers. If the band-gaps are not wide enough, their frequency ranges do
not overlap. These band-gaps can overlap due to reflections on the surface of
scatterers as well as due to wave propagation inside them. Then, any wave is
reflected completely from this periodic array of acoustic scatterers in the
frequency range where all the band-gaps for the different periodical directions
overlap. This is the fundamental mechanism for the formation of a full band-gap
which is required for photonic and sonic crystals. The complete reflection on the
boundaries of scatterers is due to the full band-gap property itself independent of
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the incident angle. The evanescent field distributes across the boundary of the
waveguide into the surrounding composite by several times the central distance
between two scatterers.

The scatterers are made from functionally graded materials with radial
polarization which support the Reddy law [12, 13]. For a single sphere made from
a functionally graded material, the free vibration problem was analyzed in [14-
16].

Absorption of sound is governed by visco-thermal effects. The sound
absorption can be understood by conversion of the wave energy into heat. In sonic
composites, the generation of full band-gaps creates sound blocking mechanisms
only by full reflection of sound. In this way the waves are prevented to penetrate
through material. The full band-gap generation is caused by evanescent modes
and will not easily lead to broadband absorption of sound. The present paper is
not considering the visco-thermal effects.

Let us consider a composite thin plate consisting of an array of acoustic
scatterers embedded in an epoxy matrix [9]. The acoustic scatterers are hollow
spheres made from isotropic piezoelectric ceramic, while the matrix is made from
isotropic epoxy resin (Fig. 1). The sonic plate consists of 72 local resonators of
diametera . A rectangular coordinate system Ox,x,x; is employed. The origin of

the coordinate system Ox,x,x, is located at the left end, in the middle plane of the
sample, with the axis Ox, in-plane and normal to the layers and the axis Ox, out-

plane and normal to the plate. The length of the plate is L, its width is d, while
the diameter of the hollow sphere is @ and its thickness is e > a.

For sonic crystals consisting of local resonators, we reduce the total
number of time steps in the simulation since the attenuation is mostly due to local
effects within the scatterers. In order to avoid unphysical reflections from the
boundaries of the specimen, we have implemented the absorbing boundary
conditions in the x, -direction, at x, =0 and x, = L. A transducer and a receiver

are located at x, =b and x, = L—b, respectively. The role of the transducer is to
inject into the plate the plane monochromatic waves propagating in the x,-
direction.
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Fig. 1. Sketch of the sonic plate.

The displacements are registered at both sides of the plate. The
sound attenuation coefficient is obtained from the ratio of the displacements at the
receiver and at the input transducer. The basic equations of 3D spherically
isotropic piezoelasticity for a sphere are [9]

r0gy =CSpy +C,S,, +CsS,, + 1,79,

r0,, =CySy +C,\S,, +CiS,,. + 379,

10, = Ci3S5 + C3S,, + C33S,, + f379,.,

10,y =2C,S,0+ fis9y,10,, =2C,S,, + fiscsc 08, (32)

104, = 2Cs5S4,, "Dy = 2C158,5 =GPy,

rD,=2fS,,— ¢, cscop,,

rD, = f3,Ss +f31S¢7¢ + /335, _433’”¢,r’
where o is the stress tensor, ¢ is the electric potential, D, is the electric
displacement vector, C, are the elastic constants, Cis =(C,, —C,,)/2, f; are the
piezoelectric constants f;, ¢ are the dielectric constants, and i=r,0,¢. The

elastic, piezoelectric and dielectric constants are arbitrary functions of the radial
coordinate ». On denoting the components of the strain tensor and displacement
vector by &, and u,, i =r,0,¢, respectively, the quantities §; related to the strain

tensor &, are defined as

S, =re, =ru

rr

Sop =TEgg =Up g TU,,

rro
S,p =T€,, =cscOu,  +u, +u,coto,

28, =2r&.y=u,,+ru,, —u,, (33)
28,,=2re,, =cscu, ,+ru,, —u,,

28,, =2re,, =cscOu, , +u,,—u,coto.



The cnoidal method with application to sonic composites 279

Denoting the density of the material by p, which is assumed to be an

arbitrary function of r, the equations of motion become
(ro,.), +esct(oy,,), +(04) 4 +20,,+(0y —0,,)c0t0 = prii,,

(ro,,), +cscb(o,,) ,+(0,,),+20,,+20,, cotl = pri, (34)

o, tescbo,, +0,,+0,—-0,4—0,, +0,,cot0 = pri.

The charge equation of electrostatics is given by
D,,+D, +cscO(D,sinb),+cscdD, , =0. (35)
The Chen functions 7/, Gand w, and the stress functions X,, X, are
defined as [15]
u,=—cscf ,-G,, u,=F,—csc0G,,, u. =w,
0,y =—cscbo, ,—0,,, O,
are used in order to simplify equations (32)-(35). Therefore, these equations can
be separated into two independent sets of equations

=0,,—csclo,, .

¥4, =VA,rB, = PB, (36)
where
2 2 az
-2 -C . (V°+2 —
B=[ro,,%,.G,w,D ¢, V= wV 2 +rpog |
C, 1
2 2
and V? = 0 5 +cot9i+csczﬁ >
06 op

It should be noted that the first equation (36) is related to two state
variables, namely 4 =[Z,, F]", while the second set of equations (36) are related
2,,G, w,rD,,,¢]T.

The nonzero components of the matrix P are given by
2

0
R, =2p-1, F, =V?, A, =k1V2’ P14=—2k1+r2p¥,

to the following six state variables B =[ro

>

2

0
2Ps=-F, =2y, P,=p, B,=-2, P23=k2V2—2C66+r2p—

Rs = o’
Py=-k, B,=C,, B;=B,=-P;=1, B=Cyuf,, B,=a'¢,,
Py=pV', P,=-28, Ps=a'fy, P,=C fiV’, By=kV’,
Fy =06_1f33, F :WZ s Bes z_a_lcaw

where
a=Cy,¢5, +f3§ , B= ail(clsgﬁ +fafs), v = ail(c13f33 -Cyu /i)
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ki =2Csf+ f37)—(C +Cy), ky =05k —C, ky =G, + 1§C4:tl .

The scatterers are made from functionally graded materials with radial
polarization, which support the Reddy law given by [12, 13]

A A
M=M,u"+M (1-u"), (37)

where u=(b-r)/(b—a) , A is the inhomogeneity parameter or gradient index,
M ,and M are material constants of two materials, namely PZT-4 and ZnO [17,
18]. The case A =0 corresponds to a homogeneous PZT-4 hollow sphere and
A — o, to a homogeneous ZnO hollow sphere.

The constitutive equations for epoxy-resin material are given by

e e e 2
t, =Neud, +2ue, + A%, +3B%g e, + Ced, (38)

where 4 is the stress tensor, & is the strain tensor, A° and x° are the Lamé
elastic constants, and A°, B® and C° are the second-order elastic constants. The
motion equations can be recast as

P, = Lij» (39)
where p° is density of the epoxy material and u is the displacement vector.

At the interfaces between the hollow spheres and the matrix, sharp
periodic boundary conditions for the displacement and traction vectors are added.
After algebraically manipulations, the set of equations (36-39) are reducing to
equations of the form (21) and (22).

3. Results

Consider a plate with the length L =18cm and widthd =11cm, while the
diameter of the hollow sphere and its thickness are a =10.5mm ande =12mm ,
respectively. The numerical results are carried out for the following constants:

for PZT-4
C, =13.9x10""N/m*, C, = 7.8x10"N/m?, C,= 7.4x10"°N/m?,
C,; =11.5x% 10"°N/m*, C,, =2.56x 10"°N/m?, fis = 12.7C/m?,

fy=-52Cm*, f,,=151C/m*>, ¢, =650x10"Fm, ¢, =560x10""F/m,
p =7500kg/m’,

for ZnO
C, = 20.97x10"N/m?, C,= 12.11x10""N/m?, C, = 10.51x10" N/m?,
Ci; =21.09x10""N/m?, C, =4.25x10""N/m?, fis =-0.59C/m*,

fiy=-0.61C/m*, f,,=1.14C/m>, ¢, =7.38x10"F/m, ¢,=7.83x10""F/m,
p =5676kg/m’,
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and for epoxy-resin

A°=4231x10°N/m*, u°=3.76x10°N/m*, A°=2.8x10°N/m’, B‘=
9.7x10°N/m*, C° = —-5.7x10°N/m’, and p° =1170kg/m’.

The independent sets of equations (36) yield two independent classes of
free vibrations [14]. The first class does not involve the piezoelectric or dielectric
parameters, being identical to the one for the corresponding spherically isotropic
elastic sphere. The second class depends on the piezoelectric or dielectric
parameters. With the increase of the gradient index A, the natural frequencies
increase for all modes and functionally graded laws, the variation being more
significant when A <10. For 4 — o« the variation of natural frequencies is not
significant with respect to those of 4 =10. It is seen that for a piezoceramic
hollow sphere, the piezoelectric effect consists in increasing the values for the
natural frequencies in both classes of vibrations. If &=2r/a increases, the
natural frequencies increase for the first class of vibrations and decrease for the
second class.

We have compared different boundary conditions to test the
effectiveness of non-reflecting boundary conditions implemented in the
simulation. The output of the coupled modes is compared with the input waves, as
shown in Fig. 2, in the case of Reddy law for 4 =10. We see that the ratio of the
coupled and input waves is —3 to —18 dB around the frequency of 8kHz to 8.8kHz
in the band-gap of the sonic material.

Uj\v/\ i i i
15/ i M

300

arnplitude [dB]

mput wave
— coupled wave
L — coupled-input
245 1 1 1 L I ! I I L 1 L 1
7 72 74 76 18 4 82 84 Bé 8B 9

frequency [kHz]

band gap

Fig. 2. Input and coupled waves for sonic composite in the case of Reddy law for

A=10.
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full band-zap

frequency [Hz]
frequency [kHz]

full band-gap

14 07 0 , 0 07 14
. Re(ka/2n _
-Iim(ka/2m) k ) -Iim(ka/2m)
Fig. 3. Band structure for the sonic composite in the case of Reddy law for 4 =10 (grey)
and A =5 (yellow).

The effect of the gradient index 4 on the full band-gap size is studied next.
The size variation is clearly observed for 4 <10, while for 4 — o the changes
are not significant.

Using the Joannopoulus representation for the band-gap structure with the
evanescent modes having exponential decay, Fig. 3. displays the band structure
for A=5(yellow) andA=10(grey) (&, =0.3). The modes present purely

imaginary wave vectors. The central grey region is the full band-gap given by the
real part of the wave vector constrained in the first Brillouin zone for each
frequency. The left region represents the imaginary part of the wave vector for
longitudinal direction frequency (tension/compression), while the right region is
the imaginary part of the wave vector for transverse direction frequency (shear).
The red lines represent the imaginary part of the wave vector of the evanescent
modes inside the bad-gap. If we want to have a full band-gap, we must have
structures with band-gaps for both longitudinal and transverse waves in the same
frequency region. The full band-gap has different lengths and frequency locations
for different values of A4 <10. The numerical investigations show us that a
maximum size of the full band is obtained in the vicinity of 4 =9.7. In this case
the full band-gap is higher than in the case of A =10 with 7%.

Finally we consider now a real sonic composite, namely the sonic-crystal
bulk of acrylic resin rods in air [19, 20].
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Fig. 4. The band-gap structures of a sonic crystal of acrylic resin rods in air.

The materials considered are the acrylic resin. The lattice constant is 24.0
mm, the radius of the scatterers is 10.2 mm and their length is approximately 30
cm. Both the top and the bottom sides have sufficient amounts of glass wool to
effectively absorb the sound waves of oblique wave fronts. A straight wave-guide,
as well as a bending wave-guide, was constructed in this sonic-crystal bulk. The
experimental results show a clear and deep full band-gap in the transmission
spectra, as illustrated with continuous green line in Fig. 4. The measured full
band-gap was 6.8-9.5 kHz, or 0.475-0.67 in normalized frequencies with a
transmission ratio smaller than —25 dB. The experimental band-gap is 20% wider
than the theoretical result of Miyashita, Taniguchi and Sakamoto (MTS) [19]. In
the MTS analysis, the wave propagation is simulated by finite element method
with the open-space conditions normally encountered. We see that the
experimental band-gap is 8% wider than the theoretical result obtained by the
method proposed in this paper.

4. Conclusions

The cnoidal method combined with the piezoceramic theory was
implemented in this paper for simulating and analysing the behaviour of a sonic
plate with an array of acoustic piezoceramic hollow spheres embedded in an
epoxy matrix. The scatterers are made from functionally graded materials with
radial polarization. The influence of the gradient index of the Reddy material on
the full band-gap size is studied using the cnoidal representations of the solutions.

Finally, a real sonic-crystal bulk of acrylic resin rods in air has been
analyzed to validate the theory. The present method can be further extended to
investigate other sonic composites with different types of scatterers embedded in
arbitrary, homogeneous media.
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