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SOME TRIDIAGONAL DETERMINANTS RELATED TO CENTRAL
DELANNOY NUMBERS, THE CHEBYSHEV POLYNOMIALS, AND THE
FIBONACCI POLYNOMIALS

F. Qi', V. Cernanova?, Y. S. Semenov®

In the paper, the authors give a motivation from central Delannoy numbers to
a tridiagonal determinant, find a generating function for the tridiagonal determinant,
prove several formulas for the tridiagonal determinant, discuss the inverse of the tridi-
agonal matriz, connect the tridiagonal determinant with the Chebyshev polynomials,
the Fibonacci numbers and polynomials, and the Cauchy product of central Delannoy
numbers, derive several formulas for the tridiagonal determinant and the second kind
Chebyshev polynomials, review computation of general tridiagonal determinants, present
two new formulas for computing general tridiagonal determinants, and generalize central
Delannoy numbers and their Cauchy product.
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1. A motivation from central Delannoy numbers

Let
c 1 0 0 0 0 O
1 ¢ 0 0 0 O
01 ¢ 1 --- 0 0 O
Mp(ey=1. . . . . .. , ceC, keN (1)
o0 o000 -+ 1 ¢ 1
o0 00 --- 01 ¢

kxk

and denote the determinant |My(c)| of the k x k tridiagonal matrix My (c) by Dg(c). From
some results in [[3, Theorem 1.2] for the Cauchy products of central Delannoy numbers, the

explicit expression Dy (—6) = && Z?ZO(—l)ZGQK (k,fé) was derived in [[3, Remark 4.4], where
(fl’) =0 for ¢ > p > 0. Hereafter, the authors guessed in [[3, Remar 4.4] that the formula

Do) = (-1 e () = S (ke (") ®

k
£=0 m=0
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should be valid for all ¢ € C and k € N and claimed that this guess can be straightforwardly
verified by induction on k£ € N.

In this paper, we will discover a generating function of the sequence Dg/(c), provide an
analytic proof of the formula (B), establish a simpler formula for Dg(c), find a determinan-
tal expression for Dy/(c), present the inverse of My(c), connect Dy(c) with the Chebyshev
polynomials and the Fibonacci numbers and polynomials, review computation of general
diagonal determinants, supply two formulas for computing general diagonal determinants,
generalize central Delannoy numbers, and represent the Cauchy product of the generalized
central Delannoy numbers in terms of Dg(c).

2. A generating function for Dy(c)
We now discover a generating function of the sequence Dy (c).

Theorem 2.1. Let Do(c) = 1. Then the sequence Dy(c) for k > 0 can be generated by
tLitH =Y o Dy (c)t".
Proof. 1t is clear that

Di(c)=c and Ds(c)=c*—1. (3)

By expanding the determinant Dg(c) according to the last row or column, we can obtain
the recurrence relation

Dk(C) = CDkfl(C) — Dk,Q(C), k 2 2. (4)
Multiplying by t* and summing with respect to k from 2 to oo give

D> Di(o)th =ct > Drpa()t* ' = 12> Dy_p(e)tF 2,
k=2 k=2 k=2
Let F,(t) be a generating function of Dy(c) for k > 0, that is,
Ft) =3 Di(e)tt, (5)
k=0

Then F.(t) — 1 — ct = ct[F.(t) — 1] — t*F.(t), that is,

1
F.(t) = ——, 6
( ) t2—ct+1 (6)
which is a generating function of the infinite sequence Dy(c) for k > 0. g

We now provide an analytic proof of the formula (B).
Theorem 2.2. For k> 0 and c € C, the formula (B) is valid.

Proof. In combinatorics, the second kind Bell polynomials are defined by

' n—k+1 ¢
n! XTi\ "~
Bpuk(z1, 72, Tnpy1) = E : Trn—Fk+1 , H (T)
_ I AR il
1<i<n—k+1 i=1 o=l
£;€{0}UN
Z?:_;H—l ili=n
SIS ti=k

for n > k > 0. See [B, p. 134, Theorem A]. They satisfy the identities

. abn—k+l

By k (abxl, ab’zs, .. 33n—k+1) = akb"Bn,k(xl, Xy ey T—kt1) (7)

and

1 nl/ k .
Brs(s 1000 anlc'(n—k)Z% (8)
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for complex numbers a,b, z € C. See [B, p. 135] and [[@, Theorem 4.1] respectively. The Faa
di Bruno formula can be described [B, p. 139, Theorem C] by

dn = / " n—k+1
= oh(t) = §f<k><h<t>>3n,k(h (£), (1), ..., KR (1)) (9)

Let u = h(t) = t>—ct+1. Then, by the Faa di Bruno formula (8) and the identities (@)
and (B), we have

k 1\ @
[Fc(t)](k) _ Z() Bk,[(h/(t), h//(t)7 hm(t), o h(k—é-i—l))

u
£=0

F—n)te o,
=3 Bl — ¢,2,0,...,0) & (<) IBr(—c, 2,0, ...,0)
£=0 =0
k 20—k k
1 kl/ ¢ c 14
= —1)pof _—_ _° — (—1])FR! _1)¢ 20—k
D (-1 2H£!<k£)( 2) DR D, -y )e
=0 £=0
as t — 0. Considering (8) and (B) proves the explicit formula (B). O

3. A simpler formula for Dg(c)

We now establish a simpler formula for the tridiagonal determinant Dy/(c).
Theorem 3.1. Force C, a = % = chver—d V§2_4, and k > 0, we have

ak-l—l _ 6k+1

a—p3
k+1, c=2;
(-Dk(k+1), c=-2.

c# £2;

Dy(c) = (10)

Proof. Usually, one looks for a solution of the recurrence relation ay = ciarx—1 + coag—2 +
o+ Cp—1Ak—m+1+ Cm Gk —m by considering a sum aj, = blr’f —l—bgr’;—i—. . '—l—bm,lrﬁ%l —|—bmr7’fl.
A necessary condition on r; is that r; are roots of the characteristic equation ¢™ = c1¢™ ' +
g™ 2 4+ -+ ¢m_1q + Cm. The constants ¢; can be determined from the initial conditions
of ai. As a result, the recurrence relation (B) implies that Dy (c) = Aa* + Bb*, where a,b
are roots of the characteristic equation ¢> = cq — 1 associated with (@), provided ¢ # +2,
and A, B are constants which can be determined from identities in (8). g

4. A determinantal expression for Dg(c)
We now find a determinantal expression for Dy (c) alternatively.

Theorem 4.1. For k > 1 and c € C, we have

— 1 0o - 0 0 0
2 —2c 1 0 0 0
0 6 -3¢ --- 0 0 0
(=1)F . . .

Dy(c) = TERE : R : : :
o0 0 - —(k—-2)c 1 0
0 0 0 - k-1Dk-2) —(k-1)c 1

0 0 0 - 0 k(k—1) —ke

Proof. Let u(x) and v(x) # 0 be differentiable. Let Ug,11)x1(x) be an (n 4 1) x 1 matrix

whose elements ug 1 (z) = u* =V (z) for 1 < k < n+1, let Vin+1)xn () be an (n+1) xn matrix
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hyy(i=d) — 7 >0

(J’l)v (), Z ]._ for1<i<n+1land1l<j<n,and
0, 1—3<0
let [Wint1)x (nt1) ()] is the determinant of the (n + 1) x (n + 1) matrix Wp11)x (n41)(2) =

(Un+1)x1(®)  Vipg1yxn(2)). Then the nth derivative of the ratio :ég can be computed by

d* Tu(@)] _ 2 Wty x (nt1) (@)
i [s) = R (11)

This formula ([0) can be found in the paper [[@, p. 94]. Applying (I0) to u(t) = 1 and
v(t) =2 — et + 1 and taking the limit t — 0 give

12 —ct+1 C (2 —ct+ 1)k

whose elements v; ;(z) =

1 t?—ct+1 0 e 0 0
0 ()2t—c) t2—ct+1 - 0 0
0 (2)2 ) 2t—c) - 0 0
X . : : : . :
0 0 0 ()@t—c) t2—ct+1
0 0 0 (45)2 (u50) (2t = o)
11 0 0 0 0 0
0 —()e 1 0 0 0 0
0 (32 —(3)e 1 0 0 0
— (_1)k : <0') (1) : . : : :
000 00 (2 (he 1
0 0 0 0 - 0 (kEQ)Q - (k:)c
The proof of Theorem B is thus complete. |

5. The inverse of My(c)

Basing on discussions about the inverse of M (c) in [@, Eq. (9)], we can derive the
following Theorem Bl straightforwardly.

Theorem 5.1. For k € N, ¢c € C, and a = % = ctve—d V§2*4, the inverse Ml;l(c) of the

tridiagonal matriz My, (c) can be computed by M *(c) = (Rij)kxk’ where

" (ai _ 52‘) (akfjJrl _ 51@7%1)

S Py oy R e

R;; = (_1)i+j72(klc_j+1>7 c=2
Ci(k—j+1) -

k+1 o

fori <j and Ryj = Rj; fori>j.

6. Relations between D,,(c) and the Chebyshev polynomials
The Chebyshev polynomials of the second kind U, (z) for n > 0 can be generated by

1 o0
- - _ ()"
1— 22t + 12 ;U(x)
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for |x| < 1 and || < 1. By Theorem B, it follows immediately that
U,(z) = D, (2z), n>0. (12)

This recovers the first result in [P0, Lemma 5]. Hence, by the definition of Dj(c) and
Theorem B, we obtain the determinantal expressions

21 0 0 --- 0 0 O
1 2 1 0 --- 0 0 O
0O 1 22 1 --- 0 0 O
U, (z) = )
0 0 0 O 1 22 1
0 0 0 0 0 1 2|
and
—2x 1 0 0 0
2 —4x 1 0 0
(=1 0 6 —6x 0 0
Unl@) = n! : : : : :
0 0 0 - =2n—-1z 1
0 0 0 - nn-1) —2nx
The Rodrigues representation for U, (z) is

U, (x)

_ (=D"(n+1)ym d” n+1/2
Co2ntl(n 4 1/2)(1 — 22)1/2d 2 [(171’2) }’

see []. By the same argument as in the proof of Theorem B2, we can obtain

" 1/2 _g2)" T2 _1\¢ )2
O R Y G =

where (x),, is the falling factorial defined by

n—1 .
<x>n:H(x_k):{Clb‘(x—l)...(x—n+1)’ n%é’
k=0 ’ n=0.

Accordingly, it follows that

1y (1-2%)" ¢ (-1)" 0 _(22)*
Un(@) = (=1)"(n+ D55 ;(ze)!!(2n_2z+1)n(n_e>(1_z2)f

and

e (4-2°)" ¢ (-1)* 0 _(2n)*
Dn(@) = (=1)"(n + ) —n ;(25)!!(2712€+1)!!<n€)(4x2)f'

In [I0], it was stated that the polynomials U, (z) can be expressed as

Un() = mf(—w(” R ) (22)" 72" = Lnf ( N )’" (a* = 1)",

= r = 2m +1

where |z] is the floor function whose value equals the largest integer less than or equal to
x. The first equality above is equivalent to the last one in (B). From the second formula

above, it follows that
[n/2] m
z" n+1 4
D,(x) = — 1—-—= .
(I) Qmn Z (2m 4+ 1> < $2>

m=0
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In [IO], it was given that

x4+ Va2 —1)"" — (e =2 —1)""

Unle) = 2WaZ 1
/2 op — n+1 NSy |
_ Z ( )>(2 )n 2k:I;)2k< 2]{_’_—? >(£L’—1)k.

Consequently, we deduce the formula (I0) and

[n/2] n
2% — (n+1)\ o ntk+1 X
D = n == - 2 .
=3 ()= (7 e
k=0 k=0
In [M], it was mentioned that the Chebyshev polynomials of the second kind U, ()
can be expressed in terms of the Jacobi polynomials

Pl (g = U 1 d

= Sl = ape( s ey age () o)™

P(1/2 1/2)
for O[,B > —1 as U?’L( ) (n+ 1)13(1/271% Since

dTL
daxn

[(1—2)* (14 2)"+"] = f: (Z) (1= 2)2 ] O[(1 4 2)f 0
£=0

=1 —2)*™"1 +z)° z": (Z) (=) +n)e(B+ n)ne(l - m>e,

1—x
=0

the Jacobi polynomials P,Sa*ﬁ ) (z) can be expressed explicitly as

P (@) = 1 5 (Z><a+n> (B + z<xj1> .

£=0

As a result, we have

== 3 (75 S () ()

£=0

Finally, we recall from [B, p. 50] that U, (cosf) = W

D, (2cos0) = sin[(nt 18] Thig result was discussed in [@, p. 1512]. The other related results

sin 0

discussed and used in [@, p. 1512] are

which is equivalent to

1) AFDE/2 sinh[(k + 1)0] .

D, (£2coshf) = (—1) <inh 0

7. Relations between D, (c) and the Fibonacci polynomials

The Fibonacci numbers F,, = (1+\/5)21’\/(517‘/5)n for n € N form a sequence of integers

and satisfy the linear recurrence relation F,, = F,,_1+F,_o with F; = F5 = 1. The Fibonacci
numbers F), can be viewed as a particular case F,, (1) of the Fibonacci polynomials

1 (s+VIFS?) — (s—Vits)"

F.(s) = 13
()= 5 Vit (19
which can be generated by
2 2 3 3 4
1_ts_t2 ZF =t st? 4 (2 1)+ (P 2s)tt e (14)

n=1
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see the monograph [B] and related references therein. In [, p. 215, Example 1], it was
deduced that

1 -1 0 O --- 0 O
1 1 -1 0 0 O
0 1 1 -1 0 0
F, = ) , neN (15)
0 0 0 0 1 -1
0 0 0 0 O P,

T 1 0 --- 0 O
-1 =z 1 --- 0 O
o -1 =« --- 0 O
Frpi(z) = . . . , reN. (16)
0 o o0 --- z 1
0 0 0 - -1 a

In [B, p. 224, Example 3], it was obtained that D, (+3) = (£1)" F5(,41) for n € N.

Let i = v/—1 denote the imaginary unit. Taking ¢ = iz on both sides of the formal
expansion () and simplifying yield = > yi"Fp41(s)z™ which implies, due to
Theorem P, the relation

1
1—(is)z+x2

D, (is) =i"Fp4+1(s), n>0. (17)
Consequently, we can express the Fibonacci polynomials F,,(z) for n € N in terms of sym-
metric tridiagonal determinants by

s +*x O O --- 0 0 O
+1 s =+t O 0 0 0
n(s) - in— - gn—1 ] : . . . : . .
o o o 0 - =+ s =+
o o o o0 -+ 0 =+ s

By Theorems 272 and B and from the relation (), we can recover the formula (IC3)
and the explicit formula

= 5 (77 ans

8. Computation of general tridiagonal determinants

Generally, a tridiagonal determinant is defined by

aq bl 0 0 0
C1 a2 b2 0 0
0 Cop agz --- 0 0
Dn(aubu C) = 1. . . . . . 5
0 0 0 -+ ap-1 bn
o 0 0 - cpo1 an,
where a = (a1,as,...,a,), b = (by,bs,...,b,), and ¢ = (¢1,¢a,...,¢,) are complex mul-

tiples. Lemma 1 in [@] reads that the general tridiagonal determinant D,,(a,b, c) satisfies
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the initial values D;(a,b,¢) = a1 and Ds(a,b,c) = ajas — by and satisfies the recurrence
equation Dy, (a,b,¢) = a,Dy—1(a,b,¢) —by_1¢,-1Dn—2(a, b, c).

In linear algebra, the determinant D, (a, b, ¢) is also called a Jacobi determinant which
is different from the determinant of the Jacobi matrix (or say, the Jacobian) in analysis.

Let us examine some special cases of D, (a,b, c).

By induction on n, one can prove straightforwardly that

a+b ab 0 0 0
1 a+b ab 0 0
0 1 a+b 0 0 Ao,
) ) = a—b ' (18)
: : : : : (n+1)a", a="0.
0 0 0 a+b ab
0 0 0 1 a+b
nxn
The formula () is the special case ab =1 and ¢ = a + b of the equality (I3).
By the same method as in the proof of Theorem B, one can prove that
a b 0 0 0
c a b 0 0
0 c 0 0
Dn =My = R :
0 0 O b
0 0 0 c a
nXxn
(a+\/a2f4bc)n+1f (af\/a2—4bc)n+1 9
, a* # 4bc;
_ . 2ntly/q2 — 4bc (19)
(n+1) (;) , a? = 4bc.

The formulas (M) and (IR) are special cases of the equality (I9).
Example 7.2.5 in [0, pp. 514-516] states that the eigenvalues and eigenvectors of the
Toeplitz matrix M,, in (I¥) with a # 0 # ¢ are given by

1/2 . 15

4 JT
a) s n+1
(2)2/2 gin 2T
a n+1

and x;

/\j=b—|—2a\/Z cos L=
a n+1

for 1 < j < n and, consequently, the Toeplitz matrix M, is diagonalizable. As a result, we
conclude that

(g)n/Q sin

n .
c jm
D, =|M,| = 2a, | — cos
n = | Mn| H(lﬂ— a\/;cosn+1>
The tridiagonal determinant

rzy 1 0 0 0 0
-1 z 1 0 0 0
0 -1 z3 0 0 0
0o 0 o0 -1 zp1 1
0 0 0 0 -1 z,
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is called as a continuant K, (x, 2, ..., x,) which is defined recursively by Ko = 1, K;(z1) =
x1, and Ky (21,29, ...,2n) = ©nKpn_1(21,22, ..., Tno1) + Kpn_2(1,22,...,2Tn_2). Compar-
ing with ([3) and (M@), it is clear the Fibonacci numbers and polynomials F,, and F,(s)
satisfy F,, = K,,—1(1,1,...,1) and F,(s) = K,—1(s,$,...,5).

Tridiagonal matrices play an essential role in the theory of orthogonal polynomials.
See the book [M]. Let

ag bl 0 s 0 0

1 a by --- 0 0

0 1 ao 0 0
An = .

0 0 0 - an2 bp_1

0 0 0 - 1 ap,

When expanding the characteristic polynomial ¢, (z) = det(zI — A,,) with respect to the
last row, we obtain g,(x) = (£ — an-1)qn—1(x) — bn_1gn—2(x) with ¢g_1(z) = 0 and go(z) =
1. These polynomials ¢, are orthogonal and each monic orthogonal polynomial satisfies
the above recurrence relation. This has already been showed by Favard in 1935 and in
another form earlier by Stieltjes. One of the simplest and oldest examples are the Chebyshev
polynomials U, (z) or equivalently the Fibonacci polynomials F,1(z) with a, = 0 and
b, = —1. Since the sequence h(n) = (n + 1)!F,1(s) satisfies h(n) = (n + 1)sh(n — 1) +
n(n + 1)h(n — 2) with h(—1) = 0 and h(0) = 1, it is clear that h(n) for n > 1 is the n x n
determinant of the matrix

2s 2-3 0 --- O 0
-1 3s 34 --- 0 0
0o -1 4s -+ 0 0
0 0 0 -+ ns n(n+1)
0 0 0 - 0 (n+l)s

nxn

In [B, pp. 3658-3659, Remark 1.1], it was mentioned that the matrix

al b1 0 e 0 0

bl a2 bg R 0 0

0 b2 ag --- 0 0

. . . . . s b; >0
0 0 0 e ap—1 bn—l

0 0 0 -+ bpo1 ay

has generalized eigenfunctions p;(«) which are orthonormal polynomials and satisfy b;_1p;_1(z)+
a;p;(x) +bjpj41(x) = xp;(x) for j > 1 and by = 0.

Proposition 4 in [E0] can be reformulated as follows. For a n-tuple @ = (21, 22,...,2Zy)
and xy € C, define

HOESES SIS S SIS SN | P

m=1 ki=1ko=k142  km=kn_1+24=1
where by convention an empty sum is equal to 0, or equivalently

[n/2] n—2m+1n—2m-+3

@) =1+ (=™ > > - i || 2y

ki=1 ko=k1+2 km=km_1+24=1
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Let
el Ely . el
+ _ 25 + _ 2j+1 27 - _ 2j+1
721«71—1_[6. ’ 72k—b1HC,’ Hb =[] bo
=1 25—1 =1 27 27 —1 =1 27

for k € N, or equivalently and recursively, 'yl =1, ’ka = f{’—’i, and v, = v% for k£ > 1.
k k
Then the equality

ay — 2 bl 0 0 0
C1 ag — 2 bg 0 0
0 Co as—z - 0 0
0 0 O ap—-1 — % bnfl
0 0 0 Cn—1 A, — 2
n +.— +. - + A~
= H(ak_z) Sr<’717177272,“"7n7n>
1 a1 —zZ ag — 2 ap — 2

holds for all z € C. This is an explicit and closed-form formula for computing a general
tridiagonal determinant (a Jacobi determinant).
The following result can be found in [[2]. The tridiagonal determinant of the form

ai by o o0 0 --- 0 0 0
—C2 a9 b2 0 o --- 0 0 0
0 —C3 Qs b3 o --- 0 0 0
Jn(avbv C) = . . . . . . . . . )
0 0 0 0 o --- —Cp—1 Qapn—1 bn,1
0 0 o o0 o0 --- 0 —Cn an
where a = (a1,a2,...,a,), b = (by,ba,...,b,), and ¢ = (¢, ¢2,...,¢,) are complex mul-

tiples, equals the sum of its leading term ajas...a, and all the terms obtained from this
product by replacing one or several pairs of neighbour product a;a;4+1 by b;cjy1. For exam-
ple, when n = 5, it has the form

ajagazagsas + (bicaasasas + arbaczasas + arasbscaas + ayazasbycs)
+(b162b364a5 + b16203b465 + a1b203b405).
By the above description, we summarize the following theorems.

Theorem 8.1. The determinant J,,(a,b,c) for n € N can be computed by

[n/2]  n-1 12 —2=24pm, 12mbc n
Ju(abe) - <1+Z YO S Y MH)fH%
=1

Qay, a
m=1 £1=2m—1Ls=2m—3  fm_1=3 fLm=1 k=1 trHlt1

Proof. Expanding with respect to the last row of J,, gives

In = anJn_1+bn_1cpJn_2. (20)
Note that J; = a1 and Jo = ajas + bice. In general,
n [n/2] n
=[Jea+ Z 3 IIe H buy, i1 (21)
a’lkalk—i-l
=1 1 (I, 4+1) <<yl +1) £=1

where the pair of neighbor indices (a,a + 1) precedes the pair (b, b+ 1), that is, (a,a + 1) <
(b,b+ 1), if a+ 1 < b. In other words, in the right-hand side of (E10), we have the term
ngl ae and the other summands which can be obtained as follows: we substitute b;, ¢, +1
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instead of a;, a;,+1 in the term H?Zl ay for each pair (Ig,l; + 1) of the ordered collection of
pairs (1,01 + 1) < -++ < (I, + 1). The proof by induction on n is not hard in view of
the recurrence formula (E0). Note that the number of summands in the the right-hand side
of (ED) is equal to the nth Fibonacci number F,. Also note that the sum over all ordered
collections of pairs (I1,l; +1) < -+ < (Iym, Im + 1) can be rewritten as

lo—215—2 n—1

SRS 5D S S

(T1,l141) <<l sl +1) l1=112=3 Im=2m—1

Hence, we obtain the formula

Ju(a,b,c) <Hal> <1+ an/% lzz%i "Zl H blkclk+1>

ai, a
m=1 li=112=3  lp=2m—1k=1 txHetl

The proof of Theorem Bl is thus complete. O

Theorem 8.2. Forn € N, the determinant J,(a,b,c) can be computed by

2371

(a,b,c) ZX w;) Hak”“bﬁ”“ Yok (22)

where x : {0,1}*" — {0,1} is the characteristic function of the set

n — {wz - (aipﬁil)’yil;ai276i277i2;"' 5041‘”7@,“71'”) € {071}311 :
i1 :ﬁin :Oa%‘eﬂ :B’iwaik +/61k +7’ik = 171 SES n— 151 S k S n}

Proof. For n = 1,2, it is easy to verify the formula (E32).
Suppose the formula (B2) is valid for all n < m. Then for n =m+1

93(m+1) m+1 5 93m 5
aiy o Big, %k . iy Biy, ”n,c
E x(w;) H a; *by E x (w;) m+1bm+1cm+1 H a, " by,
i=1 i=1 k=1
23(711 1) m—1
iy Biy Yig
+ g x(w;)ald, by cmam+1bm+lcm+l H ay, "t ey
k=1
93m 93(m—1) m—1
Z Bi g Z iy g Biy i
= Qi1 X w; H G,kikb i zk 4 bmcm—i-l X(wz) H akik bkik ckzk
1=1 k=1 =1 k=1

- aerlJm + bmcm+1Jm71 - Jerl'

The proof is thus complete. U

9. Going back to central Delannoy numbers

Central Delannoy numbers D(n) have the generating function

D(k)a® =1+ 3z + 1322 + 6323 + - - . 23
\/176z+1’2 Z (23)

Squaring on both sides of (E3) results in

M—[ZD r:
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On the other hand, making use of Theorem I gives
Dy (6)z" = (=1)*Dy(—6)2*
= R YIRSy

D*Dy(— Z D(¢

Consequently, we obtain
= (-1
) between D, (c) and the Chebyshev polynomials of the second kind

Dy,(6)

and, by the relation (
k
=> D()D(k -
=0

U, (x),
Uk(3)
In other words, the Cauchy products of central Delannoy numbers D(k) are special values
i ().

(

Ui (3) of the Chebyshev polynomials of the second kind U, (z)
In [, Theorem 1.3|, by virtue of the Cauchy integral formula, central Delannoy
numbers D(k) were represented by
34+2v2
1 1
prm, dt, k>0.
22\ J(t-3+2v2)(3+2V2 —1)
(24)

1
1
k>0, b>a>0

The central Delannoy numbers D(k) were generalized in [[d] as
1
dt,

V(E—a)(b—t) 5
* (25)

(

Da,b =
and, by [[3, Lemma 2.4], we find that D, ;(k) can be generated by
1 o0
_ = D p(k)z".
V(x +a)(x +b) kZ:O
By virtue of conclusions in [[3, Section 2.4] and [[¥, Remark 4.1], the generalized central
Delannoy numbers D, ;(k) for k > 0 can be computed by the explicit formulas
1 -1/ ¢ \[A(a,b)]"
Dy (k 1)f2% ’
olk) = G(a,b) 2A (a, b k. (201 (k;—f) {H a,b)
and
Dop(k) = 1~ (201N (k 0 =11 b\
sl T Vab b= 200 -0 \a)
where the quantities A(a,b) = “t2, G(a,b) = Vab, and H(a,b) = iil are respectively the
a b
arithmetic, geometric, and harmonlc means of a,b > 0.
Squaring on both sides of (E3) reveals that the Cauchy product of the generalized
central Delannoy numbers D, (k) can be generated by
1
(t+a)t+b) £+ (a+b )t + ab Z ol
As a result, by some arguments carried out in previous sections, we can see that the Cauchy
product of the generalized central Delannoy numbers D, (k) can be computed by
b
: <a+b>2ka($%)
k Z (ab)‘v"*‘l - (ab)k/2+l

k—20)
=0

k
ZDab

=0
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for k > 0, where Dy, is the diagonal determinant of the diagonal matrix My defined by the
equation ().

The definition () and the generating function (EH) can be extended to x € C and
a,b € C such that the straight segment between a € C and b € C does not pass through the
origin 0 € C.

Remark 9.1. This paper is a revised and shortened version of the preprint [IH].
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