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SOME TRIDIAGONAL DETERMINANTS RELATED TO CENTRAL

DELANNOY NUMBERS, THE CHEBYSHEV POLYNOMIALS, AND THE

FIBONACCI POLYNOMIALS

F. Qi1, V. Čerňanová2, Y. S. Semenov3

In the paper, the authors give a motivation from central Delannoy numbers to
a tridiagonal determinant, find a generating function for the tridiagonal determinant,

prove several formulas for the tridiagonal determinant, discuss the inverse of the tridi-
agonal matrix, connect the tridiagonal determinant with the Chebyshev polynomials,

the Fibonacci numbers and polynomials, and the Cauchy product of central Delannoy
numbers, derive several formulas for the tridiagonal determinant and the second kind

Chebyshev polynomials, review computation of general tridiagonal determinants, present
two new formulas for computing general tridiagonal determinants, and generalize central
Delannoy numbers and their Cauchy product.
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1. A motivation from central Delannoy numbers

Let

Mk(c) =



c 1 0 0 · · · 0 0 0
1 c 1 0 · · · 0 0 0
0 1 c 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 c 1
0 0 0 0 · · · 0 1 c


k×k

, c ∈ C, k ∈ N (1)

and denote the determinant |Mk(c)| of the k × k tridiagonal matrix Mk(c) by Dk(c). From
some results in [15, Theorem 1.2] for the Cauchy products of central Delannoy numbers, the

explicit expression Dk(−6) = 1
6k

∑k
ℓ=0(−1)ℓ62ℓ

(
ℓ

k−ℓ

)
was derived in [15, Remark 4.4], where(

p
q

)
= 0 for q > p ≥ 0. Hereafter, the authors guessed in [15, Remar 4.4] that the formula

Dk(c) = (−1)k
k∑

ℓ=0

(−1)ℓc2ℓ−k

(
ℓ

k − ℓ

)
=

k∑
m=0

(−1)mck−2m

(
k −m

m

)
(2)
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should be valid for all c ∈ C and k ∈ N and claimed that this guess can be straightforwardly
verified by induction on k ∈ N.

In this paper, we will discover a generating function of the sequence Dk(c), provide an
analytic proof of the formula (2), establish a simpler formula for Dk(c), find a determinan-
tal expression for Dk(c), present the inverse of Mk(c), connect Dk(c) with the Chebyshev
polynomials and the Fibonacci numbers and polynomials, review computation of general
diagonal determinants, supply two formulas for computing general diagonal determinants,
generalize central Delannoy numbers, and represent the Cauchy product of the generalized
central Delannoy numbers in terms of Dk(c).

2. A generating function for Dk(c)

We now discover a generating function of the sequence Dk(c).

Theorem 2.1. Let D0(c) = 1. Then the sequence Dk(c) for k ≥ 0 can be generated by
1

t2−ct+1 =
∑∞

k=0 Dk(c)t
k.

Proof. It is clear that

D1(c) = c and D2(c) = c2 − 1. (3)

By expanding the determinant Dk(c) according to the last row or column, we can obtain
the recurrence relation

Dk(c) = cDk−1(c)−Dk−2(c), k ≥ 2. (4)

Multiplying by tk and summing with respect to k from 2 to ∞ give
∞∑
k=2

Dk(c)t
k = ct

∞∑
k=2

Dk−1(c)t
k−1 − t2

∞∑
k=2

Dk−2(c)t
k−2.

Let Fc(t) be a generating function of Dk(c) for k ≥ 0, that is,

Fc(t) =

∞∑
k=0

Dk(c)t
k. (5)

Then Fc(t)− 1− ct = ct[Fc(t)− 1]− t2Fc(t), that is,

Fc(t) =
1

t2 − ct+ 1
, (6)

which is a generating function of the infinite sequence Dk(c) for k ≥ 0. �

We now provide an analytic proof of the formula (2).

Theorem 2.2. For k ≥ 0 and c ∈ C, the formula (2) is valid.

Proof. In combinatorics, the second kind Bell polynomials are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
ℓi∈{0}∪N∑n−k+1
i=1 iℓi=n∑n−k+1
i=1 ℓi=k

n!∏n−k+1
i=1 ℓi!

n−k+1∏
i=1

(xi

i!

)ℓi

for n ≥ k ≥ 0. See [5, p. 134, Theorem A]. They satisfy the identities

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1) (7)

and

Bn,k(z, 1, 0, . . . , 0) =
1

2n−k

n!

k!

(
k

n− k

)
z2k−n (8)
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for complex numbers a, b, z ∈ C. See [5, p. 135] and [17, Theorem 4.1] respectively. The Faà
di Bruno formula can be described [5, p. 139, Theorem C] by

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t))Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (9)

Let u = h(t) = t2−ct+1. Then, by the Faà di Bruno formula (9) and the identities (7)
and (8), we have

[Fc(t)]
(k) =

k∑
ℓ=0

(
1

u

)(ℓ)

Bk,ℓ

(
h′(t), h′′(t), h′′′(t), . . . , h(k−ℓ+1)

)
=

k∑
ℓ=0

(−1)ℓℓ!

uℓ+1
Bk,ℓ(2t− c, 2, 0, . . . , 0) →

k∑
ℓ=0

(−1)ℓℓ!Bk,ℓ(−c, 2, 0, . . . , 0)

=

k∑
ℓ=0

(−1)ℓℓ!2ℓ
1

2k−ℓ

k!

ℓ!

(
ℓ

k − ℓ

)(
− c

2

)2ℓ−k

= (−1)kk!

k∑
ℓ=0

(−1)ℓ
(

ℓ

k − ℓ

)
c2ℓ−k

as t → 0. Considering (5) and (6) proves the explicit formula (2). �

3. A simpler formula for Dk(c)

We now establish a simpler formula for the tridiagonal determinant Dk(c).

Theorem 3.1. For c ∈ C, α = 1
β = c+

√
c2−4
2 , and k ≥ 0, we have

Dk(c) =


αk+1 − βk+1

α− β
, c ̸= ±2;

k + 1, c = 2;

(−1)k(k + 1), c = −2.

(10)

Proof. Usually, one looks for a solution of the recurrence relation ak = c1ak−1 + c2ak−2 +
· · ·+cm−1ak−m+1+cmak−m by considering a sum ak = b1r

k
1+b2r

k
2+· · ·+bm−1r

k
m−1+bmrkm.

A necessary condition on ri is that ri are roots of the characteristic equation qm = c1q
m−1+

c2q
m−2 + · · ·+ cm−1q + cm. The constants ci can be determined from the initial conditions

of ak. As a result, the recurrence relation (4) implies that Dk(c) = Aak + Bbk, where a, b
are roots of the characteristic equation q2 = cq − 1 associated with (4), provided c ̸= ±2,
and A,B are constants which can be determined from identities in (3). �

4. A determinantal expression for Dk(c)

We now find a determinantal expression for Dk(c) alternatively.

Theorem 4.1. For k ≥ 1 and c ∈ C, we have

Dk(c) =
(−1)k

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−c 1 0 · · · 0 0 0
2 −2c 1 · · · 0 0 0
0 6 −3c · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −(k − 2)c 1 0
0 0 0 · · · (k − 1)(k − 2) −(k − 1)c 1
0 0 0 · · · 0 k(k − 1) −kc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Let u(x) and v(x) ̸= 0 be differentiable. Let U(n+1)×1(x) be an (n + 1) × 1 matrix

whose elements uk,1(x) = u(k−1)(x) for 1 ≤ k ≤ n+1, let V(n+1)×n(x) be an (n+1)×nmatrix
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whose elements vi,j(x) =

{(
i−1
j−1

)
v(i−j)(x), i− j ≥ 0

0, i− j < 0
for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n, and

let |W(n+1)×(n+1)(x)| is the determinant of the (n+ 1)× (n+ 1) matrix W(n+1)×(n+1)(x) =(
U(n+1)×1(x) V(n+1)×n(x)

)
. Then the nth derivative of the ratio u(x)

v(x) can be computed by

dn

dxn

[
u(x)

v(x)

]
= (−1)n

∣∣W(n+1)×(n+1)(x)
∣∣

vn+1(x)
. (11)

This formula (11) can be found in the paper [16, p. 94]. Applying (11) to u(t) = 1 and
v(t) = t2 − ct+ 1 and taking the limit t → 0 give(

1

t2 − ct+ 1

)(k)

=
(−1)k

(t2 − ct+ 1)k+1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 t2 − ct+ 1 0 · · · 0 0

0
(
1
0

)
(2t− c) t2 − ct+ 1 · · · 0 0

0
(
2
0

)
2

(
2
1

)
(2t− c) · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · ·
(
k−1
k−2

)
(2t− c) t2 − ct+ 1

0 0 0 · · ·
(

k
k−2

)
2

(
k

k−1

)
(2t− c)

∣∣∣∣∣∣∣∣∣∣∣∣∣

→ (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0 0

0 −
(
1
0

)
c 1 0 · · · 0 0 0

0
(
2
0

)
2 −

(
2
1

)
c 1 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · ·
(
k−1
k−3

)
2 −

(
k−1
k−2

)
c 1

0 0 0 0 · · · 0
(

k
k−2

)
2 −

(
k

k−1

)
c

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The proof of Theorem 4.1 is thus complete. �

5. The inverse of Mk(c)

Basing on discussions about the inverse of Mk(c) in [7, Eq. (9)], we can derive the
following Theorem 5.1 straightforwardly.

Theorem 5.1. For k ∈ N, c ∈ C, and α = 1
β = c+

√
c2−4
2 , the inverse M−1

k (c) of the

tridiagonal matrix Mk(c) can be computed by M−1
k (c) =

(
Rij

)
k×k

, where

Rij =


(−1)i+j

(
αi − βi

)(
αk−j+1 − βk−j+1

)
(α− β)(αk+1 − βk+1)

, c ̸= ±2

(−1)i+j i(k − j + 1)

k + 1
, c = 2

− i(k − j + 1)

k + 1
, c = −2

for i < j and Rij = Rji for i > j.

6. Relations between Dn(c) and the Chebyshev polynomials

The Chebyshev polynomials of the second kind Un(x) for n ≥ 0 can be generated by

1

1− 2xt+ t2
=

∞∑
n=0

Un(x)t
n
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for |x| < 1 and |t| < 1. By Theorem 2.1, it follows immediately that

Un(x) = Dn(2x), n ≥ 0. (12)

This recovers the first result in [20, Lemma 5]. Hence, by the definition of Dk(c) and
Theorem 4.1, we obtain the determinantal expressions

Un(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x 1 0 0 · · · 0 0 0
1 2x 1 0 · · · 0 0 0
0 1 2x 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 2x 1
0 0 0 0 · · · 0 1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

and

Un(x) =
(−1)n

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2x 1 0 · · · 0 0
2 −4x 1 · · · 0 0
0 6 −6x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −2(n− 1)x 1
0 0 0 · · · n(n− 1) −2nx

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The Rodrigues representation for Un(x) is

Un(x) =
(−1)n(n+ 1)

√
π

2n+1(n+ 1/2)!(1− x2)1/2
dn

dxn

[(
1− x2

)n+1/2
]
,

see [10]. By the same argument as in the proof of Theorem 2.2, we can obtain

dn

dxn

[(
1− x2

)n+1/2
]
= n!

(
1− x2

)n+1/2

(2x)n

n∑
ℓ=0

⟨
n+

1

2

⟩
ℓ

(−1)ℓ

ℓ!

(
ℓ

n− ℓ

)
(2x)2ℓ

(1− x2)ℓ
,

where ⟨x⟩n is the falling factorial defined by

⟨x⟩n =

n−1∏
k=0

(x− k) =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1;

1, n = 0.

Accordingly, it follows that

Un(x) = (−1)n(n+ 1)!

(
1− x2

)n
(2x)n

n∑
ℓ=0

(−1)ℓ

(2ℓ)!!(2n− 2ℓ+ 1)!!

(
ℓ

n− ℓ

)
(2x)2ℓ

(1− x2)ℓ

and

Dn(x) = (−1)n(n+ 1)!

(
4− x2

)n
(4x)n

n∑
ℓ=0

(−1)ℓ

(2ℓ)!!(2n− 2ℓ+ 1)!!

(
ℓ

n− ℓ

)
(2x)2ℓ

(4− x2)ℓ
.

In [10], it was stated that the polynomials Un(x) can be expressed as

Un(x) =

⌊n/2⌋∑
r=0

(−1)r
(
n− r

r

)
(2x)n−2r =

⌊n/2⌋∑
m=0

(
n+ 1

2m+ 1

)
xn−2m

(
x2 − 1

)m
,

where ⌊x⌋ is the floor function whose value equals the largest integer less than or equal to
x. The first equality above is equivalent to the last one in (2). From the second formula
above, it follows that

Dn(x) =
xn

2n

⌊n/2⌋∑
m=0

(
n+ 1

2m+ 1

)(
1− 4

x2

)m

.
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In [10], it was given that

Un(x) =

(
x+

√
x2 − 1

)n+1 −
(
x−

√
x2 − 1

)n+1

2
√
x2 − 1

=

⌊n/2⌋∑
k=0

(
2k − (n+ 1)

k

)
(2x)n−2k =

n∑
k=0

2k
(
n+ k + 1

2k + 1

)
(x− 1)k.

Consequently, we deduce the formula (10) and

Dn(x) =

⌊n/2⌋∑
k=0

(
2k − (n+ 1)

k

)
xn−2k =

n∑
k=0

(
n+ k + 1

2k + 1

)
(x− 2)k.

In [10], it was mentioned that the Chebyshev polynomials of the second kind Un(x)
can be expressed in terms of the Jacobi polynomials

P (α,β)
n (x) =

(−1)n

2nn!

1

(1− x)α(1 + x)β
dn

dxn

[
(1− x)α+n(1 + x)β+n

]
for α, β > −1 as Un(x) = (n+ 1)

P (1/2,1/2)
n (x)

P
(1/2,1/2)
n (1)

. Since

dn

dxn

[
(1− x)α+n(1 + x)β+n

]
=

n∑
ℓ=0

(
n

ℓ

)[
(1− x)α+n

](ℓ)[
(1 + x)β+n

](n−ℓ)

= (1− x)α+n(1 + x)β
n∑

ℓ=0

(
n

ℓ

)
(−1)ℓ⟨α+ n⟩ℓ⟨β + n⟩n−ℓ

(
1 + x

1− x

)ℓ

,

the Jacobi polynomials P
(α,β)
n (x) can be expressed explicitly as

P (α,β)
n (x) =

(x− 1)n

2nn!

n∑
ℓ=0

(
n

ℓ

)
⟨α+ n⟩ℓ⟨β + n⟩n−ℓ

(
x+ 1

x− 1

)ℓ

.

As a result, we have

Un(x) = Dn(2x) =
1

2

(
x− 1

2

)n n∑
ℓ=0

(
2(n+ 1)

2ℓ+ 1

)(
x+ 1

x− 1

)ℓ

.

Finally, we recall from [5, p. 50] that Un(cos θ) = sin[(n+1)θ]
sin θ which is equivalent to

Dn(2 cos θ) =
sin[(n+1)θ]

sin θ . This result was discussed in [7, p. 1512]. The other related results
discussed and used in [7, p. 1512] are

Dn(±2 cosh θ) = (−1)(1∓1)k/2 sinh[(k + 1)θ]

sinh θ
.

7. Relations between Dn(c) and the Fibonacci polynomials

The Fibonacci numbers Fn = (1+
√
5 )n−(1−

√
5 )n

2n
√
5

for n ∈ N form a sequence of integers

and satisfy the linear recurrence relation Fn = Fn−1+Fn−2 with F1 = F2 = 1. The Fibonacci
numbers Fn can be viewed as a particular case Fn(1) of the Fibonacci polynomials

Fn(s) =
1

2n

(
s+

√
4 + s2

)n −
(
s−

√
4 + s2

)n
√
4 + s2

(13)

which can be generated by

t

1− ts− t2
=

∞∑
n=1

Fn(s)t
n = t+ st2 +

(
s2 + 1

)
t3 +

(
s3 + 2s

)
t4 + · · · , (14)
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see the monograph [6] and related references therein. In [9, p. 215, Example 1], it was
deduced that

Fn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 0 · · · 0 0
1 1 −1 0 · · · 0 0
0 1 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1
0 0 0 0 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

, n ∈ N. (15)

In [8], among other things, it was listed that

Fr+1(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 · · · 0 0
−1 x 1 · · · 0 0
0 −1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x 1
0 0 0 · · · −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
r×r

, r ∈ N. (16)

In [3, p. 224, Example 3], it was obtained that Dn(±3) = (±1)nF2(n+1) for n ∈ N.
Let i =

√
−1 denote the imaginary unit. Taking t = ix on both sides of the formal

expansion (14) and simplifying yield 1
1−(is)x+x2 =

∑∞
n=0 i

nFn+1(s)x
n which implies, due to

Theorem 2.1, the relation

Dn(is) = inFn+1(s), n ≥ 0. (17)

Consequently, we can express the Fibonacci polynomials Fn(x) for n ∈ N in terms of sym-
metric tridiagonal determinants by

Fn(s) =
Dn−1(is)

in−1
=

Un−1

(
i
2s
)

in−1
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

s ±i 0 0 · · · 0 0 0
±i s ±i 0 · · · 0 0 0
0 ±i s ±i · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · ±i s ±i
0 0 0 0 · · · 0 ±i s

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By Theorems 2.2 and 3.1 and from the relation (17), we can recover the formula (13)
and the explicit formula

Fn(s) =

n−1∑
m=0

(
n−m− 1

m

)
sn−2m−1

.

8. Computation of general tridiagonal determinants

Generally, a tridiagonal determinant is defined by

Dn(a, b, c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 0 · · · 0 0
c1 a2 b2 · · · 0 0
0 c2 a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 bn−1

0 0 0 · · · cn−1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), and c = (c1, c2, . . . , cn) are complex mul-
tiples. Lemma 1 in [4] reads that the general tridiagonal determinant Dn(a, b, c) satisfies
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the initial values D1(a, b, c) = a1 and D2(a, b, c) = a1a2 − b1c1 and satisfies the recurrence
equation Dn(a, b, c) = anDn−1(a, b, c)− bn−1cn−1Dn−2(a, b, c).

In linear algebra, the determinantDn(a, b, c) is also called a Jacobi determinant which
is different from the determinant of the Jacobi matrix (or say, the Jacobian) in analysis.

Let us examine some special cases of Dn(a, b, c).
By induction on n, one can prove straightforwardly that∣∣∣∣∣∣∣∣∣∣∣∣∣

a+ b ab 0 · · · 0 0
1 a+ b ab · · · 0 0
0 1 a+ b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a+ b ab
0 0 0 · · · 1 a+ b

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=


an+1 − bn+1

a− b
, a ̸= b;

(n+ 1)an, a = b.
(18)

The formula (10) is the special case ab = 1 and c = a+ b of the equality (18).
By the same method as in the proof of Theorem 3.1, one can prove that

Dn = |Mn| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 · · · 0 0
c a b · · · 0 0
0 c a · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a b
0 0 0 · · · c a

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=


(
a+

√
a2 − 4bc

)n+1 −
(
a−

√
a2 − 4bc

)n+1

2n+1
√
a2 − 4bc

, a2 ̸= 4bc;

(n+ 1)

(
a

2

)n

, a2 = 4bc.

(19)

The formulas (10) and (18) are special cases of the equality (19).
Example 7.2.5 in [11, pp. 514–516] states that the eigenvalues and eigenvectors of the

Toeplitz matrix Mn in (19) with a ̸= 0 ̸= c are given by

λj = b+ 2a

√
c

a
cos

jπ

n+ 1
and xj =


(
c
a

)1/2
sin 1jπ

n+1(
c
a

)2/2
sin 2jπ

n+1
...(

c
a

)n/2
sin njπ

n+1


for 1 ≤ j ≤ n and, consequently, the Toeplitz matrix Mn is diagonalizable. As a result, we
conclude that

Dn = |Mn| =
n∏

j=1

(
b+ 2a

√
c

a
cos

jπ

n+ 1

)
.

The tridiagonal determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 1 0 · · · 0 0 0
−1 x2 1 · · · 0 0 0
0 −1 x3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 xn−1 1
0 0 0 · · · 0 −1 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
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is called as a continuant Kn(x1, x2, . . . , xn) which is defined recursively by K0 = 1, K1(x1) =
x1, and Kn(x1, x2, . . . , xn) = xnKn−1(x1, x2, . . . , xn−1) +Kn−2(x1, x2, . . . , xn−2). Compar-
ing with (15) and (16), it is clear the Fibonacci numbers and polynomials Fn and Fn(s)
satisfy Fn = Kn−1(1, 1, . . . , 1) and Fn(s) = Kn−1(s, s, . . . , s).

Tridiagonal matrices play an essential role in the theory of orthogonal polynomials.
See the book [1]. Let

An =



a0 b1 0 · · · 0 0
1 a1 b2 · · · 0 0
0 1 a2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−2 bn−1

0 0 0 · · · 1 an−1


.

When expanding the characteristic polynomial qn(x) , det(xI − An) with respect to the
last row, we obtain qn(x) = (x− an−1)qn−1(x)− bn−1qn−2(x) with q−1(x) = 0 and q0(x) =
1. These polynomials qn are orthogonal and each monic orthogonal polynomial satisfies
the above recurrence relation. This has already been showed by Favard in 1935 and in
another form earlier by Stieltjes. One of the simplest and oldest examples are the Chebyshev
polynomials Un(x) or equivalently the Fibonacci polynomials Fn+1(x) with an = 0 and
bn = −1. Since the sequence h(n) = (n + 1)!Fn+1(s) satisfies h(n) = (n + 1)sh(n − 1) +
n(n + 1)h(n − 2) with h(−1) = 0 and h(0) = 1, it is clear that h(n) for n ≥ 1 is the n × n
determinant of the matrix

2s 2 · 3 0 · · · 0 0
−1 3s 3 · 4 · · · 0 0
0 −1 4s · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ns n(n+ 1)
0 0 0 · · · 0 (n+ 1)s


n×n

.

In [2, pp. 3658–3659, Remark 1.1], it was mentioned that the matrix

a1 b1 0 · · · 0 0
b1 a2 b2 · · · 0 0
0 b2 a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 bn−1

0 0 0 · · · bn−1 an


, bi > 0

has generalized eigenfunctions pj(x) which are orthonormal polynomials and satisfy bj−1pj−1(x)+
ajpj(x) + bjpj+1(x) = xpj(x) for j ≥ 1 and b0 ≡ 0.

Proposition 4 in [21] can be reformulated as follows. For a n-tuple x = (x1, x2, . . . , xn)
and xk ∈ C, define

F(x) = 1 +

n∑
m=1

(−1)m
n−1∑
k1=1

n−1∑
k2=k1+2

· · ·
n−1∑

km=km−1+2

m∏
ℓ=1

xkℓ
xkℓ+1,

where by convention an empty sum is equal to 0, or equivalently

F(x) = 1 +

⌊n/2⌋∑
m=1

(−1)m
n−2m+1∑

k1=1

n−2m+3∑
k2=k1+2

· · ·
n−1∑

km=km−1+2

m∏
ℓ=1

xkℓ
xkℓ+1.
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Let

γ+
2k−1 =

k−1∏
j=1

b2j
c2j−1

, γ+
2k = b1

k−1∏
j=1

b2j+1

c2j
, γ−

2k−1 =

k−1∏
j=1

c2j
b2j−1

, γ−
2k = c1

k−1∏
j=1

c2j+1

b2j

for k ∈ N, or equivalently and recursively, γ±
1 = 1, γ+

k+1 = bk
γ−
k

, and γ−
k+1 = ck

γ+
k

for k ≥ 1.

Then the equality∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − z b1 0 · · · 0 0
c1 a2 − z b2 · · · 0 0
0 c2 a3 − z · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 − z bn−1

0 0 0 · · · cn−1 an − z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[
n∏

k=1

(ak − z)

]
F

(
γ+
1 γ−

1

a1 − z
,
γ+
2 γ−

2

a2 − z
, . . . ,

γ+
n γ−

n

an − z

)
holds for all z ∈ C. This is an explicit and closed-form formula for computing a general
tridiagonal determinant (a Jacobi determinant).

The following result can be found in [12]. The tridiagonal determinant of the form

Jn(a, b, c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 0 0 0 · · · 0 0 0
−c2 a2 b2 0 0 · · · 0 0 0
0 −c3 a3 b3 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · −cn−1 an−1 bn−1

0 0 0 0 0 · · · 0 −cn an

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), and c = (c1, c2, . . . , cn) are complex mul-
tiples, equals the sum of its leading term a1a2 . . . an and all the terms obtained from this
product by replacing one or several pairs of neighbour product ajaj+1 by bjcj+1. For exam-
ple, when n = 5, it has the form

a1a2a3a4a5 + (b1c2a3a4a5 + a1b2c3a4a5 + a1a2b3c4a5 + a1a2a3b4c5)

+(b1c2b3c4a5 + b1c2a3b4c5 + a1b2c3b4c5).

By the above description, we summarize the following theorems.

Theorem 8.1. The determinant Jn(a, b, c) for n ∈ N can be computed by

Jn(a, b, c) =

(
1 +

⌊n/2⌋∑
m=1

n−1∑
ℓ1=2m−1

ℓ1−2∑
ℓ2=2m−3

· · ·
ℓm−2−2∑
ℓm−1=3

ℓm−1−2∑
ℓm=1

m∏
k=1

bℓkcℓk+1

aℓkaℓk+1

)
n∏

ℓ=1

aℓ.

Proof. Expanding with respect to the last row of Jn gives

Jn = anJn−1 + bn−1cnJn−2. (20)

Note that J1 = a1 and J2 = a1a2 + b1c2. In general,

Jn =

n∏
ℓ=1

aℓ +

⌊n/2⌋∑
m=1

∑
(l1,l1+1)≺···≺(lm,lm+1)

n∏
ℓ=1

aℓ

m∏
k=1

blkclk+1

alkalk+1
, (21)

where the pair of neighbor indices (a, a+1) precedes the pair (b, b+1), that is, (a, a+1) ≺
(b, b + 1), if a + 1 < b. In other words, in the right-hand side of (21), we have the term∏n

ℓ=1 aℓ and the other summands which can be obtained as follows: we substitute blkclk+1
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instead of alkalk+1 in the term
∏n

ℓ=1 aℓ for each pair (lk, lk + 1) of the ordered collection of
pairs (l1, l1 + 1) ≺ · · · ≺ (lm, lm + 1). The proof by induction on n is not hard in view of
the recurrence formula (20). Note that the number of summands in the the right-hand side
of (21) is equal to the nth Fibonacci number Fn. Also note that the sum over all ordered
collections of pairs (l1, l1 + 1) ≺ · · · ≺ (lm, lm + 1) can be rewritten as

∑
(l1,l1+1)≺···≺(lm,lm+1)

=

l2−2∑
l1=1

l3−2∑
l2=3

· · ·
n−1∑

lm=2m−1

.

Hence, we obtain the formula

Jn(a, b, c) =

(
n∏

l=1

al

)(
1 +

⌊n/2⌋∑
m=1

l2−2∑
l1=1

l3−2∑
l2=3

· · ·
n−1∑

lm=2m−1

m∏
k=1

blkclk+1

alkalk+1

)
.

The proof of Theorem 8.1 is thus complete. �

Theorem 8.2. For n ∈ N, the determinant Jn(a, b, c) can be computed by

Jn(a, b, c) =

23n∑
i=1

χ(wi)

n∏
k=1

a
αik

k b
βik

k c
γik

k , (22)

where χ : {0, 1}3n → {0, 1} is the characteristic function of the set

W3n =
{
wi = (αi1 , βi1 , γi1 ;αi2 , βi2 , γi2 ; . . . ;αin , βin , γin) ∈ {0, 1}3n :

γi1 = βin = 0, γiℓ+1
= βiℓ , αik + βik + γik = 1, 1 ≤ ℓ ≤ n− 1, 1 ≤ k ≤ n

}
.

Proof. For n = 1, 2, it is easy to verify the formula (22).
Suppose the formula (22) is valid for all n ≤ m. Then for n = m+ 1

23(m+1)∑
i=1

χ(wi)

m+1∏
k=1

a
αik

k b
βik

k c
γik

k =

23m∑
i=1

χ(wi)a
1
m+1b

0
m+1c

0
m+1

m∏
k=1

a
αik

k b
βik

k c
γik

k

+

23(m−1)∑
i=1

χ(wi)a
0
mb1mc0ma0m+1b

0
m+1c

1
m+1

m−1∏
k=1

a
αik

k b
βik

k c
γik

k

= am+1

23m∑
i=1

χ(wi)

m∏
k=1

a
αik

k b
βik

k c
γik

k + bmcm+1

23(m−1)∑
i=1

χ(wi)

m−1∏
k=1

a
αik

k b
βik

k c
γik

k

= am+1Jm + bmcm+1Jm−1 = Jm+1.

The proof is thus complete. �

9. Going back to central Delannoy numbers

Central Delannoy numbers D(n) have the generating function

1√
1− 6x+ x2

=

∞∑
k=0

D(k)xk = 1 + 3x+ 13x2 + 63x3 + · · · . (23)

Squaring on both sides of (23) results in

1

1− 6x+ x2
=

[ ∞∑
k=0

D(k)xk

]2
=

∞∑
k=0

[
k∑

ℓ=0

D(ℓ)D(k − ℓ)

]
xk.
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On the other hand, making use of Theorem 2.1 gives

1

1− 6x+ x2
=

∞∑
k=0

Dk(6)x
k =

∞∑
k=0

(−1)kDk(−6)xk.

Consequently, we obtain

Dk(6) = (−1)kDk(−6) =

k∑
ℓ=0

D(ℓ)D(k − ℓ)

and, by the relation (12) between Dn(c) and the Chebyshev polynomials of the second kind
Un(x),

Uk(3) = (−1)kUk(−3) =

k∑
ℓ=0

D(ℓ)D(k − ℓ).

In other words, the Cauchy products of central Delannoy numbers D(k) are special values
Uk(3) of the Chebyshev polynomials of the second kind Un(x).

In [15, Theorem 1.3], by virtue of the Cauchy integral formula, central Delannoy
numbers D(k) were represented by

D(k) =
1

π

∫ 3+2
√
2

3−2
√
2

1√(
t− 3 + 2

√
2
)(
3 + 2

√
2 − t

) 1

tk+1
d t, k ≥ 0.

The central Delannoy numbers D(k) were generalized in [19] as

Da,b(k) =
1

π

∫ b

a

1√
(t− a)(b− t)

1

tk+1
d t, k ≥ 0, b > a > 0 (24)

and, by [15, Lemma 2.4], we find that Da,b(k) can be generated by

1√
(x+ a)(x+ b)

=

∞∑
k=0

Da,b(k)x
k. (25)

By virtue of conclusions in [13, Section 2.4] and [18, Remark 4.1], the generalized central
Delannoy numbers Da,b(k) for k ≥ 0 can be computed by the explicit formulas

Da,b(k) =
1

G(a, b)

(−1)k

[2A(a, b)]k

k∑
ℓ=0

(−1)ℓ22ℓ
(2ℓ− 1)!!

(2ℓ)!!

(
ℓ

k − ℓ

)[
A(a, b)

H(a, b)

]ℓ
and

Da,b(k) =
1√
ab

1

bk

k∑
ℓ=0

(2ℓ− 1)!!

(2ℓ)!!

[2(k − ℓ)− 1]!!

[2(k − ℓ)]!!

(
b

a

)ℓ

,

where the quantities A(a, b) = a+b
2 , G(a, b) =

√
ab , and H(a, b) = 2

1
a+ 1

b

are respectively the

arithmetic, geometric, and harmonic means of a, b > 0.
Squaring on both sides of (25) reveals that the Cauchy product of the generalized

central Delannoy numbers Da,b(k) can be generated by

1

(t+ a)(t+ b)
=

1

t2 + (a+ b)t+ ab
=

∞∑
k=0

Da,b(k)t
k.

As a result, by some arguments carried out in previous sections, we can see that the Cauchy
product of the generalized central Delannoy numbers Da,b(k) can be computed by

k∑
ℓ=0

Da,b(ℓ)Da,b(k − ℓ) =
1

(a+ b)k

k∑
ℓ=0

(−1)ℓ
(

ℓ

k − ℓ

)
(a+ b)2ℓ

(ab)ℓ+1
=

Dk

(
a+b√
ab

)
(ab)k/2+1
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for k ≥ 0, where Dk is the diagonal determinant of the diagonal matrix Mk defined by the
equation (1).

The definition (24) and the generating function (25) can be extended to x ∈ C and
a, b ∈ C such that the straight segment between a ∈ C and b ∈ C does not pass through the
origin 0 ∈ C.
Remark 9.1. This paper is a revised and shortened version of the preprint [14].
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