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BEHAVIOURS OF FLUIDIZED BEDS THROUGH FLOW
REGIMES OF A COMPLEX FLUID

Irina-Elena SURDU', Carmen NEJNERU?, Gelu GALUSCA?, Maricel AGOP*

Comportamentele de paturilor fluidizate prin regimuri de curgere diferite
ale unui lichid complex sunt analizate. Simuldrile numerice arata ca fluidizarea este
un proces de tranzitie continuu. Mai mult decat atat, multe tipuri de faze fluidizate
ca faze omogene sau faze amestecuri sunt modelate. Faza corespunde unui regim de
curgere specific, in timp ce fluidizarea este asociatd unor instabilitati convective.

The behaviours of fluidized beds through the different flow regimes of a
complex fluid are analyzed. Numerical simulations show that the fluidization is a
continuous transition process. Moreover, many types of fluidized phases as
homogeneous, channeling, bubbling phases or mixtures phases are mimed. The
phase corresponds with a specific flow regime, while the fluidization is associated
with convective instabilities.
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1. Introduction

Fluidized beds consist of granular particles confined in a tall chamber with
distributer for the fluid flow at the bottom [1-8]. In experiments injection of the
energy in a system is controlled by the flow rate of fluid (we note that, since the
granular materials are dissipative injection of the energy is necessary to preserve
steady states). At low flow rate, the system is in the fixed phase where particle
rest at the bottom. When the flow rate exceeds the critical value, the particles start
moving. This state is called the fluidized phase, which contains sub-phases, for
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instance, the homogeneous phase, the bubbling phase, the channeling phase, etc
[9].

There are many models to describe fluidized beds (two-fluid models,
particle-dynamics models, etc). In the two-fluid models, the particles are treated
as a fluid [10-13, 15, 17]. These models benefit by analytical treatments [22].
However, their bases, such as stress tensor and constitution equations for the
particle-phase pressure have not been established. The particle-dynamics models
describe the direct motion of the particles. There are various models which are
kinetic theories [2], the discrete element method [23, 24] etc. These models
cannot be the basis for the two-fluid models. Their main problem is that
hydrodynamic interactions among particles are over simplified. For instance, the
boundary conditions between particles and fluid are not satisfied in the scale of
particles, and the fluid equation is calculated under inviscid limit.

A numerical model on the fluidized beds has been proposed in [9] where
hydrodynamic interaction among particles is calculated with reliable accuracy.
From its simulation, it results both the fact that fluidization is a continuous
transition and that the two type of fluidized phases (the channeling phase and the
bubbling one) exist. Also, close relations between the averaged behaviours in
fluidized beds and quasi-equilibrium states in dense fluids are found. We note that
by means of such simulation in fluidized beds, the flow rate plays the role of the
effective temperature and existences of a kind of the fluctuation-dissipation
relation are suggested.

According to our opinion, since in fluidized beds the interaction
phenomena are of multi-scale type, dynamics in a complex fluid are practically
analyzed in [9, 21, 25]. The homogeneous, the channeling and bubbling phase
type cataloguing given by numerical simulations in [9, 25, 26] are not the best
choices. In what follows, considering that a complex fluid (fluid + solid particle)
is characterized by effective parameters, we numerical simulate the speed and
temperature transfers for various flow regimes. These regimes will be assimilated
to different fluid sub-phases (homogeneous, bubbling and channeling phases) or
mixtures of fluidized beds sub-phases. Therefore, in what follows behaviours of
fluidized beds through various flow regimes (speed and temperature fields) of a
complex fluid will be mimed.

2. Specific parameters of a biphasic fluid

The biphasic fluid (fluid + solid particles) can work as a monophasic one,
having effective fluid-phase parameters. In what fallows we shall define the
effective parameters:

1) Effective density,

p=0-¢&)ps+ep, )
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where py is fluid density and p,, the density of the solid particle [1-3 ];
i) Effective specific heat,
c=(1—-¢)s+ec, )
where ¢ is the specific heat fluid and ¢, is the specific heat of the solid particle
[1-2];
ii1) Effective thermal conductivity,
_ [, + (n— DAs — (n — D (A — 1)¢] N )
[A + (n— DA+ (A —1)e] 7
where Ay is the thermal conductivity of the fluid, 4,, is the thermal conductivity of
the particle and n is the empirical shape factor,

n= 3/1IJ (4)
where v is the ratio between the area of a sphere and the area of a particle having
the same volume. Equation (3) specifies that the effective thermal conductivity is
maximal for spherical particles. Furthermore, it ignores both particle size and
radiation effect that can occur among particles [1-3];

iv) effective thermal expansion coefficient,

a=(1-¢8as+ea, (5)
where a; is the coefficient of fluid thermal expansion and a,, is the solid particle
thermal expansion coefficient [ 1-3];

V) Effective viscosity,

n = (306e* — 0,19¢ + 1)1, (6)
where 7 is fluid viscosity [1-2].

In relations (1), (2), (3), (5) and (6) € correspond to particle volume
fraction.

3. Convective instabilities in biphasic fluid
3.1. Convective instabilities phenomenology

Let us consider a biphasic fluid layer of thickness d subject to thermal
gradient,

AT Tl_TO
= — 7
B == . (7)

where AT = T; — T, < 0 is the temperature difference between upper and lower
borders of biphasic fluid layer. The pure conduction regime with the biphasic
fluid at rest and wundisturbed temperature distribution belongs to the
thermodynamic branch continuously correlating the non-equilibrium state (AT #
0) with the balanced one(AT = 0).
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Let us examine the dynamics of temperature fluctuations, 0, in the vicinity
of unperturbed temperature profile Ty(z). Let us also consider an element of
biphasic fluid with a higher temperature as compared to that of the environment,
6> 0. Density decreases with temperature, so the biphasic fluid element is lighter
than any of its vicinities, with the tendency to rise. Heating the biphasic fluid in its
inferior part, its density will increase with the altitude, so that the item meets an
increasingly colder biphasic fluid, tending to increase faster and faster. The initial
fluctuation is amplified. Two dissipative processes tend to maintain the biphasic
fluid at rest:

- internal friction (the damping of the motion through viscosity);

- thermal conduction that reduces the temperature difference between the
average element biphasic fluid and the environment, thus reducing buoyancy.

Instability cannot develop unless biphasic fluid element is accelerated
enough to overcome the effect of dissipative processes. Temperature gradient 3,
which represents the control parameter of this instability, exceeds the critical
value f.

An organized structure of convection cells type is generated above the
critical limit.

3.2. Biphasic fluid dynamic equations

For a biphasic fluid, the mass, momentum and internal energy equations
a —>
a—’: +V-(pv) =0

. 6(pV) . < =) - _
are:  — =+ \Y (P + pvv) =pg (8 a-c)

6(p£) — - _ <_). —>

— tV- (pev +]q) = —P: (W)

where p is the mass density of the biphasic fluid , V is its speed, g is the
gravitational acceleration, € is the internal energy of unit volume and Jj is the heat

flux. Pressure tensor was noted with P and 4: B = A;.B,; the tensor product where

Einstein’s mute index summing convention (summing according to the repeated
indices) was considered. Pressure tensor can be written as:

P = Pe 4 ©)
where P¢ is the balanced part depending on the state system and PV is the non-
balanced one corresponding to viscous pressure tensor. When balanced, viscous
stress tensor components are null for an isotropic fluid at rest

p 0 O
Pe=<0 p 0)=pl (10)

0 0 p
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where p is the hydrostatic pressure while for a non-balanced viscous biphasic
fluid, the viscous stress tensor is not null. Now, according to relations (8) and (9),
the pressure tensor for a balanced homogeneous and isotropic viscous biphasic
fluid will be:

=g

P =pl+P¥ Y

3.3 Constraints in biphasic fluid dynamics. Simplified dynamic
equations

Let us admit the following assumptions:
1) The biphasic fluid is assumed Newtonian, a case in which the
pressure tensor is given by equation (10). The viscous stress tensor
is:

v . v, 0dvg 2
Paﬂ - E(V V)aaﬁ n GXﬁ + axa 3 (V v))SaB (12)
where £ is the volume viscosity, and 1 is the tangential one (shear);
i) Fourier type thermal conduction
Jqg = —AVT (13)

where A is the effective thermal conductivity;

iii) Thermal expansion is linear

p = poll —a(T —Ty)] (14)
where a is the effective thermal expansion coefficient;

iv) The biphasic fluid satisfies caloric equation of state,

&=cT (15)
where c is the heat capacity of unit volume of the biphasic fluid at constant
pressure;

V) Thermal expansion of the biphasic fluid is small. Then we can
consider the effective density everywhere constant, and denote it
with p,, except for the momentum balance equation.

Given these assumptions and using the method from [27, 28], the system

of equations (8a-c) becomes:

V-v=0
av+(" VV|+V (po + 6p)g + nAv
-— \'A A\ = \%
Po |57 p=(po+op)g+n (16a-c)

6T+(_, VT = A AT
Jt v T poc

where p is the effective perturbed density
p=po+ 6p (17)
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Equation (16a) specifies that the biphasic fluid should be incompressible.
The convection in the layer of biphasic fluid releases when the buoyancy
generated by thermal expansion is stronger than viscous forces. The Rayleigh
number results
asc PO
= = X —= 18
Fussel ™ 127 (9
0
The explicit dependence of the Rayleigh number must take into account
the following:
1) the effective density perturbation satisfies through (14) the

relationship
5p
— = aAT (19)
Po
i1) from the internal energy balance equation (16c¢), relationship
A1
V= Ea (20)
is found. Substituting (19) and (20) in (18), for the Rayleigh number we
obtain:
_ aBp3cg 14
R= o d (21

or more, taking into account (1)-(6),

R= gpd* [(1-©)as+eap][(1-)cr+ecy][(1-e)pr+epp]”

. Ap+@m-DA—(-D(A—Ap)e] (22)
NfAf(306€2-0,19e+1) Top F(n— DA+ rp—Ap)e]

In convection, the control parameter is the Rayleigh number (22) mainly
"manipulated", by the temperature gradient 3.

3.4. Reference state and perturbations in biphasic fluid dynamics.
Dynamic equations for perturbations.

We choose the reference stationary state condition Vs = 0, for which
equations (16b) and (16¢) become:
Vps = —psgz = —pol1 — a(Ts — To)lg2
AT, = 0 (23 a,b)
where Z is the unit vector of vertical direction. We believe that pressure and
temperature will only vertically vary. For temperature, boundary conditions are
T(xr Y 0) = TO; T(x, Y d) = Tl (24)
Integrating equation (23b) with these boundary conditions, the vertical
temperature profile in reference state, will be linear
Ty =Ty — pz (25)
Substituting (25) in (23a) and integrating, we obtain:
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ps(2) = po — pog (1 + (ZTBZ) z (26)

The system condition depends on n and A kinetic coefficients that appear
in equations (16a-c). We study the stability of the reference state through the
small perturbations method. The perturbation state is characterized by relations

T =T,(2) + (% t)
p=ps(2)+ 6p(f, t) (27a-d)
p = ps(2) + 6p(7,t)

v=6v(#1t) = (u,v,w)

As shown in (27a-d), perturbation are time and position dependant.
Substituting (27a-d) in equations (16a-c) and taking into account (25) and (26),
we obtain, in linear approximation, the following equations for perturbations:

V-6v=0

06

— = Bw + kV?0

ot 28a-c)
v 1 (

— = ——V&p + VW26V
5t o p +vVe6v

+ gabz
where k = A/ poc 1s the effective thermal diffusivity and v = 77/ p, 1s the effective
kinematic viscosity.

3.5. Dynamic dimensionless equations of perturbation

Let us introduce dimensionless variables in the system (28a-c)

N = 2 3
§=>. 1=t V=060, P=——>5&p,0=2"p (29a-¢)

T da’ povk ’ vk
It follows that the perturbations satisfy dimensionless equations:
6? - - — _A. A _)_)—)
Z(g +v- Bgv) = agp + 0z + aggV
©LT.0-0 = e 30a-
aT-l-V 650 Rw+6&,@ (30a-c)
637 =0
where @ is the Prandtl number
v _ nc _ nr(306°-0,19e+1)[(1-&)cs+ecy]

koA 3 [Ap+(-DAp-(-1)(Ap-2p)e] (31)
T [ap+ -2+ @p-2p)e]

P=
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3.6. Numerical simulation

It is difficult to obtain some analytical solutions of the system of equations
(30a-c). That is why we will numerically integrate it through the Lattice
Boltzmann (LB) method, using the Bhatnagar-Gross-Krook (BGK) model [27].

Numerical simulation using Mattlab programming mode (our adaptive
version [28] of the software from [13, 15]) corresponds to different flow regimes
of a biphasic fluid as specified by Nusselt's number [1, 2].

(t/g)® — 1000)P

N = -
1+12,7(Fg) f2 (P*s-1) (32a,b)

f =[0,79In(R) — 1,64]72

Figures (1 a-e) show the numerical solutions (curves of equal speed and
temperature) for 0,6 < A< 3,5. An entire scenario for the evolution of convective
instabilities will sequentially result: initiation for &' < 0,7, extension for 0,7< ' <
1,6 and generation of convection patterns for 2,9 < A< 3,2,

Assimiling the different flow regimes of the complex fluid with
fluidization it results that this is a continuous transition process. That, many type
of fluidized phases are presented: homogeneous phase for & < 0,7, channeling
phase for 0,7< & < 1,6 and bubbling phase for 2,9 < & < 3,2. Moreover many
mixture phase results: for example channeling - bubbling phase for 1,6< V< 2,9,
etc.
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Figs. 1 (a-e) T'he numerical solutions (curves of equal speed and temperature) for 0,6 < N'<3,5.

Now, considering that the complex fluid is nitrogen gas and sand particles with
the average parameters: py=1,2506 kg/m3, Pp=3690 kg/m3, ¢r=1039,5 J/KgK,
cp=880 J/KgK, 2,=0,02583 W/mK, 4,=30 W/mK, n,=0,0000152789, &=1/3,
n=21,86389 for a rotational ellipsoid (a=100 pm, b=300 pm, c=25 pm), f=12.500
K/m, d=0,8 mm, according with relation (32a,b), it results N=1,340212. This
means that a mixture phase (channeling — bubbling phase) in the fluidized beds
appears. This result was confirmed by experiment [16,13].

4, Conclusions

The main conclusions of the present paper are follows: i) the behaviours of
fluidized beds through the different flow regimes of a complex fluid are analyzed;
ii) the complex fluid (fluid + solid particles) is characterized by effective
parameters (effective density, effective specific heat, effective thermal
conductivity, effective thermal expansion coefficient, effective viscosity); iii)
various flow regimes through numerical simulations are mimed; it results that the
fluidization is a continuous transition process. Moreover, many type of fluidized
phases (homogeneous phase, channeling phase, bubbling phase, mixture phase)
are presented; the each phase correspond with a specific flow regime, while the
fluidization is associated with convective instabilities.
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