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THE CNOIDAL METHOD WITH APPLICATION TO SONIC 
COMPOSITES 

Ligia MUNTEANU1, Valerica MOŞNEGUŢU2, Veturia CHIROIU3, Ruxandra 
ILIE4 

The sound attenuation in a sonic composite is studied by using the cnoidal 
method combined with the features of the piezoceramic theory. The solutions of 
nonlinear equations which govern the behavior of the sonic composites are written 
as a sum of a linear and nonlinear cnoidal functions. A sonic composite consists of 
an array of acoustic scatterers embedded in an epoxy matrix. Acoustic scatterers 
are piezoceramic hollow spheres made from functionally graded materials - the 
Reddy graded hollow spheres. The influence of the Reddy gradient index on the full 
band-gap size is studied using the cnoidal representations of the solutions.  

 

Keywords: cnoidal method, sonic composites, piezoceramic scatterers, full band-
gap. 

1. Cnoidal method 

The mathematical and physical structure of the inverse scattering 
transform solutions has been extensively studied in both one and two dimensions 
[1-4]. The theta-function representation of the solutions is describable as a linear 
superposition of Jacobi elliptic functions and additional terms, which include 
nonlinear interactions among them. The cnoidal method is a generalization of the 
Fourier series with the cnoidal functions as the fundamental basis function [5]. 
This is because the cnoidal functions are much richer than the trigonometric or 
hyperbolic functions, that is, the modulus m  of the cnoidal function, 0 1m≤ ≤ , 
can be varied to obtain a sine or cosine function ( 0)m ≅ , a Stokes function  
( 0.5)m ≅  or a solitonic function, sech or tanh ( 1)m ≅ .  

Legendre was the first who works with Jacobi elliptic integrals of the first 
and the second kinds ( )E z and ( )F z  respectively, being followed by Abel (1802–
1829) and Jacobi (1804–1851). Jacobi inspired by Gauss, discovered in 1820 that 
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the inverse of ( )F z  is an elliptical double-periodic integral 1( ) sn( )F ω ω− =  
Jacobi compares the integral  
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where  0 1m≤ ≤ , to the elementary integral 
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ϕ

=
−∫                                            (2) 

and observed that (2)  defines the inverse of the trigonometric function sin  if we 
use the notations sint θ=  and sin wψ = . He defines a new pair of inverse 
functions from (1) 

sn sinv ϕ= , cn cosv ϕ= .                                           (3) 
These are two of the Jacobi elliptic functions, usually written sn( , )v m  and 

cn( , )v m  to denote the dependence on the parameter m .  The angle ϕ  is called 
the amplitude amuϕ = . We also define the Jacobi elliptic function 

2 1/ 2dn (1 sin )v m ϕ= − . For 0m = , we have 
cn( ,0) cos cos , sn( ,0) sin sin , dn( ,0) 1,v v v v vϕ ϕ= = = = =           (4)                                  

and for 1m =  
cn( ,1) sech , sn( ,1) tanh , dn( ,1) sech .v v v v v v= = =                (5)                                  

The functions sn v  and cn v  are periodic functions with the period                
2 / 2
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π πθ θ
θ θ
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− −∫ ∫  The later integral is the complete elliptic 

integral of the first kind 
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The period of the function dn v  is 2K . For 0m =  we have (0) / 2K π= . 

For increasing of m , ( )K m  increases monotonically 1 16( ) log
2 1

K m
m

≈
−

. Thus, 

this periodicity of sn ( ,1)v  and cn ( ,1) sechv v=  is lost for 1m = , so ( )K m →∞ .  
Now, let us consider the Weierstrass function ( )t℘  which verifies the 

equation 
2 3

2 34 g g℘ = ℘ − ℘− .                                           (7) 
If 1 2 3, ,e e e  are real roots of the equation 3

2 34 0y g y g− − =  with 

1 2 3e e e> > , then (7) can be written as 
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2
1 2 34( )( )( )e e e℘ = ℘− ℘− ℘− ,                                           (8) 

with 2 2 2
2 1 2 32( )g e e e= + + ,  3 1 2 34g e e e= , 1 2 3 0e e e+ + = . Introducing 3 2

2 327g gΔ = −  
when 0Δ > , equation (9) admits the elliptic Weierstrass function as a particular 
solution, which is reducing in this case to the Jacobi elliptic function cn  

2
2 3 2 2 3 1 3( ; , ) ( )cn ( )t g g e e e e e tδ δ′ ′℘ + = − − − +              (9)                                 

where δ ′   is an arbitrary real constant. If we impose initial conditions  
0 0(0) , (0) pθ θ′℘ = ℘ = ,                                            (10) 

then a linear superposition of cnoidal functions (9) is also a solution for (7) 
2

0
2 cn [ ; ]

n

lin k k k
k

t mθ α ω
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= ∑ ,                                            (11) 

where  the angular frequencies kω , and amplitudes  kα depend on 0θ , 0pθ  . 
When 0Δ <  the solution of (8) is  

2
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t H
e H

t H
δ
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′− +
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H

= − , 2 2
2 23

4
gH e= − . 

Consider now a generalized Weierstrass equation with a polynomial of n  
degree in ( )tθ  

2 ( )nPθ θ= .                                           (12) 
The functional form of solutions of (12) is determined by the zeros of the 

right-hand side polynomial.  
Osborne [1] discussed this method for integrable nonlinear equations that 

have periodic boundary conditions, and Munteanu and Donescu [5] have extended 
this method to nonlinear partial differential equations that can be reduced to 
Weierstrass equations of the type (12). 

The general solution of (12) may be written in the terms of the theta 
function representation [6] 

2

1 22

2 d( , ) log ( , ,..., )
dx n nx tθ η η η

λ
= Θ ,                                           (13) 

where / 6λ α β= , and Θ  is the theta function defined as 

1 2
( , ) 1 , 1

1( , ,..., ) exp i
2

n n

n n i i i ij j
M i i j

M M B Mη η η η
∈ −∞ ∞ = =

⎛ ⎞
Θ = +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ,      (14)                                  

with n  the number of degrees of freedom for a particular solution of the KdV 
equation, and 

j j j jk x tη ω φ= − + , 1 j N≤ ≤ .                                           (15) 
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In (15), jk  are the wave numbers, the jω are the frequencies and the jφ are 
the phases. Let us introduce the vectors of wave numbers, frequencies and 
constant phases 

1 2 1 2

1 2 1 2

[ , ,..., ], [ , ,..., ],
[ , ..., ], [ , ,..., ].

n n

n n

k k k k ω ω ω ω
φ φ φ φ η η η η
= =

= =
                       (16) 

The vector η  can be written as kx tη ω φ= − + .                                                
Also, we can write M Kx tη = −Ω +Φ , 1 2[ , ,..., ]nM M M M= , K Mk= , 

MωΩ = , MφΦ = .   
The integer components in M  are the integer indices in (17). The matrix 

B can be decomposed in a diagonal matrix D  and an off-diagonal matrix O , that 
is 

B D O= + .                                           (17) 
  
THEOREM [5]. The solution ( , )x tθ  of equation (12) can be written as  

2

2

2( , ) log ( ) ( ) ( )n lin intx t
x

θ η θ η θ η
λ

∂
= Θ = +

∂
,                                           (18) 

where linθ represents a linear superposition of cnoidal functions 
2

2

2( ) log ( )lin G
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λ

∂
=

∂
,     1( ) exp i
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M
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∑ , 

and  intθ  represents a nonlinear interaction among the cnoidal functions 
2

int 2

2

int 2

( , )( ) 2 log 1 ,
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( , )( ) 2 log 1 ,
( )
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t G
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                                           (19) 

1exp 1
2

TC M OM⎛ ⎞= −⎜ ⎟
⎝ ⎠

.                                           (20)  

Consider now a nonlinear system of equations that govern the motion of a 
dynamical system 

1 2
d ( , ,..., ), 1,..., , 3
d

i
i nF i n n

t
θ θ θ θ= = ≥ ,                                           (21)  

with Rnx∈ , [0, ]t T∈ , RT ∈ , where F  may be of the form  
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with 1,2,...,i n= , and , , ...a b c constants. 
The system of equations has the remarkable property that it can be reduced 

to Weierstrass equations of the type (12). In the following, we present the cnoidal 
method, suitable to be used for equations of the form (21). To simplify the 
presentation, let us omit the index i  and note the solution by ( )tθ . 

We introduce the function transformation 
2

2

d2 log ( )
d n t
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θ = Θ ,                                           (23) 

where the theta function ( )n tΘ are defined as 
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Further, consider (17) and write the solution (23) under the form 
2

2( ) 2 log ( ) ( ) ( )n lin intt
t

θ η θ η θ η∂
= Θ = +

∂
,                                           (27) 

for tη ω φ= − + . The first term linθ represents, as above, a linear superposition of 
cnoidal waves. Indeed, after a little manipulation and algebraic calculus, (23) 
gives 
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In (28) we recognize the expression [7, 8] 
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The second term intθ  represents a nonlinear superposition or interaction 
among cnoidal waves. We write this term as 
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If km  take the values 0  or 1, the relation (30) is directly verified. For 
0 1km≤ ≤ , the relation is numerically verified with an error of 7| | 5 10e −≤ × . 
Consequently, we have 
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As a result, the cnoidal method yields to solutions consisting of a linear 
superposition and a nonlinear superposition of cnoidal functions. 

2. Formulation of the problem  

In this paper we solve the nonlinear equations of a sonic composite by 
using the cnoidal method. The task of our study is to analyze the influence of the 
Reddy gradient index on the full band-gap size. The proposed task is investigated 
by using the theory of piezoelectrics coupled with the cnoidal method.  

A sonic composite is a finite size periodic array composed of scatterers 
embedded in a homogeneous material [9-11]. A sonic composite exhibits the full 
band-gaps, where the sound is not allowed to propagate due to complete 
reflections. The band-gaps are defined by well-known Bragg reflections which 
occur at different frequencies inverse proportional to the central distance between 
two scatterers. If the band-gaps are not wide enough, their frequency ranges do 
not overlap. These band-gaps can overlap due to reflections on the surface of 
scatterers as well as due to wave propagation inside them. Then, any wave is 
reflected completely from this periodic array of acoustic scatterers in the 
frequency range where all the band-gaps for the different periodical directions 
overlap. This is the fundamental mechanism for the formation of a full band-gap 
which is required for photonic and sonic crystals. The complete reflection on the 
boundaries of scatterers is due to the full band-gap property itself independent of 
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the incident angle. The evanescent field distributes across the boundary of the 
waveguide into the surrounding composite by several times the central distance 
between two scatterers.  

The scatterers are made from functionally graded materials with radial 
polarization which support the Reddy law [12, 13]. For a single sphere made from 
a functionally graded material, the free vibration problem was analyzed in [14-
16].  

Absorption of sound is governed by visco-thermal effects. The sound 
absorption can be understood by conversion of the wave energy into heat. In sonic 
composites, the generation of full band-gaps creates sound blocking mechanisms 
only by full reflection of sound. In this way the waves are prevented to penetrate 
through material. The full band-gap generation is caused by evanescent modes 
and will not easily lead to broadband absorption of sound. The present paper is 
not considering the visco-thermal effects. 

Let us consider a composite thin plate consisting of an array of acoustic 
scatterers embedded in an epoxy matrix [9]. The acoustic scatterers are hollow 
spheres made from isotropic piezoelectric ceramic, while the matrix is made from 
isotropic epoxy resin (Fig. 1). The sonic plate consists of 72 local resonators of 
diameter a . A rectangular coordinate system 1 2 3Ox x x  is employed. The origin of 
the coordinate system 1 2 3Ox x x  is located at the left end, in the middle plane of the 
sample, with the axis 1Ox  in-plane and normal to the layers and the axis 3Ox  out-
plane and normal to the plate. The length of the plate is L , its width is d , while 
the diameter of the hollow sphere is a  and its thickness is e a> .  

For sonic crystals consisting of local resonators, we reduce the total 
number of time steps in the simulation since the attenuation is mostly due to local 
effects within the scatterers. In order to avoid unphysical reflections from the 
boundaries of the specimen, we have implemented the absorbing boundary 
conditions in the 1x -direction, at 1 0x =  and 1x L= . A transducer and a receiver 
are located at 1x b=  and 1x L b= − , respectively. The role of the transducer is to 
inject into the plate the plane monochromatic waves propagating in the 1x -
direction.  
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Fig. 1. Sketch of the sonic plate. 

 
          The displacements are registered at both sides of the plate. The 

sound attenuation coefficient is obtained from the ratio of the displacements at the 
receiver and at the input transducer. The basic equations of 3D spherically 
isotropic piezoelasticity for a sphere are [9] 
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where ijσ  is the stress tensor, φ  is the electric potential, iD  is the electric 
displacement vector, ijC are the elastic constants, 66 11 12( ) / 2C C C= − , ijf  are the 
piezoelectric constants ijf , ijζ  are the dielectric constants, and , ,i r θ ϕ= .  The 
elastic, piezoelectric and dielectric constants are arbitrary functions of the radial 
coordinate r . On denoting the components of the strain tensor and displacement 
vector by ijε and iu , , ,i r θ ϕ= , respectively, the quantities ijS  related to the strain 
tensor ijε are defined as 
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Denoting the density of the material by ρ , which is assumed to be an 
arbitrary function of r , the equations of motion become 

, , ,

, , ,

, , ,
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( ) csc ( ) ( ) 2 2 cot ,
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r r r

r r r

rr r r r rr r r
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σ θ σ σ σ σ σ θ ρ
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      (34)  

The charge equation of electrostatics is given by 
, , ,csc ( sin ) csc 0r r rD D D Dθ θ ϕ ϕθ θ θ+ + + = .                                      (35) 

The Chen functions F , G and w , and the stress functions 1Σ , 2Σ  are 
defined as [15] 

, ,cscu F Gθ ϕ θθ= − − ,  , ,cscu F Gϕ θ ϕθ= − ,  ru w= , 

1, 2,cscrθ ϕ θσ θσ σ= − − ,  1, 2,cscrϕ θ ϕσ σ θσ= − . 
are used in order to simplify equations (32)-(35). Therefore, these equations can 
be separated into two independent sets of equations   
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where                        
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It should be noted that the first equation (36) is related to two state 
variables, namely 1[ , ]TA F= Σ , while the second set of equations (36) are related 
to the following six state variables 2[ , , , , , ]T

rr rB r G w rDσ φ= Σ . 
The nonzero components of the matrix P  are given by 
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∂

, 

24 1P k= − ,  1
32 44P C−= ,  33 34 55 1P P P= = − = , 1

36 44 15P C f−= , 1
41 33P α ζ−= , 

2
43P β= ∇ , 44 2P β= − , 1

45 33P fα−= , 2 2
52 44 15P C f−= ∇ , 2

56 3P k= ∇ , 
1

61 33P fα −= , 2
63P γ= ∇ , 1

65 33P Cα −= − ,   
where 

2
33 33 33C fα ζ= + ,  1

13 33 31 33( )C f fβ α ζ−= + , 1
13 33 33 31( )C f C fγ α −= − , 
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1 13 31 11 122( ) ( )k C f C Cβ γ= + − + ,  2 1 660.5k k C= − , 2 1
3 11 15 44k f Cζ −= + . 

The scatterers are made from functionally graded materials with radial 
polarization, which support the Reddy law given by [12, 13]    

(1 )p zM M Mλ λμ μ= + − ,                                           (37) 
where ( ) /( )b r b aμ = − −  , λ  is the inhomogeneity parameter or gradient index, 

pM and zM are material constants of two materials, namely PZT-4 and ZnO [17, 
18]. The case 0λ =  corresponds to a homogeneous PZT-4 hollow sphere and 
λ →∞ , to a homogeneous ZnO hollow sphere. 

The constitutive equations for epoxy-resin material are given by 
ijkk

e
ijkk

e
jlil

e
ij

e
ijkk

e
ij CBAt δε+εε+εε+εμ+δελ= 232                         (38)                                  

where ijt  is the stress tensor, ijε  is the strain tensor, eλ  and eμ  are the Lamé 

elastic constants, and ,e eA B  and eC  are the second-order elastic constants. The 
motion equations can be recast as 

.
e

i ij ju tρ = ,                                           (39) 

where eρ  is density of the epoxy material and u  is the displacement vector. 
     At the interfaces between the hollow spheres and the matrix, sharp 

periodic boundary conditions for the displacement and traction vectors are added. 
After algebraically manipulations, the set of equations (36-39) are reducing to 
equations of the form (21) and (22).   

3. Results 

Consider a plate with the length 18cmL =  and width 11cmd = , while the 
diameter of the hollow sphere and its thickness are 10.5mma = and 12mme = , 
respectively. The numerical results are carried out for the following constants:  

for PZT-4   
10 2

11 13.9 10 N/mC = × ,  10 2
12 7.8 10 N/mC = × ,   10 2

13 7.4 10 N/mC = × , 
10 2

33 11.5 10 N/mC = × , 10 2
44 2.56 10 N/mC = × , 2

15 12.7C/mf = , 
2

31 5.2C/mf = − , 2
33 15.1C/mf = , 11

11 650 10 F/mζ −= × , 11
33 560 10 F/mζ −= × , 

37500kg/mρ = , 
for ZnO       

10 2
11 20.97 10 N/mC = × ,   10 2

12 12.11 10 N/mC = × ,   10 2
13 10.51 10 N/mC = × , 

10 2
33 21.09 10 N/mC = × ,  10 2

44 4.25 10 N/mC = × , 2
15 0.59C/mf = − , 

2
31 0.61C/mf = − , 2

33 1.14C/mf = ,  11
11 7.38 10 F/mζ −= × , 11

33 7.83 10 F/mζ −= × , 
35676kg/mρ = , 
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and for epoxy-resin   
eλ = 42.31 9 210 N/m× , eμ = 3.76 9 210 N/m× , eA = 2.8 9 210 N/m× , eB =  

9.7 9 210 N/m× , eC =  −5.7 9 210 N/m× , and eρ = 1170 3kg/m .  
The independent sets of equations (36) yield two independent classes of 

free vibrations [14]. The first class does not involve the piezoelectric or dielectric 
parameters, being identical to the one for the corresponding spherically isotropic 
elastic sphere. The second class depends on the piezoelectric or dielectric 
parameters. With the increase of the gradient indexλ , the natural frequencies 
increase for all modes and functionally graded laws, the variation being more 
significant when 10λ ≤ . For λ →∞  the variation of natural frequencies is not 
significant with respect to those of 10λ = . It is seen that for a piezoceramic 
hollow sphere, the piezoelectric effect consists in increasing the values for the 
natural frequencies in both classes of vibrations. If 2 /r aξ =  increases, the 
natural frequencies increase for the first class of vibrations and decrease for the 
second class.  

     We have compared different boundary conditions to test the 
effectiveness of non-reflecting boundary conditions implemented in the 
simulation. The output of the coupled modes is compared with the input waves, as 
shown in Fig. 2, in the case of Reddy law for 10λ = . We see that the ratio of the 
coupled and input waves is −3 to −18 dB around the frequency of 8kHz to 8.8kHz 
in the band-gap of the sonic material.  

 

 
Fig. 2. Input and coupled waves for sonic composite in the case of Reddy law for 

10λ = . 
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Fig. 3. Band structure for the sonic composite in the case of Reddy law for 10λ = (grey) 

and 5λ = (yellow). 
 
The effect of the gradient indexλ  on the full band-gap size is studied next. 

The size variation is clearly observed for 10λ ≤ , while for λ →∞  the changes 
are not significant.  

Using the Joannopoulus representation for the band-gap structure with the 
evanescent modes having exponential decay, Fig. 3. displays the band structure 
for 5λ = (yellow) and 10λ = (grey) ( 0 0.3ξ = ). The modes present purely 
imaginary wave vectors. The central grey region is the full band-gap given by the 
real part of the wave vector constrained in the first Brillouin zone for each 
frequency. The left region represents the imaginary part of the wave vector for 
longitudinal direction frequency (tension/compression), while the right region is 
the imaginary part of the wave vector for transverse direction frequency (shear). 
The red lines represent the imaginary part of the wave vector of the evanescent 
modes inside the bad-gap. If we want to have a full band-gap, we must have 
structures with band-gaps for both longitudinal and transverse waves in the same 
frequency region. The full band-gap has different lengths and frequency locations 
for different values of 10λ ≤ . The numerical investigations show us that a 
maximum size of the full band is obtained in the vicinity of 9.7λ = . In this case 
the full band-gap is higher than in the case of 10λ = with 7%. 

Finally we consider now a real sonic composite, namely the sonic-crystal 
bulk of acrylic resin rods in air [19, 20]. 
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Fig. 4. The  band-gap structures of a  sonic crystal of acrylic resin rods in air. 
 
The materials considered are the acrylic resin. The lattice constant is 24.0 

mm, the radius of the scatterers is 10.2 mm and their length is approximately 30 
cm. Both the top and the bottom sides have sufficient amounts of glass wool to 
effectively absorb the sound waves of oblique wave fronts. A straight wave-guide, 
as well as a bending wave-guide, was constructed in this sonic-crystal bulk. The 
experimental results show a clear and deep full band-gap in the transmission 
spectra, as illustrated with continuous green line in Fig. 4. The measured full 
band-gap was 6.8–9.5 kHz, or 0.475–0.67 in normalized frequencies with a 
transmission ratio smaller than −25 dB. The experimental band-gap is 20% wider 
than the theoretical result of Miyashita, Taniguchi and Sakamoto (MTS) [19]. In 
the MTS analysis, the wave propagation is simulated by finite element method 
with the open-space conditions normally encountered. We see that the 
experimental band-gap is 8% wider than the theoretical result obtained by the 
method proposed in this paper.  

4. Conclusions 

     The cnoidal method combined with the piezoceramic theory was 
implemented in this paper for simulating and analysing the behaviour of a sonic 
plate with an array of acoustic piezoceramic hollow spheres  embedded in an 
epoxy matrix. The scatterers are made from functionally graded materials with 
radial polarization. The influence of the gradient index of the Reddy material on 
the full band-gap size is studied using the cnoidal representations of the solutions.  

Finally, a real sonic-crystal bulk of acrylic resin rods in air has been 
analyzed to validate the theory. The present method can be further extended to 
investigate other sonic composites with different types of scatterers embedded in 
arbitrary, homogeneous media. 
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