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H∞ ROBUST CONTROL DESIGN FOR A LARGE FLEXIBLE 

AIRCRAFT 

Costin ENE1, Valentin PANA2 

This paper focuses on improving in the dynamic response for the longitudinal 

channel of a large flexible aircraft similar to the Rockwell B-1 aircraft developed from 

the available literature data. The proposed approach is based on the H∞ robust 

control problem with respect to NLCF and it is intended to provide good tracking of 

the desired pitch attitude while reducing the flexible modes effects. This control 

technique is implemented and tested on the resulted analogous nonlinear model of the 

Rockwell B-1 aircraft. A thorough robustness analysis and several simulations are 

performed in order to show the effectiveness of the proposed method. 
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1. Introduction 

The Rockwell B-1 aircraft is a long-range strategic bomber with the ability 

to conduct terrain following missions. Fuel efficiency and large operational 

domains are two objectives often obtained by reducing the weight of the aircraft. 

This makes the structure more flexible and increases the susceptibility to aeroelastic 

phenomena. The common method to deal with adverse aeroelastic effects is to 

design flight control systems for the rigid body dynamics and then use filters in 

order to avoid these effects. This type of solution was implemented in [1] in order 

to alleviate the interactions between the flexibility of the aircraft and also the 

atmospheric turbulence. These types of interactions lead to handling qualities 

degradations and increased tracking errors because of the structural motion in the 

cockpit area. Thus, the authors in [1] address the two problems separately and use 

a dedicated automatic control system called structural mode control system 

(SMCS). It was conceived as a fail-safe and its design objective was to obtain a 

system that will not interact with regular control techniques used for the rigid body 

motion [2]. Handling qualities and crew efficiency caused by structural motion in 

the cockpit area of the fuselage were the two improvements.  
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The above control design methods employ a procedure that addresses one 

control loop at a time in a cascaded order. Structural mode control systems [3] are 

placed in a different control loop ensuring a separation that prevents the interaction 

between conventional control surfaces and aeroelastic control and also between 

dedicated SMCS actuators and FCS operation. 

The H∞ control problem (see [4], [5], [6], [7]) or the γ-attenuation problem 

has been formulated for the first time in the early 1980’s by Vidyasagar. A reason 

of its remarkable success is its capabilities to handle modeling uncertainties [9], 

[10]. There are mainly three types of uncertainties (each of them being treated in a 

specific way): additive uncertainties, multiplicative uncertainties and uncertainties 

with respect to the normalized left coprime factorization (NLCF). The third type of 

uncertainties was first addressed by Vidyasagar in 1985, later in the same decade 

by Duncan C. McFarlane and Keith Glover [7] in 1989. The present paper proposes 

a H∞ control design with respect to NLCF that will combine both control objectives 

and allows interactions between all existing control surfaces in order to achieve 

both objectives (conventional control and elasticity effects minimization) 

simultaneously.  

The paper is organized as follows: section 2 presents the linearized model 

of the Rockwell B-1 obtained from the nonlinear model described in [1] and [11], 

also adding parametric uncertainties affecting the rigid body and the elastic modes, 

section 3 presents the synthesis objectives and control design for each of the 

proposed method, section 4 provides a good robustness analysis of the linear model 

with respect to rigid body uncertainties and flexible modes uncertainties, section 5 

presents the simulations for the nonlinear model and section 6 presents the 

concluding remarks and future work. 

2. Model of a large flexible aircraft 

The SIMULINK nonlinear model of the Rockwell B-1 aircraft was 

implemented from the available data in [1] and [11] and includes six rigid-body 

degrees of freedom plus five elastic degrees of freedom. This are the modes 

identified to be the most important regarding cockpit ride quality and flexible-rigid 

interactions [1]. Extensions to this initial model, proposed by David K. Schmidt, 

include additional aerodynamic modeling and a nonlinear model of the engine 

dynamics. The model contains the following control effectors: symmetric and 

antisymmetric horizontal tail deflections, wing spoilers, a split rudder, and control 

vanes for structural mode control. The rigid body equation of motion can be found 

in [1], as well as the first three symmetric modes which affect the longitudinal 

dynamics and the last two affecting lateral-directional dynamics. This paper will 

only focus on the longitudinal dynamics of the Rockwell B-1 aircraft. This paper 

keeps the same SI units used in [1] for distance, velocities, angular rates, angles etc. 
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Fig. 1 Three-view of the Rockwell B-1 [1]  

The SIMULINK nonlinear flexible model was trimmed for some initial 

conditions which include all states and control inputs. Thus, an equilibrium flight 

condition was obtained for level flight resulting in the following nominal flight 

conditions: true air speed 𝑇𝐴𝑆 = 658.74 𝑓𝑡/𝑠, altitude ℎ = 5000 𝑓𝑡, angle of 

attack 𝛼 = 0.0126 𝑟𝑎𝑑. After this a linearization procedure was applied such that 

the following linear longitudinal system was obtained: 
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝛿(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝛿(𝑡),
 (1) 

where 𝑥(𝑡) = [𝑢(𝑡), 𝑤(𝑡), 𝑞(𝑡), 𝜃(𝑡), 𝜂̇1(𝑡), 𝜂̇2(𝑡), 𝜂̇3(𝑡), 𝜂1(𝑡), 𝜂2(𝑡), 𝜂3(𝑡)]
𝑇 is 

the state vector with components: forward velocity 𝑢[𝑓𝑡/𝑠], vertical velocity 

𝑤[𝑓𝑡/𝑠], pitch rate 𝑞 [𝑟𝑎𝑑/𝑠], pitch angle 𝜃 [𝑟𝑎𝑑], and the longitudinal flexible 

mode components given by 𝜂1, 𝜂2, 𝜂3 and their derivatives 𝜂̇1, 𝜂̇2, 𝜂̇3.  𝛿(𝑡) =

[𝛿𝐻𝑐(𝑡), 𝛿𝑐𝑣𝑠𝑦𝑚(𝑡)]
𝑇
, represent the control inputs given by the symmetric 

horizontal tail 𝛿𝐻𝑐 [𝑑𝑒𝑔] and the symmetric vane deflection  𝛿𝑐𝑣𝑠𝑦𝑚 [𝑑𝑒𝑔]. The 

outputs vector is given by 𝑦(𝑡) = [𝑢(𝑡), 𝑤(𝑡), 𝑞(𝑡), 𝜃(𝑡), 𝑎𝑧(𝑡), 𝛼(𝑡), 𝑛𝑧𝑐𝑔(𝑡), 

𝑛𝑧𝑐𝑝(𝑡)]𝑇, where 𝑢,𝑤, 𝑞, 𝜃 are the first four states, 𝑎𝑧 [𝑓𝑡/𝑠2] is the normal 

acceleration, 𝛼 [𝑟𝑎𝑑] is the angle of attack. Usually, 𝑛𝑧 is defined as a 

dimensionless load factor, but here, same as the authors in [1], 𝑛𝑧𝑐𝑔 [𝑓𝑡/𝑠2]  is 

considered  to be the normal acceleration adding the gravitational acceleration 

effect measured at the center of gravity and 𝑛𝑧𝑐𝑝 [𝑓𝑡/𝑠2]  is the same normal 

acceleration (adding gravitational effect) but measured at the cockpit location.  

The resulting linearized longitudinal system matrices are: 

𝐴 =

[
 
 
 
 
 
 
 
 
 

−0.014805
−0.091865

7.4958𝑒 − 05
0

0.30968
0.024365

−0.077539
0
0
0

0.083948
−0.46092

−0.0047222
0

−1.6758
0.053526
0.21922

0
0
0

−10.061
673.58

−0.94339
1

−79.589
0.18686
4.5854

0
0
0

−32.167
−0.40541

2.552𝑒 − 08
0
0
0
0
0
0
0

0
−0.096782
−0.0037082

0
−0.85361
0.13962

−0.072401
1
0
0

0
1.1614

0.029406
0

−0.16444
−5.3435
2.2535

0
1
0

0
0.067806
0.004128

0
0.54814
0.067186
−0.84831

0
0
1

0
−2.8096

−0.065843
0

−153.78
5.8223
2.8912

0
0
0

0
29.646

−0.056491
0

−6.4989
−325.47
14.307

0
0
0

0
1.4532

0.084702
0

25.635
2.7244

−451.61
0
0
0 ]

 
 
 
 
 
 
 
 
 

, 

𝐵 =

[
 
 
 
 
 
 
 
 
 

0.25739
−0.73191
−0.093401

0
−16.131

0
−0.022283
0.0021786

0
−0.60788

−1.5495
4.4388

0
0
0

−0.012474
−0.059742

0
0
0 ]

 
 
 
 
 
 
 
 
 

, 𝐷 =

[
 
 
 
 
 
 
 

0
0
0
0

−0.73191
0

0.18719
−2.7008

0
0
0
0

−0.022283
0

0.039596
−0.55784 ]

 
 
 
 
 
 
 

,                                                                                                                                                
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𝐶 =

[
 
 
 
 
 
 
 

1
0
0
0

−0.091865
−1.9123𝑒 − 05

−0.11043
0.065639

0
1
0
0

−0.46092
0.0015179
−0.3364
−0.98503

0
0
1
0

14.892
0

21.505
36.427

0
0
0
1

−0.40541
0

−4.211𝑒 − 10
−1.7792𝑒 − 06

0
0
0
0
0
0

−0.011269
−0.28139

0
0
0
0
0
0

0.90576
−3.1815

0
0
0
0
0
0

0.12027
−0.20235

0
0
0
0
0
0

10.684
−82.88

0
0
0
0
0
0

28.514
−153.24

0
0
0
0
0
0

53.339
−168.64]

 
 
 
 
 
 
 

        (2) 

The longitudinal dynamics at this flight condition is stable. The stability 

characteristics have a damping factor 𝜁𝑠 = 0.373 and a natural frequency 𝜔𝑠 =
1.75 𝑟𝑎𝑑/𝑠 for the short period, while for the phugoid we have 𝜁𝑝 = 0.11 and 𝜔𝑝 =

0.0654 𝑟𝑎𝑑/𝑠. The other six high frequency poles are given by the flexible modes 

and they have values between 10 𝑟𝑎𝑑/𝑠 < 𝜔𝑓𝑙𝑒𝑥 < 25 𝑟𝑎𝑑/𝑠.  

In order to improve the handling qualities, a state-feedback control law for 

𝛿𝐻𝑐 SAS is designed having 𝐾𝑞 = −8.8645, 𝐾𝜃 = −17.201. The resulting system 

response improves significantly for the short period (𝜁𝑠 = 0.498 and 𝜔𝑠 =
1.94 𝑟𝑎𝑑/𝑠) and phugoid (𝜁𝑝 = 0.502 and 𝜔𝑝 = 0.15 𝑟𝑎𝑑/𝑠) mainly because of 

the increase of the damping and also one achieves a faster response by increasing 

the natural frequency of the phugoid. Even with the improved augmented system, 

the effect of the flexible modes to 𝑛𝑧𝑐𝑔 and 𝑛𝑧𝑐𝑝 can be seen in the first 10 sec of 

transient time when applying a step command to the control surfaces. The 

oscillations noted in Fig. 2(a) can only be the result of the low damped high 

frequency poles i.e., the ones corresponding to the flexible modes. One can notice 

that the effect from the 𝛿𝑐𝑣𝑠𝑦𝑚 deflection is very small with respect to the 𝛿𝐻𝑐 input. 

Fig. 2(b) shows the augmented linear system affected by uncertainty for all the 

terms in the matrices 𝐴 𝑎𝑛𝑑 𝐵 from (2) that are different from 0 and 1. In total there 

are 63 uncertain terms taken into consideration with ±10% uncertainty. Fig. 2(b) 

shows the Pole-Zero Map of 100 systems contained within the specified bounds. 

 
(a) Step response  (𝛿𝐻𝑐 𝑎𝑛𝑑 𝛿𝑐𝑣𝑠𝑦𝑚 to 𝑛𝑧𝑐𝑔 and 𝑛𝑧𝑐𝑝)  (b) Pole-Zero Map of the uncertain system 

Fig. 2 The augmented system characteristics 

3. Robust control design and synthesis objective 

In the following important key aspects related to 𝐻∞ robust control problem 

with respect to NLCF. 
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For the rational transfer matrix 𝐺(𝑠) (representing the linearized dynamics 

of a plant) there exists 𝑀 𝑎𝑛𝑑 𝑁 (stable rational transfer matrices with 𝑀 square 

and invertible) such that 𝐺 = 𝑀−1𝑁. 𝑀 𝑎𝑛𝑑 𝑁 satisfy the propriety 𝑀𝑉 − 𝑁𝑈 =

𝐼, with 𝑈 and 𝑉 stable transfer functions and are called left coprime factorization of 

𝐺. If 𝑀 𝑎𝑛𝑑 𝑁 satisfy the additional propriety 𝑁𝑁∗ + 𝑀𝑀∗ = 𝐼, they are called 

normalized left coprime factorization of 𝐺. 

The dynamic stable uncertainty Δ = [Δ𝑁 Δ𝑀] is called coprime factor 

uncertainty if 𝐺Δ = (𝑀 + Δ𝑀)−1(𝑁 + Δ𝑁), where 𝑀 𝑎𝑛𝑑 𝑁 represent the NLCF of 

𝐺. This representation and its equivalent can be seen in Fig. 3(a) and Fig. 3(b) 

respectively. 

 
(a) Representation of 𝐺Δ = (𝑀 + Δ𝑀)−1(𝑁 + Δ𝑁)         (b) Equivalent representation of 𝐺Δ 

Fig. 3 The uncertain system representation with respect to NLCF 

When applying a controller to the uncertain system in Fig. 3 the resulting 

system can be seen in Fig. 4(a) and its equivalent in Fig. 4(b) 

       
                     (a) NLCF control problem                                    (b) Equivalent representation 

Fig. 4 The uncertain system representation with respect to NLCF with controller 

Computing 𝑣1 and 𝑣2for  𝑇𝑣𝑤 yields: 

𝑣1 = 𝐾𝑀−1(𝑁𝑣1 + 𝑤)   →   𝑣1 = (𝐼 − 𝐾𝐺)−1𝐾𝑀−1𝑤    
→  𝑣1 = 𝐾(𝐼 − 𝐺𝐾)−1𝑀−1𝑤                           (3) 

𝑣2 = 𝑀−1(𝑤 + 𝑁𝐾𝑣2)   →   𝑣2 = (𝐼 − 𝐺𝐾)−1𝑀−1𝑤                              (4) 

The resulting generalized system having the output 𝑣 = [
𝑣2

𝑣1
] and the input 

𝑤 is given by: 

𝑇𝑣𝑤 = [
(𝐼 − 𝐺𝐾)−1

𝐾(𝐼 − 𝐺𝐾)−1]𝑀−1        (5) 

From the Small Gain Theorem [7], the robustness condition with respect to 

NLCF is: 
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‖[
(𝐼 − 𝐺𝐾)−1

𝐾(𝐼 − 𝐺𝐾)−1]𝑀−1‖
∞

< 𝛿−1,      (6) 

where 𝐾 is the stabilizing controller of the system 𝐺Δ = (𝑀 + Δ𝑀)−1(𝑁 + Δ𝑁) 

with Δ = [Δ𝑁 Δ𝑀] and ‖Δ‖∞ < 𝛿. 

The generalized system corresponding to the 𝐻∞ control problem in the case where 

the nominal model 𝐺  has 𝐷 = 0 is given by: 

[

𝑀−1(𝑠)
0

⋮
𝐺(𝑠)

𝐼
⋯ ⋯ ⋯

𝑀−1(𝑠) ⋮ 𝐺(𝑠)

] ∶= (𝐴, [−𝐻 𝐵], [

𝐶
0
⋯
𝐶

] , [

𝐼
0

⋮
0
𝐼

⋯ ⋯ ⋯
𝐼 ⋮ 0

]).     (7) 

One can notice that the lower linear fractional transformation for the left side of the 

above system is exactly 𝑇𝑣𝑤 in (5). 

The proposed robust control design for the Rockwell B-1 aircraft presented 

in Chapter II has the following objectives: 

• Ensure Level 1 handling qualities; 

• Minimizing the tracking error between the output of a given ideal model 𝐻𝑚 

and the output measured pitch angle of the aircraft 𝜃(𝑡) for piecewise 

doublet type commands; 

• Minimizing the tracking error 𝑛𝑧𝑐𝑝(𝑡) − 𝑛𝑧𝑐𝑔(𝑡); 

• Reduced sensitivity for the outputs 𝜃(𝑡), 𝑛𝑧𝑐𝑝(𝑡) 𝑎𝑛𝑑 𝑛𝑧𝑐𝑔(𝑡) 

• Robustness with respect to parametric uncertainties 

In this example 𝐺(𝑠) is the transfer function with the state space 

representation given by 𝐺(𝑠) ≔ (𝐴𝑆𝐴𝑆, 𝐵, 𝐶𝑚𝑒𝑎𝑠, 𝐷𝑚𝑒𝑎𝑠) where 𝐴𝑆𝐴𝑆 = 𝐴 −

𝐵[0 0 𝐾𝑞 𝐾𝜃] is the augmented 𝐴 matrix and 𝐵 the same as in (2), while the 

measured outputs 𝑦𝑚 = [ 𝑞, 𝜃, 𝑛𝑧𝑐𝑔, 𝑛𝑧𝑐𝑝]
𝑇
 are obtained using the appropriate 

matrices 𝐶𝑚𝑒𝑎𝑠 and 𝐷𝑚𝑒𝑎𝑠. 

 
Fig. 6 Robust control configuration 

The adopted control design represents a modified 𝐻∞ loop-shaping procedure with 

two degrees of freedom inspired from [5] and can be seen in Fig. 6 where: 
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• The exogenous inputs are: 𝜃𝑐𝑜𝑚, 𝑤1, 𝑤2 where: 

o 𝜃𝑐𝑜𝑚 represents the desired pitch angle 

o 𝑤1, 𝑤2 are the inputs denoting the equivalent 𝐻∞  robust control 

problem with respect to NLCF 

• The control variable: 𝑢𝑐 representing: 

o 𝑢𝑐  represents the two control surfaces of the aircraft model 𝑢𝑐 =

[𝛿𝐻𝑐 , 𝛿𝑐𝑣𝑠𝑦𝑚]
𝑇
 

• The regulated outputs are: 𝑧1, 𝑧2, 𝑧3, 𝑧4 where: 

o 𝑧1 represents the first set of regulated outputs given by the measured 

outputs of the aircraft, which in this case gives 𝑧1 =

[ 𝑞, 𝜃, 𝑛𝑧𝑐𝑔, 𝑛𝑧𝑐𝑝]
𝑇
  

o 𝑧2 represents the scaled output given by the controller 

[𝛿𝐻𝑐 , 𝛿𝑐𝑣𝑠𝑦𝑚]
𝑇
𝑊𝑧, where 𝑊𝑧 = [

19.5 0
0 1.2

]  

o 𝑧3 represents the scaled output given by 𝑧3 = (𝑦𝑚𝑇𝑟 − 𝜃𝑐𝑜𝑚𝐻𝑚)𝑊𝑒, 

where: 

▪ 𝑇𝑟 is a matrix with linear independent rows so that one can 

select 𝜃 from the measured variables vector 𝑦𝑚 given by: 

𝑇𝑟 = [0  1  0  0] 
▪ 𝐻𝑚 is an ideal transfer function chosen from the military 

specification (MIL-STD-1797) given by: 𝐻𝑚(𝑠) =
0.25

𝑠2+0.7𝑠+0.25
, having state-space representation 

(𝐴𝑚, 𝐵𝑚, 𝐶𝑚, 𝐷𝑚) 

▪ 𝑊𝑒 is a low pass filter given by: 𝑊𝑒(𝑠) =
40(𝑠+10)

𝑠+0.02
, having 

state-space representation (𝐴𝑤𝑒 , 𝐵𝑤𝑒 , 𝐶𝑤𝑒 , 𝐷𝑤𝑒) 

o 𝑧4 represents the scaled output given by 𝑧4 = 𝑦𝑚𝑇𝑟𝑛𝑊𝑛, where: 

▪ 𝑇𝑟𝑛 is a matrix with linear independent rows so that one can 

select the difference 𝑛𝑧𝑐𝑝 − 𝑛𝑧𝑐𝑔 from the measured 

variables vector 𝑦𝑚 given by 𝑇𝑟𝑛 = [0  0 − 1  1] 

▪ 𝑊𝑛 is a low pass filter given by 𝑊𝑛(𝑠) =
1.34𝑒−5(𝑠+100)

𝑠+6.67
, 

having state-space representation (𝐴𝑤𝑛, 𝐵𝑤𝑛, 𝐶𝑤𝑛, 𝐷𝑤𝑛) 

• The measured variables are: 𝜃𝑐𝑜𝑚, 𝑦𝑚  given by the vector 𝑦𝑚 =

[𝑞, 𝜃, 𝑛𝑧𝑐𝑔, 𝑛𝑧𝑐𝑝]
𝑇
 

▪ The loop-shaping transfer function 𝑊(𝑠) = 𝐼2, given the 

resulting system 𝐺𝑠(𝑠) = 𝐺𝑊, having state-space 

representation (𝐴𝑠, 𝐵𝑠, 𝐶𝑠, 𝐷𝑠) 

The resulting generalized system with respect to NLCF is given by  
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𝑇(𝑠) ≔ [

𝐴𝑇 ⋮ 𝐵1 𝐵2

⋯ ⋯ ⋯ ⋯
𝐶1

𝐶2

⋮
⋮

𝐷11 𝐷12

𝐷21 𝐷22

] =

[
 
 
 
 
 
 
 
 
 
 
 

𝐴𝑠 010𝑥2

02𝑥10 𝐴𝑚

010𝑥1 010𝑥1

02𝑥1 02𝑥1

𝐵𝑤𝑇𝑟𝐶𝑠 −𝐵𝑤𝐶𝑚

𝐵𝑤𝑛𝑇𝑟𝑛𝐶𝑠 01𝑥2

𝐴𝑤 01𝑥1

01𝑥1 𝐴𝑤𝑛

⋮
⋮
⋮
⋮

010𝑥1

𝐵𝑚

01𝑥1

01𝑥1

−𝐻
02𝑥4

𝐵𝑤𝑇𝑟

𝐵𝑤𝑛𝑇𝑟𝑛

⋮
⋮
⋮
⋮

𝐵𝑠

02𝑥2

𝐵𝑤𝑇𝑟𝐷𝑠

𝐵𝑤𝑛𝑇𝑟𝑛𝐷𝑠
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝐶𝑠 04𝑥4

02𝑥14

𝐷𝑤𝑇𝑟𝐶𝑠 −𝐷𝑤𝐶𝑚 𝐶𝑤 01𝑥1

𝐷𝑤𝑛𝑇𝑟𝑛𝐶𝑠 01𝑥2 01𝑥1 𝐶𝑤𝑛
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

01𝑥14

𝐶𝑠 04𝑥4

⋮
⋮
⋮
⋮
⋯
⋮
⋮

04𝑥1

02𝑥1

01𝑥1

01𝑥1

𝐼4
02𝑥4

𝐷𝑤𝑇𝑟

𝐷𝑤𝑛𝑇𝑟𝑛

⋮
⋮
⋮
⋮

𝐷𝑠

𝑊𝑧

𝐷𝑤𝑇𝑟𝐷𝑠

𝐷𝑤𝑛𝑇𝑟𝑛𝐷𝑠
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝐼1 01𝑥4

04𝑥1 𝐼4

⋮
⋮

01𝑥2

𝐷𝑠 ]
 
 
 
 
 
 
 
 
 
 
 

, (8) 

where 

𝐻 ≔ −(𝑍𝐶𝑠
𝑇 + 𝐵𝑠𝐷𝑠

𝑇)(𝐼4 + 𝐷𝑠𝐷𝑠
𝑇)−1,     (9) 

𝑍 > 0 denoting the stabilizing solution of the filtering algebraic Riccati equation: 

(𝐴𝑠 − 𝐵𝑠(𝐼4 + 𝐷𝑠𝐷𝑠
𝑇)−1𝐷𝑠

𝑇𝐶𝑠)𝑍 + 𝑍(𝐴𝑠 − 𝐵𝑠(𝐼4 + 𝐷𝑠𝐷𝑠
𝑇)−1𝐷𝑠

𝑇𝐶𝑠)
𝑇 −

𝑍𝐶𝑠
𝑇(𝐼4 + 𝐷𝑠𝐷𝑠

𝑇)−1𝐶𝑠𝑍 + 𝐵𝑠(𝐼4 + 𝐷𝑠𝐷𝑠
𝑇)−1𝐵𝑠

𝑇 = 0.                      (10) 

One can check that the solvability conditions of the 𝐻∞ control problem are 

accomplished. Indeed, the pairs (𝐴𝑇 , 𝐵2) and (𝐶2, 𝐴𝑇) are stabilizable and 

detectable, respectively, and the systems (𝐴𝑇 , 𝐵2, 𝐶1, 𝐷12) and (𝐴𝑇 , 𝐵1, 𝐶2, 𝐷21) 

have no transmission zeros on the imaginary axis. Moreover, the obtained 𝐻∞ 

control problem is nonsingular since 𝐷12
𝑇 𝐷12 and 𝐷21𝐷21

𝑇  are invertible. 

Thus, using “hinfsyn” procedure in MATLAB, resulting in the control system 𝐾𝑖𝑛𝑓 

of order 14, which is determined such that it stabilizes the configuration and 

minimizes the 𝐻∞ norm of the mapping, [
𝜃𝑐𝑜𝑚

𝑤1

𝑤2

] → [

𝑧1

𝑧2
𝑧3

𝑧4

].  

4. Linear simulation analysis 

  
(a) Pole-Zero Map of the closed loop system               (b) 𝑦𝑚(𝑡) response from 𝜃𝑐𝑜𝑚 step command        
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   (c) 𝜃 tracking of  𝐻𝑚 for 𝜃𝑐𝑜𝑚 = 1 [𝑟𝑎𝑑]             (d) 𝑛𝑧𝑐𝑔, 𝑛𝑧𝑐𝑝 and 𝑛𝑧𝑐𝑝 − 𝑛𝑧𝑐𝑔 for 𝜃𝑐𝑜𝑚 = 1 [𝑟𝑎𝑑]  

using plant 𝐺𝑛𝑜𝑚(𝑠)      using plant 𝐺𝑛𝑜𝑚(𝑠)    

Fig. 7 Results for the closed loop system  

As one can see in Fig. 7(a) the resulting closed loop system using the linear 

nominal plant 𝐺(𝑠)  maintains stability and so does the closed loop when the linear 

plant affected by ±10% uncertainties 𝐺𝑢𝑛𝑐(𝑠) is used (here one can see results for 

100 sample systems inside the considered interval). The results in Fig. 7(b) are 

purely theoretical because the given step command for 𝜃𝑐𝑜𝑚 is in radians and this 

command is not feasible at the considered flight conditions where the linearization 

was made. Thus, 𝑛𝑧𝑐𝑝[𝑓𝑡/𝑠2] 𝑎𝑛𝑑 𝑛𝑧𝑐𝑔[𝑓𝑡/𝑠2] will not reach those values in 

reality. Their behavior closest to reality can be seen in the next chapter here the 

nonlinear model was used. Both Fig. 7(b) and 7(c) show that 𝜃(𝑡) maintains 

stability and achieves tracking error minimization for all uncertain systems 

considered in the chosen uncertainty domain. One can notice from Fig. 7(d) that 

difference  𝑛𝑧𝑐𝑝(𝑡) − 𝑛𝑧𝑐𝑔(𝑡) reaches near zero values very fast (approx. 15 sec) 

only for the nominal case, but in the uncertainties case the results are not that great 

when it comes to keeping this difference to a minimum. Nevertheless, stability is 

maintained for all uncertain systems considered and one can see that now no more 

ripples can be sensed in the cockpit location in the first 10 sec and the transition is 

much smoother. 

In the following the stability robustness proprieties of the proposed 

controller is addressed. The transfer function used here refers to the  𝜃 channel 

(𝜃𝑐𝑜𝑚 → 𝜃) in open loop. When using the nominal plant in the open loop the 

resulting robustness is given by: 𝐺𝑀𝑛𝑜𝑚 = 20.94 [𝑑𝐵]; 𝑃𝑀𝑛𝑜𝑚 =

46.118 [𝑑𝑒𝑔]; 𝐷𝑀𝑛𝑜𝑚 =
𝑃𝑀𝑛𝑜𝑚

𝑊𝑐𝑝𝑛𝑜𝑚

𝑝𝑖

180
= 2.0158 [𝑠𝑒𝑐]. 



96                                              Costin Ene, Valentin Pana 

 
(a) Gain Margin                                 (b) Phase Margin                                       

 
   (c) Delay Margin                                             (d) Bode diagram 

Fig. 8 Robustness analysis for 100 open loop sample systems 

From Fig. 8 one can see that the gain margin is well above the critical limit 

of 6 [𝑑𝐵], while the phase margin is maintained above the limit of 30 [𝑑𝑒𝑔] 
resulting in the delay margin being above the limit of 0.5 [𝑠𝑒𝑐] for all 100 uncertain 

plants considered. 

5. Nonlinear simulations 

The resulting controller computed for the linear system and tested with 

uncertainties will be tested on the full nonlinear elastic dynamics of the Rockwell 

B-1 aircraft. The SIMULINK aircraft model corresponds to the description given 

in [1]. For comparison purpose a simple LQR controller was designed (under the 

assumption that all states are available, which can be achieved by additionally 

designing a Kalman filter to estimate the states) in order to keep the pitch angle 

using the control input 𝛿𝐻𝑐 while the control input 𝛿𝑐𝑣𝑠𝑦𝑚 was used to filter the 

difference 𝑛𝑧𝑐𝑝 − 𝑛𝑧𝑐𝑔 with the same filter used in [1]. 



H∞ Robust control design for the Rockwell B-1 aircraft                              97 

 
(a) Controlled pitch attitude      (b) Control effort 

 
(c) Effect of the flexible modes   (d) Effect of the flexible modes for ~10 sec 

Fig. 9 Nonlinear simulation for the nominal case of all proposed controllers 

The difficulty when working with nonlinear model is that things might not 

work properly for long simulation running times because coupling between 

longitudinal and lateral channels can interfere resulting in instability. Thus, in order 

to avoid instability, a simple lateral-directional gain schedule controller was 

developed so that the lateral dynamics are kept to their trim state for the duration of 

the simulation. Also, the flexible modes for the lateral channel were turned off.  

The nonlinear simulation took place for 450 sec while the desired pitch 

attitude was given by several doublet commands. One can notice in Fig. 9(a) that 

the commanded pitch is chosen between ±10 𝑑𝑒𝑔 and steady state was reached for 

both controllers with approximately the same transient time and overshot. The time 

response of the control effort represented in Fig. 9(b) is relatively similar in all cases 

for 𝛿𝐻𝑐, but for 𝛿𝑐𝑣𝑠𝑦𝑚 differs for each controller. The difference 𝑛𝑧𝑐𝑝(𝑡) − 𝑛𝑧𝑐𝑔(𝑡) 

has some ripples in the LQR+filter case as one can see in Fig. 9(d), but in the H∞ 

case there are almost no ripples present. This difference was maintained to a low 

level during the proposed simulation inside the interval (−8𝑓𝑡/𝑠2, 4𝑓𝑡/𝑠2) as can 

be noticed in Fig 9(c). Although not individually represented here the normal 

accelerations sensed in the cockpit 𝑛𝑧𝑐𝑝 and in the center of gravity 𝑛𝑧𝑐𝑔 both tend 

to 0𝑓𝑡/𝑠2 when steady state is reached. 
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6. Conclusions and future work 

Combining the two control surfaces in order to achieve both control 

objectives simultaneously, as the H∞ design does, was proven to give more 

satisfactory results when working with flexible modes, as compared to acting on 

separate control channels (the first to achieve attitude tracking and the second to 

compensate for the flexible modes effects). 

The main difficulty of this approach is trying to attenuate the effects of the 

high frequency elastic modes while achieving low frequency control objectives. 

Thus, the design main focus was achieving the low frequency control objectives, 

but adjustments were made in order to reduce elasticity effect as much as possible. 

Future work involves a new control design for the lateral-directional 

dynamics of the Rockwell B-1 nonlinear model. 
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