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H., ROBUST CONTROL DESIGN FOR A LARGE FLEXIBLE
AIRCRAFT

Costin ENE?, Valentin PANA?

This paper focuses on improving in the dynamic response for the longitudinal
channel of a large flexible aircraft similar to the Rockwell B-1 aircraft developed from
the available literature data. The proposed approach is based on the H. robust
control problem with respect to NLCF and it is intended to provide good tracking of
the desired pitch attitude while reducing the flexible modes effects. This control
technique is implemented and tested on the resulted analogous nonlinear model of the
Rockwell B-1 aircraft. A thorough robustness analysis and several simulations are
performed in order to show the effectiveness of the proposed method.

Keywords: longitudinal dynamics; flexible modes; parametric uncertainty;
NLCF; nonlinear model

1. Introduction

The Rockwell B-1 aircraft is a long-range strategic bomber with the ability
to conduct terrain following missions. Fuel efficiency and large operational
domains are two objectives often obtained by reducing the weight of the aircraft.
This makes the structure more flexible and increases the susceptibility to aeroelastic
phenomena. The common method to deal with adverse aeroelastic effects is to
design flight control systems for the rigid body dynamics and then use filters in
order to avoid these effects. This type of solution was implemented in [1] in order
to alleviate the interactions between the flexibility of the aircraft and also the
atmospheric turbulence. These types of interactions lead to handling qualities
degradations and increased tracking errors because of the structural motion in the
cockpit area. Thus, the authors in [1] address the two problems separately and use
a dedicated automatic control system called structural mode control system
(SMCS). It was conceived as a fail-safe and its design objective was to obtain a
system that will not interact with regular control techniques used for the rigid body
motion [2]. Handling qualities and crew efficiency caused by structural motion in
the cockpit area of the fuselage were the two improvements.
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The above control design methods employ a procedure that addresses one
control loop at a time in a cascaded order. Structural mode control systems [3] are
placed in a different control loop ensuring a separation that prevents the interaction
between conventional control surfaces and aeroelastic control and also between
dedicated SMCS actuators and FCS operation.

The H., control problem (see [4], [5], [6], [7]) or the y-attenuation problem
has been formulated for the first time in the early 1980°s by Vidyasagar. A reason
of its remarkable success is its capabilities to handle modeling uncertainties [9],
[10]. There are mainly three types of uncertainties (each of them being treated in a
specific way): additive uncertainties, multiplicative uncertainties and uncertainties
with respect to the normalized left coprime factorization (NLCF). The third type of
uncertainties was first addressed by Vidyasagar in 1985, later in the same decade
by Duncan C. McFarlane and Keith Glover [7] in 1989. The present paper proposes
a Ho control design with respect to NLCF that will combine both control objectives
and allows interactions between all existing control surfaces in order to achieve
both objectives (conventional control and elasticity effects minimization)
simultaneously.

The paper is organized as follows: section 2 presents the linearized model
of the Rockwell B-1 obtained from the nonlinear model described in [1] and [11],
also adding parametric uncertainties affecting the rigid body and the elastic modes,
section 3 presents the synthesis objectives and control design for each of the
proposed method, section 4 provides a good robustness analysis of the linear model
with respect to rigid body uncertainties and flexible modes uncertainties, section 5
presents the simulations for the nonlinear model and section 6 presents the
concluding remarks and future work.

2. Model of a large flexible aircraft

The SIMULINK nonlinear model of the Rockwell B-1 aircraft was
implemented from the available data in [1] and [11] and includes six rigid-body
degrees of freedom plus five elastic degrees of freedom. This are the modes
identified to be the most important regarding cockpit ride quality and flexible-rigid
interactions [1]. Extensions to this initial model, proposed by David K. Schmidt,
include additional aerodynamic modeling and a nonlinear model of the engine
dynamics. The model contains the following control effectors: symmetric and
antisymmetric horizontal tail deflections, wing spoilers, a split rudder, and control
vanes for structural mode control. The rigid body equation of motion can be found
in [1], as well as the first three symmetric modes which affect the longitudinal
dynamics and the last two affecting lateral-directional dynamics. This paper will
only focus on the longitudinal dynamics of the Rockwell B-1 aircraft. This paper
keeps the same Sl units used in [1] for distance, velocities, angular rates, angles etc.
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Fig. 1 Three-view of the Rockwell B-1 [1]

The SIMULINK nonlinear flexible model was trimmed for some initial
conditions which include all states and control inputs. Thus, an equilibrium flight
condition was obtained for level flight resulting in the following nominal flight
conditions: true air speed TAS = 658.74 ft/s, altitude h = 5000 ft, angle of
attack « = 0.0126 rad. After this a linearization procedure was applied such that
the following linear longitudinal system was obtained:

x(t) = Ax(t) + B6(t) 1

y(t) = Cx(t) + DS(¢), (
where x(t) = [u(t), w(t), q(t), 8 (), 11(£), 12 (1), N3(), 11 (£), 2(£), ns(O]T s
the state vector with components: forward velocity u[ft/s], vertical velocity
w[ft/s], pitch rate q [rad/s], pitch angle 6 [rad], and the longitudinal flexible
mode components given by n,,nm,,n5 and their derivatives 1,,7,,13. 6(t) =
[6Hc(t),6wsym(t)]T, represent the control inputs given by the symmetric
horizontal tail 6. [deg] and the symmetric vane deflection &.,5ym [deg]. The
outputs vector is given by y(t) = [u(t), w(t),q(t),0(t), a,(t), a(t),n,.4(t),
e ()]7, where u,w,q,0 are the first four states, a, [ft/s?] is the normal
acceleration, « [rad] is the angle of attack. Usually, n, is defined as a
dimensionless load factor, but here, same as the authors in [1], n,, [ft/s?] is
considered to be the normal acceleration adding the gravitational acceleration
effect measured at the center of gravity and n,., [ft/s?] is the same normal

acceleration (adding gravitational effect) but measured at the cockpit location.
The resulting linearized longitudinal system matrices are:
0

—0.014805  0.083948  —10.061  —32.167 0 0 0 0 0
—0.091865  —0.46092  673.58  —040541 —0.096782 11614  0.067806 —2.8096  29.646 14532
7.4958¢ — 05 —0.0047222 —0.94339 2552¢— 08 —0.0037082 0.029406 0.004128 —0.065843 —0.056491 0.084702
0 0 1 0 0 0 0 0 0 0
A—| 030968 16758  —79.589 0 —0.85361 —0.16444 054814 —153.78  —6.4989  25.635
0024365 0053526  0.18686 0 013962  —5.3435 0067186 58223  —32547 27244 |
—0.077539 021922  4.5854 0 —0.072401  2.2535 —0.84831  2.8912 14307  —451.61
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0.25739 0
—0.73191 —0.022283 0 0
—0.093401 0.0021786 0 0
0 0 0 0
p=| —16131  —0.60788 p=| 0
—1.5495  —0.012474]’ —0.73191 —0.022283
44388 —0.059742 0 0
0 0 0.18719  0.039596
0 0 -2.7008  —0.55784
0 0




90 Costin Ene, Valentin Pana

1 0 0 0 0 0 0 0 0 0

[ 0 1 0 0 0 0 0 0 0 0 ]
0 0 1 0 0 0 0 0 0 0

c=| 0 0 1 0 0 0 0 0 0 ‘ (2)

—0.091865  —0.46092 14.892  —0.40541 0 0 0 0 0 0
-19123¢ - 05 0.0015179 0 0 0 0 0 0 0 0

~0.11043  -03364 21505 -421le—10 -0.011269 090576 0.12027 10.684 28514 53339

0065639  —0.98503 36427 —17792¢—06 —028139 -3.1815 —0.20235 -82.88 —153.24 —168.64

The longitudinal dynamics at this flight condition is stable. The stability
characteristics have a damping factor {; = 0.373 and a natural frequency w, =
1.75 rad /s for the short period, while for the phugoid we have {;, = 0.11 and w,, =
0.0654 rad/s. The other six high frequency poles are given by the flexible modes
and they have values between 10 rad/s < wgje, < 25 Tad/s.

In order to improve the handling qualities, a state-feedback control law for
Ouc SAS is designed having K, = —8.8645, K, = —17.201. The resulting system
response improves significantly for the short period ({; = 0.498 and ws =
1.94 rad/s) and phugoid (¢, = 0.502 and w, = 0.15 rad/s) mainly because of
the increase of the damping and also one achieves a faster response by increasing
the natural frequency of the phugoid. Even with the improved augmented system,
the effect of the flexible modes to n,., and n,., can be seen in the first 10 sec of
transient time when applying a step command to the control surfaces. The
oscillations noted in Fig. 2(a) can only be the result of the low damped high
frequency poles i.e., the ones corresponding to the flexible modes. One can notice
that the effect from the 8., deflection is very small with respect to the &, input.
Fig. 2(b) shows the augmented linear system affected by uncertainty for all the
terms in the matrices A and B from (2) that are different from 0 and 1. In total there
are 63 uncertain terms taken into consideration with +10% uncertainty. Fig. 2(b)
shows the Pole-Zero Map of 100 systems contained within the specified bounds.
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(a) Step response (8. and Seypsym 10 nyeq and n,.,) (b) Pole-Zero Map of the uncertain system
Fig. 2 The augmented system characteristics

3. Robust control design and synthesis objective

In the following important key aspects related to H,, robust control problem
with respect to NLCF.
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For the rational transfer matrix G (s) (representing the linearized dynamics
of a plant) there exists M and N (stable rational transfer matrices with M square
and invertible) such that G = M~N. M and N satisfy the propriety MV — NU =
I, with U and V stable transfer functions and are called left coprime factorization of
G. If M and N satisfy the additional propriety NN* + MM* = I, they are called
normalized left coprime factorization of G.

The dynamic stable uncertainty A = [Ay Ap] is called coprime factor
uncertainty if G, = (M + Ay) " 1(N + Ay), where M and N represent the NLCF of
G. This representation and its equivalent can be seen in Fig. 3(a) and Fig. 3(b)
respectively.

> A |«

Ay Ay
U1|—' +lW1 Wzi- v,
121 wi+ V2
LN O-O— Mll

i R » N —:O—» M1

v

(a) Representation of G, = (M + Ay)"Y(N + Ay) (b) Equivalent representation of G,
Fig. 3 The uncertain system representation with respect to NLCF
When applying a controller to the uncertain system in Fig. 3 the resulting
system can be seen in Fig. 4(a) and its equivalent in Fig. 4(b)

r vy ;/?‘ v, » A
—»O > N —»O—» M-t > v Na
+ A+ +
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(a) NLCF control problem (b) Equivalent representation

Fig. 4 The uncertain system representation with respect to NLCF with controller
Computing v, and v,for T, yields:
v, =KM'(Nv, +w) - v, =U—-KG) KM tw

- v, =K(U-GK)" M w (3)
v, =M Y(w+ NKv,) » v,=U—-GK) M tw 4)
The resulting generalized system having the output v = [zﬂ and the input
w Is given by:
_[U—-GK)? ] 1
Tow = K(I—-GK)™! M ®)

From the Small Gain Theorem [7], the robustness condition with respect to
NLCF is:
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ol <o ®

where K is the stabilizing controller of the system G, = (M + Ap)"Y(N + Ay)
with A = [Ay  Ay]and ||A]le < 6.

The generalized system corresponding to the H,, control problem in the case where
the nominal model G has D = 0 is given by:

J

M™1(s) 3 G(s) c1r1r . o
o . I l=(al-~H B],[F.’l,lﬂ?. S )
M (s) i G(s) clLr : 0

One can notice that the lower linear fractional transformation for the left side of the
above system is exactly T,,, in (5).

The proposed robust control design for the Rockwell B-1 aircraft presented
in Chapter Il has the following objectives:

e Ensure Level 1 handling qualities;

e Minimizing the tracking error between the output of a given ideal model H,,,
and the output measured pitch angle of the aircraft 8(t) for piecewise
doublet type commands;

e Minimizing the tracking error n,., (t) — n4(t);

e Reduced sensitivity for the outputs 6(t), n ¢, (t) and n,.4(t)

e Robustness with respect to parametric uncertainties

In this example G(s) is the transfer function with the state space
representation given by G(s) = (Asas, B, Crmeas) Dmeas) Where Agys = A —
B[00 K, K] is the augmented A matrix and B the same as in (2), while the

T . . .
measured outputs y,, = [q, B,nzcg,nch] are obtained using the appropriate
matrices Ceqs aNd Dyyeqs-

Zy " W2§ (15§ " wy Wil Z4
9(.'{)7)‘1 z
Ty K, Wow | ¢ B> » oW, >
S S T B ), + N7 Z3
4
K, [«
> Hy

Fig. 6 Robust control configuration
The adopted control design represents a modified H,, loop-shaping procedure with
two degrees of freedom inspired from [5] and can be seen in Fig. 6 where:
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e The exogenous inputs are: 6.y, W1, W, Where:
o B.om represents the desired pitch angle
o w;y,w, are the inputs denoting the equivalent H,, robust control
problem with respect to NLCF
e The control variable: u, representing:
o u, represents the two control surfaces of the aircraft model u, =

[6H c’ 60vsym] '
e The regulated outputs are: z;, z,, z3, z, Where:
oz represents the first set of regulated outputs given by the measured
outputs of the aircraft, which in this case gives z; =

T
[ q, 9' nzcg' nch]
o 2z, represents the scaled output given by the controller

T 195 0
[6H0f 60vsym] W, where W, = [ 0 1_2]

o z3 represents the scaled output given by z; = (v, T, — OcomHm) We,
where:
= T, is a matrix with linear independent rows so that one can
select 8 from the measured variables vector y,, given by:
T,=[010 0]
= H,, is an ideal transfer function chosen from the military
specification ~ (MIL-STD-1797) given  by: H,,(s) =

0.25 . .
S having state-space representation
54+4+0.75+0.25

(A Bm, G, D)
= W, is a low pass filter given by: W,(s) = 42i50+01;)
state-space representation (Aye, Bue, Cwe» Dwe)
o z, represents the scaled output given by z, = y,,, T,-, W,,, where:
T,., is a matrix with linear independent rows so that one can
select the difference n,., —n,,, from the measured
variables vector y,, givenby T,,, = [0 0 — 1 1]

= W, is a low pass filter given by W, (s) = %(;100)

having state-space representation (4,,,,, Bwn, Cwn» Dwn)
e The measured variables are: 6.,V given by the vector y,, =

[q, 9: nzcgr nch]T
= The loop-shaping transfer function W(s) = I,, given the
resulting system G¢(s) = GW, having state-space
representation (A, B, C, D)
The resulting generalized system with respect to NLCF is given by

, having
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As 010x2 01001 Orox1 010x1 —-H : B
02510 Am 0201 Oppq B Oova 3 022
BwTrCs _chm Aw lel lel BwTr B, T D
BWnTrnCs 01x2 lel Awn : lel BWnTTn : BwnTrnDs
C, 0 . 0 I : D,

T = : — s 4x4 : 4x1 4 : s I
© € ¢ Du Dy 0214 : O2v1 Ozps w, (8)
G i Dy Dy DyT.C; —DyCpn Cy Oy H 0151 D, T, : Dy, T, Dy

DwnTrnCs 01x2 lel Cwn : lel DwnTrn : DwnTrnDs
01514 I Oy i Oy
Cs Ogpq ’ Ogs L, i Dy
where
— T T Ty\—1
H = _(ZCS + Bst )(14- + Dst ) ’ (9)

Z > 0 denoting the stabilizing solution of the filtering algebraic Riccati equation:
(As - Bs(14 + DSDZ)_lDZCs)Z + Z(As - Bs(14 + DSD_Z)_leTCs)T -
zcr (I, + b, ~*C,Z + By(I, + D,DT)~1BT = 0. (10)
One can check that the solvability conditions of the H,, control problem are
accomplished. Indeed, the pairs (A;,B,) and (C,,Ar) are stabilizable and
detectable, respectively, and the systems (Ar, By, Cy1, D12) and (A, By, Cy, Dyq)
have no transmission zeros on the imaginary axis. Moreover, the obtained H,,
control problem is nonsingular since DX, D;, and D,, DI, are invertible.
Thus, using “hinfsyn” procedure in MATLARB, resulting in the control system K,
of order 14, which is determined such that it stabilizes the configuration and

Z
GCOm
... . Zy
minimizes the H,, norm of the mapping, | w; | = Zs|
%) Z,
4. Linear simulation analysis
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(a) Pole-Zero Map of the closed loop system (b) v, (t) response from 6,,,,, step command
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Fig. 7 Results for the closed loop system

As one can see in Fig. 7(a) the resulting closed loop system using the linear
nominal plant G(s) maintains stability and so does the closed loop when the linear
plant affected by +10% uncertainties G,,,,.(s) is used (here one can see results for
100 sample systems inside the considered interval). The results in Fig. 7(b) are
purely theoretical because the given step command for 6,,,, is in radians and this
command is not feasible at the considered flight conditions where the linearization
was made. Thus, n,e,[ft/s?] and n,.4[ft/s*] will not reach those values in
reality. Their behavior closest to reality can be seen in the next chapter here the
nonlinear model was used. Both Fig. 7(b) and 7(c) show that 6(t) maintains
stability and achieves tracking error minimization for all uncertain systems
considered in the chosen uncertainty domain. One can notice from Fig. 7(d) that
difference n,,(t) —n,.,(t) reaches near zero values very fast (approx. 15 sec)
only for the nominal case, but in the uncertainties case the results are not that great
when it comes to keeping this difference to a minimum. Nevertheless, stability is
maintained for all uncertain systems considered and one can see that now no more
ripples can be sensed in the cockpit location in the first 10 sec and the transition is
much smoother.

In the following the stability robustness proprieties of the proposed
controller is addressed. The transfer function used here refers to the 6 channel
(B.om — 6) in open loop. When using the nominal plant in the open loop the
resulting  robustness is  given by:  GMy,, = 20.94 [dB]; PMyom =

46.118 [deg]; DM,y = %% = 2.0158 [sec].
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Fig. 8 Robustness analysis for 100 open loop sample systems
From Fig. 8 one can see that the gain margin is well above the critical limit
of 6 [dB], while the phase margin is maintained above the limit of 30 [deg]
resulting in the delay margin being above the limit of 0.5 [sec] for all 100 uncertain
plants considered.

5. Nonlinear simulations

The resulting controller computed for the linear system and tested with
uncertainties will be tested on the full nonlinear elastic dynamics of the Rockwell
B-1 aircraft. The SIMULINK aircraft model corresponds to the description given
in [1]. For comparison purpose a simple LQR controller was designed (under the
assumption that all states are available, which can be achieved by additionally
designing a Kalman filter to estimate the states) in order to keep the pitch angle
using the control input &, while the control input &.,,,» Was used to filter the
difference n,, — n 4 with the same filter used in [1].
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Fig. 9 Nonlinear simulation for the nominal case of all proposed controllers

The difficulty when working with nonlinear model is that things might not
work properly for long simulation running times because coupling between
longitudinal and lateral channels can interfere resulting in instability. Thus, in order
to avoid instability, a simple lateral-directional gain schedule controller was
developed so that the lateral dynamics are kept to their trim state for the duration of
the simulation. Also, the flexible modes for the lateral channel were turned off.

The nonlinear simulation took place for 450 sec while the desired pitch
attitude was given by several doublet commands. One can notice in Fig. 9(a) that
the commanded pitch is chosen between +10 deg and steady state was reached for
both controllers with approximately the same transient time and overshot. The time
response of the control effort represented in Fig. 9(b) is relatively similar in all cases
for 8y, but for 8.5, differs for each controller. The difference n,., (t) — n,.,4(t)
has some ripples in the LQR+filter case as one can see in Fig. 9(d), but in the H.,
case there are almost no ripples present. This difference was maintained to a low
level during the proposed simulation inside the interval (—8ft/s?, 4ft/s?) as can
be noticed in Fig 9(c). Although not individually represented here the normal
accelerations sensed in the cockpit n,., and in the center of gravity n,., both tend

to 0ft/s? when steady state is reached.
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6. Conclusions and future work

Combining the two control surfaces in order to achieve both control
objectives simultaneously, as the H. design does, was proven to give more
satisfactory results when working with flexible modes, as compared to acting on
separate control channels (the first to achieve attitude tracking and the second to
compensate for the flexible modes effects).

The main difficulty of this approach is trying to attenuate the effects of the
high frequency elastic modes while achieving low frequency control objectives.
Thus, the design main focus was achieving the low frequency control objectives,
but adjustments were made in order to reduce elasticity effect as much as possible.

Future work involves a new control design for the lateral-directional
dynamics of the Rockwell B-1 nonlinear model.
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