

APPROXIMATE AMENABILITY MODULO AN IDEAL OF BANACH ALGEBRAS

Hamidreza Rahimi¹, Afsaneh Soltani²

In this paper we introduce and study the concept of approximate amenability (contractibility) modulo an ideal of Banach algebras. Based on the obtained results, we prove that the weighted semigroup algebra $\ell^1(S, \omega)$ is approximately amenable modulo an ideal if and only if S is amenable and ω_σ is diagonally bounded where ω_σ is the induced weight on S/σ for the least group congruence σ on S .

Keywords: Amenability modulo an ideal, Approximate amenability modulo an ideal, Semigroup algebra, group congruence

MSC2010: 43A07, 46H25

1. Introduction

The notion of approximate amenability of Banach algebra was introduced by Ghahramani and Loy in [6]. The structure of approximately amenable (contractible) Banach algebras is considered in [6] through different ways. It is shown two concepts of approximately amenable and approximately contractible for Banach algebras are equivalent and the group algebra $L^1(G)$, where G is a locally compact group, is approximately amenable (contractible) if and only if G is amenable. For a discrete semigroup S , the necessary and sufficient conditions for approximately amenable (contractible) of the semigroup algebra $\ell^1(S)$ is quite more complicated. It has not been explored when $\ell^1(S)$ is approximately amenable. For discrete semigroup S , it has been shown that if $\ell^1(S)$ is approximately amenable, then S is regular and amenable [7], and if S is right cancellative semigroup such that $\ell^1(S)$ is approximately amenable then S is an amenable group and $\ell^1(S)$ is amenable [11]. To see some remarks of approximate amenability of Banach algebras see [2, 3, 7, 11, 9].

The concept of amenability modulo an ideal for the ℓ^1 - semigroup algebra was introduced by the first author and M. Amini in [1]. The effect is to gather up the non-group structure into a congruence and its corresponding ideal and establish some analogue of Johnson's theorem on groups and their ℓ^1 -algebras. Following up some basic properties of amenability modulo an ideal, contractibility modulo an ideal of Banach algebras and their applications for semigroup algebras were studied in [13].

This paper is organized as follows: in section 2, we give some preliminaries. In section 3, we study basic properties of approximately amenable (contractible) modulo an ideal of Banach algebras. Among other results, we give a characterization of approximately amenable (contractible) modulo an ideal of Banach algebras in terms of the existence of a bounded approximate diagonal modulo an ideal of A . Finally, in section four, using the obtained results we investigate approximately amenable modulo an ideal of weighted semigroup algebras $\ell^1(S, \omega)$ for a large class of semigroups. As an interesting result we show

¹ Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, P. O. Box 13185/768, Tehran, Iran, Email: rahimi@iauctb.ac.ir

²Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, P. O. Box 13185/768, Tehran, Iran.

that $l^1(S, \omega)$ is approximately amenable modulo an ideal if and only if S is amenable and Ω_{ω_σ} is bounded where Ω_{ω_σ} is the symmetrization of the induced weight ω_σ on S/σ and σ is the least group congruence on semigroup S .

2. Preliminaries

For a Banach algebra A , let X be a Banach A -bimodule. A linear mapping $D : A \rightarrow X$ is said to be a derivation if $D(ab) = a \cdot D(b) + D(a) \cdot b$ ($a, b \in A$). A derivation D is said to be inner (approximately inner) if there exists $x \in X$ ($(x_\alpha)_\alpha \subseteq X$) such that $D(a) = a \cdot x - x \cdot a$ ($D(a) = \lim_\alpha ad_{x_\alpha}(a)$) ($a \in A$). A Banach algebra A is said to be amenable (approximately amenable) if every continuous derivation $D : A \rightarrow X^*$ is inner (approximately inner) for all Banach A -bimodules X . We now begin by recalling some definitions and then we shall give some of the basic consequences of our definitions. Further results in this area are given in the recent papers [1, 12, 13, 14], which in particular contains interesting results on contractibility modulo an ideal, some hereditary properties of amenability modulo an ideal, together with several illuminating examples.

Definition 2.1. [13] Let I be a closed ideal of A .

- (i) A Banach algebra A is amenable (contractible) modulo I if every bounded derivation $D : A \rightarrow X^*$ ($D : A \rightarrow X$) is inner on $A \setminus I := \{a \in A : a \notin I\}$ for all Banach A -bimodule X such that $I \cdot X = X \cdot I = 0$.
- (ii) A bounded net $\{u_\alpha\}_\alpha \subseteq A$ is called approximate identity modulo I if $\lim_\alpha u_\alpha \cdot a = \lim_\alpha a \cdot u_\alpha = a$ ($a \in A \setminus I$).

All over this paper we fix A and I as above, unless they are otherwise specified.

3. Approximately amenable modulo an ideal

Definition 3.1. Let I be a closed ideal of A . A Banach algebra A is approximately amenable modulo I if every bounded derivation $D : A \rightarrow X^*$ is approximately inner on the set theoretic difference $A \setminus I := \{a \in A : a \notin I\}$ for all Banach A -bimodule X such that $I \cdot X = X \cdot I = 0$.

Theorem 3.1. Let I be a closed ideal of A . Then the following assertions holds:

- (i) if $\frac{A}{I}$ is approximately amenable and $I^2 = I$, then A is approximately amenable modulo I ;
- (ii) if A is approximately amenable modulo I , then $\frac{A}{I}$ is approximately amenable.

Proof. (i) Let X be a Banach A -bimodule such that $X \cdot I = I \cdot X = 0$ and $D : A \rightarrow X^*$ be a bounded derivation. Then X can be regarded as an $\frac{A}{I}$ -bimodule. Set $\bar{D} : \frac{A}{I} \rightarrow X^*$ by $\bar{D}(a + I) = D(a)$ ($a \in A$). Since $I^2 = I$, $D(x) = 0$ ($x \in I$) and hence \bar{D} is well-defined. Approximately amenability of $\frac{A}{I}$ implies that there exists $(\phi_\alpha)_\alpha \subset X^*$ such that $\bar{D} = \lim_\alpha ad_{\phi_\alpha}$. Then

$$\begin{aligned} D(a) = \bar{D}(a + I) &= \lim_\alpha [(a + I)\phi_\alpha - \phi_\alpha(a + I)] \\ &= \lim_\alpha (a\phi_\alpha - \phi_\alpha a) = \lim_\alpha ad_{\phi_\alpha}(a). \end{aligned}$$

(ii) Let X be a Banach $\frac{A}{I}$ -bimodule and $D : \frac{A}{I} \rightarrow X^*$ be a bounded derivation. By defining $a \cdot e = \pi(a) \cdot e$, $e \cdot a = e \cdot \pi(a)$ ($a \in A, e \in X$) where $\pi : A \rightarrow \frac{A}{I}$ is the canonical quotient map, X can be regarded as a Banach A -module. Obviously $I \cdot X = X \cdot I = 0$ and $D \circ \pi : A \rightarrow X^*$ is a bounded derivation. Thus there exists $(\psi_\alpha)_\alpha \subset X^*$ such that $D \circ \pi = \lim_\alpha ad_{\psi_\alpha}$ on $A \setminus I$. Now $D(a + I) = D \circ \pi(a) = \lim_\alpha ad_{\psi_\alpha}(a) = \lim_\alpha (a \cdot \psi_\alpha - \psi_\alpha \cdot a)$ ($a \in A$). Hence $D = \lim_\alpha ad_{\psi_\alpha}$. \square

Corollary 3.1. If A is approximately amenable modulo I and I is approximately amenable, then A is approximately amenable.

One could modify the proof of the following Lemma (which is essentially due to Ghahramani and Loy [6]) to get the same result for approximately amenable modulo an ideal.

Lemma 3.1. *If A is an unital Banach algebra which is approximately amenable modulo I , X is an A -bimodule such that $I \cdot X = X \cdot I = 0$ and $D : A \rightarrow X^*$ is a derivation, then there are $(\phi_\alpha)_\alpha \subset e \cdot X^* \cdot e$ and $\eta \in X^*$ such that*

- (1) $\|\eta\| \leq 2C_X \|D\|$;
- (2) $D = \lim_\alpha ad_{\phi_\alpha} + ad_\eta$ on $A \setminus I$.

Proof. By [6, Lemma 2.3], there are derivation $D_1 : A \rightarrow e \cdot X^* \cdot e$ and $\eta \in X^*$ such that $\|\eta\| \leq 2C_X \|D\|$ and $D = D_1 + ad_\eta$. Now $e \cdot X^* \cdot e \cong (e \cdot X \cdot e)^*$, A is approximately amenable modulo I and $I \cdot (e \cdot X \cdot e) = (e \cdot X \cdot e) \cdot I = 0$, so there exists $(\phi_\alpha)_\alpha \subset e \cdot X^* \cdot e$ such that $D_1 = \lim_\alpha ad_{\phi_\alpha}$ on $A \setminus I$. Thus $D = \lim_\alpha ad_{\phi_\alpha} + ad_\eta$ on $A \setminus I$. \square

Let A be a Banach algebra. Then A^\sharp is also a Banach algebra in a standard way which gives the adjoined identity norm one.

Theorem 3.2. *A is approximately amenable modulo I if and only if A^\sharp is approximately amenable modulo I .*

Proof. Let X be an A^\sharp -bimodule such that $I \cdot X = X \cdot I = 0$ and $D : A^\sharp \rightarrow X^*$ be a derivation. By [6, Lemma 2.3], $D = D_1 + ad_\eta$ where $\eta \in X^*$, $D_1 : A^\sharp \rightarrow e \cdot X^* \cdot e$. Now $D_1(e) = 0$ and $D_1|_A : A \rightarrow e \cdot X^* \cdot e$ is a derivation, so approximately amenable modulo I of A implies that there exists $(\psi_\alpha)_\alpha \subset e \cdot X^* \cdot e$ such that $D_1|_A = \lim_\alpha ad_{\psi_\alpha}$ on $A \setminus I$. Thus $D = \lim_\alpha ad_{\phi_{\alpha+\eta}}$ ($a \in A \setminus I$).

Conversely, let X be an A -bimodule such that $I \cdot X = X \cdot I = 0$ and $D : A \rightarrow X^*$ be a derivation. Set $\bar{D} : A^\sharp \rightarrow X^*$ by $\bar{D}(a, \lambda) = D(a)$ ($(a, \lambda) \in A^\sharp$). Now X can be made into a Banach A^\sharp -bimodule by defining $(a, \lambda) \cdot x = a \cdot x + \lambda x$, $x \cdot (a, \lambda) = x \cdot a + \lambda x$ ($x \in X$, $(a, \lambda) \in A^\sharp$). We have $e \cdot Da = Da = Da \cdot e$ ($a \in A$) and

$$\begin{aligned} \bar{D}((a_1, \lambda_1)(a_2, \lambda_2)) &= D(a_1 a_2) + \lambda_2 e \cdot D(a_1) + \lambda_1 e \cdot D(a_2) \\ &= D(a_1) \cdot a_2 + a_1 \cdot D(a_2) + \lambda_2 e \cdot D(a_1) + \lambda_1 e \cdot D(a_2) \\ &= \bar{D}(a_1, \lambda_1) \cdot (a_2, \lambda_2) + (a_1, \lambda_1) \cdot \bar{D}(a_2, \lambda_2), \end{aligned}$$

so \bar{D} is a derivation ($a_1, a_2 \in A$, $\lambda_1, \lambda_2 \in \mathbb{C}$). Since A^\sharp is approximately amenable modulo I , there exists net $(\psi_\alpha)_\alpha \subset X^*$ such that $\bar{D} = \lim_\alpha ad_{\psi_\alpha}$ on $A^\sharp \setminus I$. Thus $D = \bar{D}|_A$ is approximately inner on $A \setminus I$. \square

We recall that an A -bimodule X is called neo-unital modulo I [13], if

$$X = (A \setminus I) \cdot X \cdot (A \setminus I) = \{a \cdot x \cdot b \mid a, b \in A \setminus I, x \in X\}.$$

It is known that for a Banach algebra A with bounded approximate identity modulo I , $H_I^1(A, X^*) = 0$ for each Banach A -bimodule X if and only if $H_I^1(A, X^*) = 0$ for each neo-unital modulo I Banach A -bimodule X [14, Theorem 2.5]. Similarly, if A is a Banach algebra with a bounded approximate identity modulo I , then A is approximately amenable modulo I if for every neo-unital modulo I Banach A -bimodule X such that $I \cdot X = X \cdot I = 0$, every derivation $D : A \rightarrow X^*$ is approximately inner on $A \setminus I := \{a \in A : a \notin I\}$. We denote the identity of $\frac{A^\sharp}{I}$ by \bar{e} and fix it till end of this paper.

Theorem 3.3. *The following conditions are equivalent:*

- (a) A is approximately amenable modulo I ;
- (b) $There is a net (M_\nu) \subset (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)^{**}$ such that $a \cdot M_\nu - M_\nu \cdot a \rightarrow 0$ ($\forall a \in A^\sharp \setminus I$) and $\pi^{**}(M_\nu) \rightarrow \bar{e}$;
- (c) $There is a net (M'_\nu) \subset (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)^{**}$ such that $a \cdot M'_\nu - M'_\nu \cdot a \rightarrow 0$ ($\forall a \in A^\sharp \setminus I$) and $\pi^{**}(M'_\nu) = \bar{e}$ for every ν .

Proof. (a) \rightarrow (c) Let A be approximately amenable modulo I , then A^\sharp is approximately amenable modulo I (by Theorem 3.2). Put $u = \widehat{(\bar{e} \otimes e)} \in (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)^{**}$ and define $\pi : (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp) \rightarrow \frac{A^\sharp}{I}$ by $\pi(\bar{a} \otimes b) = \bar{a}b$. Now $ad_u : A^\sharp \rightarrow (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)^{**}$ by $a \mapsto a.u - u.a$ is a bounded derivation and

$$\begin{aligned} \pi^{**}(ad_u(a))(f) &= ad_u(a)(\pi^* f) \\ &= a.u(\pi^* f) - u.a(\pi^* f) \\ &= \widehat{(\bar{e} \otimes e)}(\pi^* f.a) - \widehat{(\bar{e} \otimes e)}(a.\pi^* f) \\ &= \pi^* f(\bar{a} \otimes e) - \pi^* f(\bar{e} \otimes a) = 0 \end{aligned}$$

Thus $ad_u \in Z^1(A^\sharp, \ker(\pi^{**}))$. Let $X := (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)^*$ and $M := \overline{(\pi^*((\frac{A^\sharp}{I})^*))}$, then $\ker \pi^{**} = (\frac{X}{M})^*$. Since $I \cdot (\frac{X}{M}) = (\frac{X}{M}) \cdot I = 0$, approximately amenability modulo I of A^\sharp implies that there exists $(M_\nu)_\nu \subset \ker(\pi^{**})$ such that $ad_u(a) = st - \lim_\nu ad_{M_\nu}(a)$ on $A^\sharp \setminus I$. Let $M'_\nu := u - M_\nu$, then for each $\phi \in (\frac{A^\sharp}{I})^*$, $\bar{c} \in \frac{A^\sharp}{I}$;

$$\begin{aligned} (\pi^{**}(M'_\nu) \cdot \bar{c})(\phi) &= (\pi^{**}(u - M_\nu) \cdot \bar{c})(\phi) \\ &= (\pi^{**}(u) \cdot \bar{c})(\phi) - (\pi^{**}(M_\nu) \cdot \bar{c})(\phi) = (\pi^{**}(u))(\bar{c}.\phi) \\ &= u(\pi^*(\bar{c}.\phi)) = \pi^*((\bar{c}.\phi)(\bar{e} \otimes e)) = (\bar{c}.\phi)(\pi(\bar{e} \otimes e)) \\ &= \phi(\bar{c}), \end{aligned}$$

and for each $a \in A^\sharp \setminus I$;

$$a \cdot M'_\nu - M'_\nu \cdot a = a \cdot (u - M_\nu) - (u - M_\nu) \cdot a = ad_u(a) - ad_{M_\nu}(a) \rightarrow 0.$$

(c) \rightarrow (a) Let X be a neo-unital Banach A^\sharp -bimodule modulo I such that $I \cdot X = X \cdot I = 0$ and $D : A^\sharp \rightarrow X^*$ be a bounded derivation. Since $I \cdot X = X \cdot I = 0$, with the module actions $\bar{a} \cdot x = a \cdot x$, $x \cdot \bar{a} = x \cdot a$, X is an $\frac{A^\sharp}{I}$ -bimodule. Put $\mu_x(\bar{a} \otimes b) = (\bar{a} \cdot Db)(x)$, $(\bar{a} \otimes b \in \frac{A^\sharp}{I} \hat{\otimes} A^\sharp, x \in X)$. We have;

$$\begin{aligned} \mu_{x.a-a.x}(\bar{b} \otimes c) &= \mu_{x.\bar{a}-\bar{a}.x}(\bar{b} \otimes c) \\ &= (\bar{b}.Dc)(x.\bar{a} - \bar{a}.x) \\ &= (\bar{b}.Dc)(x.\bar{a}) - (\bar{b}.Dc)(\bar{a}.x) \\ &= (\bar{a}\bar{b}.Dc)(x) - (\bar{b}.Dc.\bar{a})(x) + (\bar{b}\bar{c}.Da)(x) \\ &= \mu_x(\bar{a}\bar{b} \otimes c) - \mu_x(\bar{b} \otimes ca) + (\bar{b}\bar{c}.Da)(x). \end{aligned}$$

Thus $\mu_{x.a-a.x}(m) = (\mu_{x.a-a.x})(m) + (\pi(m).Da)(x)$ ($m \in (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)$). For each ν , define $f_\nu(x) = M_\nu(\mu_x)$. Then $\{f_\nu\} \subseteq X^*$ and $\|f_\nu\| \leq \|M_\nu\| \|D\| \|C_X\|$. We claim that $D = st - \lim_\nu ad_{f_\nu}$. Since $(M_\nu)_\nu \subset (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)^{**}$, there exists $\{m_\nu^\alpha\} \subseteq (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)$ such that $M_\nu = w^* - \lim_\alpha m_\nu^\alpha$. We have;

$$\begin{aligned} (\bar{a}.f_\nu - f_\nu.\bar{a})(x) &= f_\nu(x.\bar{a} - \bar{a}.x) = M_\nu(\mu_{x.\bar{a}-\bar{a}.x}) \quad (x \in X, \bar{a} \in \frac{A^\sharp}{I}) \\ &= w^* - \lim_\alpha \widehat{m_\nu^\alpha}(\mu_{x.\bar{a}-\bar{a}.x}) \\ &= w^* - \lim_\alpha (\mu_x.\bar{a} - \bar{a}.\mu_x)(m_\nu^\alpha) + (\pi(m_\nu^\alpha)Da)(x) \\ &= M_\nu(\mu_x.\bar{a} - \bar{a}.\mu_x) + w^* - \lim_\alpha (\pi(m_\nu^\alpha)Da)(x) \\ &= M_\nu(\mu_x.\bar{a}) - M_\nu(\bar{a}.\mu_x) + (\pi^{**}(M_\nu)Da)(x) \\ &= f_\nu(x.\bar{a}) - f_\nu(\bar{a}.x) + (\pi^{**}(M_\nu)Da)(x) \\ &= f_\nu(x.a) - f_\nu(a.x) + (\pi^{**}(M_\nu)Da)(x) \\ &= a.f_\nu(x) - f_\nu(x).a + (\pi^{**}(M_\nu)Da)(x) \\ &= (a \cdot M_\nu - M_\nu \cdot a)(\mu_x) + (\pi^{**}(M_\nu)Da)(x). \end{aligned}$$

Thus

$$\begin{aligned} \|(a.f_\nu - f_\nu.a)(x) - (Da)(x)\| &\leq \|(a.M_\nu - M_\nu.a)\| \cdot \|D\| \cdot \|x\| \\ &\quad + \|x\| \cdot \|\pi^{**}(M_\nu) - \bar{e}\| \cdot \|Da\| \end{aligned}$$

Whence $D(a) = st - \lim_\alpha ad_{f_\nu}(a)$ ($a \in A^\sharp \setminus I$).

(b) \rightarrow (a) It is clear. \square

Theorem 3.4. *A is approximately amenable modulo I if and only if there are nets $(M_\nu'') \subseteq (\frac{A}{I} \hat{\otimes} A)^{**}$, $(F_\nu) \subseteq (\frac{A}{I})^{**}$, $(G_\nu) \subseteq (A)^{**}$, such that for each $a \in A \setminus I$;*

- i) $a \cdot M_\nu'' - M_\nu'' \cdot a + F_\nu \otimes a - a \otimes G_\nu \rightarrow 0$
- ii) $a \cdot F_\nu \rightarrow a, G_\nu \cdot a \rightarrow a$; and
- iii) $\pi^{**}(M_\nu'') \cdot a - F_\nu \cdot a - G_\nu \cdot a \rightarrow 0$

Proof. Let $(M_\nu) \subseteq (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)^{**}$ be as in Theorem 3.3. Since

$$(\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)^{**} = (\frac{A}{I} \hat{\otimes} A)^{**} \oplus ((\frac{A}{I})^{**} \hat{\otimes} e) \oplus (e \hat{\otimes} A^{**}) \oplus \mathbb{C}(e \hat{\otimes} e),$$

there exists $(M_\nu'') \subseteq (\frac{A}{I} \hat{\otimes} A)^{**}$, $(F_\nu) \subseteq (\frac{A}{I})^{**}$, $(G_\nu) \subseteq (A)^{**}$ and $(c_\nu) \subseteq \mathbb{C}$ such that $M_\nu = M_\nu'' - F_\nu \otimes e - e \otimes G_\nu + c_\nu e \otimes e$. Let $(F_\nu^\alpha) \subseteq (\frac{A}{I})^{**}$ be w^* -accumulation point of $(\widehat{F_\nu^\alpha})$, then for each $f \in (\frac{A^\sharp}{I})^*$;

$$\begin{aligned} (\pi^{**}(F_\nu \otimes e))(f) &= (F_\nu \otimes e)(\pi^* f) = w^* - \lim((\widehat{F_\nu^\alpha \otimes e})(\pi^* f)) \\ &= w^* - \lim_\alpha (\pi^* f)(\widehat{F_\nu^\alpha \otimes e}) = w^* - \lim_\alpha f(F_\nu^\alpha) \\ &= w^* - \lim_\alpha \widehat{F_\nu^\alpha}(f) = F_\nu(f) \end{aligned}$$

Then $\pi^{**}(F_\nu \otimes e) = F_\nu$. Similarly $\pi^{**}(e \otimes G_\nu) = G_\nu$, $\pi^{**}(c_\nu e \otimes e) = c_\nu$. Using Theorem 3.3(b), proof is completed. \square

Theorem 3.5. *Let A be approximately amenable modulo I, B be a Banach algebra and J be a closed ideal of B. Let $\theta : A \rightarrow B$ be a continuous surjective homomorphism such that $\theta(I) \subseteq J$. Then B is approximately amenable modulo J.*

Proof. Let X be a Banach B-bimodule such that $J \cdot X = X \cdot J = 0$ and $D : B \rightarrow X^*$ is a bounded derivation. Then X become a Banach A-bimodule where the module actions are defined $a \cdot x := \theta(a) \cdot x$, $x \cdot a := x \cdot \theta(a)$ ($a \in A$, $x \in X$). Clearly, $I \cdot X = X \cdot I = 0$ and $D \circ \theta : A \rightarrow X^*$ is a bounded derivation. Then there exists a net $(\phi_\nu)_\nu \subset X^*$ such that $D \circ \theta = \lim_\nu ad_{\phi_\nu}$ on $A \setminus I$. \square

Definition 3.2. *Let A be Banach algebra and I be a closed ideal of A. A is approximately contractible modulo I if for every Banach A-bimodule X such that $I \cdot X = X \cdot I = 0$, every bounded derivation D from A into X is an approximately inner derivation on $A \setminus I := \{a \in A : a \notin I\}$.*

We recall that an element $e \in A$ is an identity modulo I if $ae - a \in I$, $ea - a \in I$ ($a \in A$) and a Banach algebra A is unital modulo I if A has an identity modulo I [13].

Theorem 3.6. *The following assertions hold.*

- (i) *If $\frac{A}{I}$ is approximately contractible and $I^2 = I$, then A is approximately contractible modulo I.*
- (ii) *If A is approximately contractible modulo I, then $\frac{A}{I}$ is approximately contractible.*
- (iii) *If A is approximately contractible modulo I and I is approximately contractible, then A is approximately contractible.*
- (iv) *If A is approximately contractible modulo I, then A is unital modulo I.*

Proof. (i) Let X be a Banach A-bimodule such that $X \cdot I = I \cdot X = 0$ and $D : A \rightarrow X$ be a bounded derivation. Analogous argument of Theorem 3.1, shows that X can be regarded as $\frac{A}{I}$ -bimodule and $D_1 : \frac{A}{I} \rightarrow X$ by $D_1(a+I) = D(a)$ ($a \in A$) is well-define bounded derivation. Since $\frac{A}{I}$ is approximately contractible, there exists $(\phi_\alpha)_\alpha \subset X$ such that $D_1 = \lim_\alpha ad_{\phi_\alpha}$. Then

$$D(a) = D_1(a+I) = \lim_\alpha ad_{\phi_\alpha}(a) \quad (a \in A \setminus I).$$

(ii) Let X be a Banach $\frac{A}{I}$ -bimodule and $D : \frac{A}{I} \rightarrow X$ be a bounded derivation. Now X is an A -bimodule by defining $a \cdot x = \pi(a) \cdot x$, $x \cdot a = x \cdot \pi(a)$ ($a \in A, x \in X$). Clearly $D \circ \pi : A \rightarrow X$ is a bounded derivation and A is approximately contractible modulo I implies that there exists $(\phi_\alpha)_\alpha \subseteq X$ such that $D \circ \pi = \lim_\alpha ad_{\phi_\alpha}$ on $A \setminus I$. Thus $D = \lim_\alpha ad_{\phi_\alpha}$.

(iii) and (iv) are straightforward. \square

The following results are the analogous of Theorems 3.3 and 3.5.

Theorem 3.7. *Let A be approximately contractible modulo I , B be a Banach algebra and J be a closed ideal of B . Let $\theta : A \rightarrow B$ be a continuous surjective homomorphism such that $\theta(I) \subseteq J$. Then B is approximately contractible modulo J .*

Theorem 3.8. *The following assertions are equivalent.*

- (i) *A is approximately contractible modulo I .*
- (ii) *There exists $(M_\nu) \subset (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)$ such that $a \cdot M_\nu - M_\nu \cdot a \rightarrow 0$ ($a \in A^\sharp \setminus I$) and $\pi(M_\nu) \rightarrow \bar{e}$.*
- (iii) *There exists $(M'_\nu) \subset (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)$ such that $a \cdot M'_\nu - M'_\nu \cdot a \rightarrow 0$ ($a \in A^\sharp \setminus I$) and $\pi(M'_\nu) = \bar{e}$.*
- (iv) *There are $(M''_\nu) \subseteq (\frac{A^\sharp}{I} \hat{\otimes} A^\sharp)$, $(F_\nu) \subseteq (\frac{A^\sharp}{I})$, $(G_\nu) \subseteq A^\sharp$ such that $a \cdot M''_\nu - M''_\nu \cdot a + F_\nu \otimes a - a \otimes G_\nu \rightarrow 0$, $a \cdot F_\nu \rightarrow a$, $G_\nu \cdot a \rightarrow a$ and $\pi(M''_\nu) \cdot a - F_\nu \cdot a - G_\nu \cdot a \rightarrow 0$.*

4. Approximate amenability modulo an ideal of weighted semigroup algebras

We begin by introducing some basic concepts that are used throughout this section. Let S be a semigroup and $E = E(S)$ be the set (possibly empty) of idempotents of S . We recall that a semigroup S is called an *E-semigroup* if $E(S)$ forms a sub-semigroup of S , *E-inversive* if for all $x \in S$, there exists $y \in S$ such that $xy \in E(S)$, *regular* if $V(a) \neq \emptyset$ where $V(a) = \{x \in S : a = axa, x = xax\}$ is the set of inverses of $a \in S$ and S is called an *inverse semigroup* if moreover, the inverse of each element is unique. An inverse semigroup S is called *E-unitary* if for each $x \in S$ and $e \in E(S)$, $ex \in E(S)$ implies $x \in E(S)$ and S is called *semilattice* if S is a commutative and idempotent semigroup. Also, a semigroup S is called *eventually inverse* if every element of S has some power that is regular and $E(S)$ is a semilattice.

A congruence ρ on semigroup S is called group congruence if S/ρ is group. We denote the least group congruence on semigroup S by σ . Following Gigon [8], if S is an *E-inversive E-semigroup* with commuting idempotents or S is an eventually inverse semigroup then $\sigma = \{(a, b) \in S \times S \mid ea = fb \text{ for some } e, f \in E(S)\}$ is the least group congruence on S .

Theorem 4.1. [1] (i) *Let S be an eventually inverse semigroup or S be an *E-inversive E-semigroup* with commuting idempotents. Then S is amenable if and only if S/σ is amenable.*

(ii) *Let ρ be a group congruence on S with commuting $\text{Ker}\rho$, then S is amenable if and only if S/ρ is amenable.*

By a weight on semigroup S (group G), we mean a function $\omega : S \rightarrow (0, \infty)$ such that $\omega(st) \leq \omega(s)\omega(t)$ ($s, t \in S$). The weight ω on group G is called symmetric if $\omega(g) = \omega(g^{-1})$ ($g \in G$). For any weight ω , its symmetrization is the weight defined by $\Omega_\omega(g) = \omega(g)\omega(g^{-1})$. Let S be a semigroup and ω be a weight on S . The weighted semigroup algebra $l^1(S, \omega) = \{f \mid f : S \rightarrow \mathbb{C}, \sum_{s \in S} |f(s)|\omega(s) < \infty\}$ under convolution is a Banach algebra where $\|f\|_{1, \omega} = \sum_{s \in S} |f(s)|\omega(s)$. If $\omega = 1$, the weighted semigroup algebra $l^1(S, \omega)$ is called semigroup algebra and is denoted by $l^1(S)$.

Lemma 4.1. *The following statements hold:*

- (i) *if S is a semigroup, ρ is a congruence on S and ω is a weight on S , then $\frac{l^1(S, \omega)}{I_\rho} \simeq l^1(S/\rho, \omega_\rho)$ where $\omega_\rho([s]_\rho) = \inf\{\omega(s) : s \in [s]_\rho\}$ is the induced weight on S/ρ ;*
- (ii) *if S is an E -inversive semigroup with commuting idempotents or S is an eventually inverse semigroup, σ be the least group congruence on S and ω be a weight on S , then $l^1(S/\sigma, \omega_\sigma)) \simeq \frac{l^1(S, \omega)}{I_\sigma}$ where I_σ is a closed ideal of $l^1(S, \omega)$ and $I_\sigma^2 = I_\sigma$.*

Proof. (i) Let $u, v \in S$ then;

$$\begin{aligned} \omega_\rho([uv]_\rho) &\leq \inf\{\omega(t_1) : t_1 \in [u]_\rho\} \cdot \inf\{\omega(t_2) : t_2 \in [v]_\rho\} \\ &= \omega_\rho([u]_\rho) \cdot \omega_\rho([v]_\rho) \end{aligned}$$

Thus ω_ρ is a weight on S/ρ . Now $\widehat{\pi} : l^1(S, \omega) \rightarrow l^1(S/\rho, \omega_\rho)$ by $\widehat{\pi}(\delta_s) = \delta_{\pi(s)}$ is an epimorphism where $\pi : S \rightarrow \frac{S}{\rho}$ is the natural quotient map and $I_\rho = \ker \widehat{\pi}$.

(ii) It follows from [1, Lemma 2]. \square

By Lemma 4.1, $\frac{l^1(S, \omega)}{I_\rho} \simeq l^1(S/\rho, \omega_\rho)$ where $\ker \widehat{\pi} = I_\rho$. Now I_ρ is an ideal in $l^1(S, \omega)$ generated by the set $\{\delta_s - \delta_t : s, t \in S \text{ with } (s, t) \in \rho\}$. Conversely, if J is an ideal of $l^1(S, \omega)$, and ρ_J is the congruence on S defined by $\rho_J = \{(s, t) : s, t \in S, \delta_s - \delta_t \in J\}$, then $I_{\rho_J} \subseteq J$.

Theorem 4.2. *Suppose that ω is a weight on semigroup S . If S is to one of the following statements:*

- (i) *S is an E -inversive semigroup with commuting idempotents;*
- (ii) *S be an eventually inverse semigroup;*

Then S is amenable and Ω_{ω_σ} is bounded if and only if $l^1(S, \omega)$ is approximately amenable modulo I_σ .

Proof. S is amenable if and only if S/σ is amenable (Theorem 4.1(i)), if and only if $l^1(S/\sigma, \omega_\sigma) \simeq \frac{l^1(S, \omega)}{I_\sigma}$ is approximately amenable (Lemma 4.1 and [11, Theorem 0]), if and only if $l^1(S, \omega)$ is approximately amenable modulo I_σ (Theorem 3.1 and Lemma 4.1), because $I_\sigma^2 = I_\sigma$. \square

By a similar argument of Theorem 4.1, we have the following result;

Corollary 4.1. *Suppose that ω is a weight on semigroup S . If S is to one of the following statements:*

- (i) *S is an E -inversive semigroup with commuting idempotents;*
- (ii) *S be an eventually inverse semigroup;*

Then S is amenable and Ω_{ω_σ} is bounded if and only if $l^1(S, \omega)$ is amenable modulo I_σ .

Example 4.1. (i) Let $S = \{p^m q^n : m, n \geq 0\}$ be the bicyclic semigroup generated by p, q Using Theorem 4.1, amenability of S implies $l^1(S)$ is approximate amenable modulo I_σ , where σ is the least group congruence on S . We note that $l^1(S)$ is not approximately amenable [10]. Also we note that for any weight ω , $l^1(S, \omega)$ is not amenable.

(ii) Let $G = \mathbb{F}_2$ be a free group with two generators a, b . Then G is not amenable. Let $T = (\mathbb{N}_0, +) \times (\mathbb{N}, \max)$, where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and put $S = G \times T$. Then $E(S) = \{(1_G, e) : e \in E(T)\}$ is infinite. Also G is the maximum group homomorphism image of S under the homomorphism $\phi : (g, t) \mapsto g$. Let σ be the congruence on S such that $S/\sigma \simeq G$. Then $l^1(S)$ is not approximately amenable modulo I_σ , indeed $\frac{l^1(S)}{I_\sigma}$ is isomorphic to $l^1(G)$, which is not approximately amenable.

(iii) Suppose X is a singleton and $S = FI(X)$ be the free inverse semigroup on X . Since $S = FI(X)$ has infinitely many idempotents, $l^1(S)$ is not amenable [1]. On the other hand,

amenability of S implies that S/σ is amenable. Thus $l^1(S/\sigma)$ is approximately amenable so $l^1(S)$ is approximately amenable modulo I_σ (by Theorem 3.1).

Acknowledgement

The authors are thankful to the editor-in-chief and referees for giving the valuable suggestions to improve the presentation of the paper.

REFERENCES

- [1] M. Amini, H. Rahimi, Amenability of semigroups and their algebras modulo a group congruence, *Acta Mathematica Hungarica*, Vol 144, Issue 2, (2014), 407-415.
- [2] T. D. Blackmore, Weak amenability of discrete semigroup algebras, *Semigroup Forum*, Vol 55, (1997), 196-205.
- [3] G. K. Dales, A. T. -M. Lau and D. Strauss, *Banach Algebras on Semigroups and Their Compactifications*, Memoirs American Mathematical Society, Vol 205, (2010), 966.
- [4] J. Duncan, I. Namioka, Amenability of inverse semigroups and their semigroup algebras, *Proc. Royal Soc. Edinburgh Sect. A*, Vol 80, (1978), 309-321.
- [5] J. Duncan and A. L. T. Paterson, Amenability for discrete convolution semigroup algebras, *Math. Scandinavica*, Vol 66, (1990), 141-146.
- [6] F. Ghahramani and R. J. Loy, Generalized notions of amenability, *J. Func. Anal.*, Vol 208, (2004), 229-260.
- [7] F. Ghahramani, R. J. Loy, and Y. Zhang, Generalized notions of amenability, II, *J. Functional Analysis*, Vol 254, (2008), 1776-1810.
- [8] R. S. Gigon, Congruences and group congruences on a semigroup, *Semigroup Forum*, Vol 86, (2013), 431-450.
- [9] H. M. Ghlaio and C. J. Read, Irregular commutative semigroups S with weakly amenable semigroup algebra $l^1(S)$, *Semigroup Forum*, Vol 82, Issue 2, (2011), 367-383.
- [10] F. Gheorge and Y. Zhang, A note on the approximate amenability of semigroup algebras, *Semigroup Forum*, Vol 79, (2009), 349-354.
- [11] N. Gronbaek, Amenability of weighted discrete convolution algebras on cancellative semi-groups, *Proc. Roy. Soc. Edinburgh, Section A*, Vol 110, (1988), 351-360.
- [12] H. Rahimi and E. Tahmasebi, A note on amenability modulo an ideal of unital Banach algebras, *J. Mathematical Extension*, In press.
- [13] H. Rahimi and E. Tahmasebi, Amenability and Contractibility modulo an ideal of Banach algebras, *Abstract and Applied Analysis*, (2014), 514-761.
- [14] H. Rahimi and E. Tahmasebi, Hereditary properties of amenability modulo an ideal of Banach algebras, *J. Linear Topol. Algebra*, Vol 03, No 02, (2014), 107- 114.
- [15] M. Rostami and A. Pourabbas, Approximate amenability of certain inverse semigroup algebras, *Acta Mathematica Scientia*, Vol 33, B(2), (2013), 565-577.