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BEHAVIOURS OF FLUIDIZED BEDS THROUGH FLOW 
REGIMES OF A COMPLEX FLUID 

 

Irina-Elena SURDU1, Carmen NEJNERU2, Gelu GĂLUŞCĂ3, Maricel AGOP4, 

 Comportamentele de păturilor fluidizate prin regimuri de curgere diferite 
ale unui lichid complex sunt analizate. Simulările numerice arată că fluidizarea este 
un proces de tranziţie continuu. Mai mult decât atât, multe tipuri de faze fluidizate 
ca faze omogene sau faze amestecuri sunt modelate. Faza corespunde unui regim de 
curgere specific, în timp ce fluidizarea este asociată unor instabilităţi convective. 
 

The behaviours of fluidized beds through the different flow regimes of a 
complex fluid are analyzed. Numerical simulations show that the fluidization is a 
continuous transition process. Moreover, many types of fluidized phases as 
homogeneous, channeling, bubbling phases or mixtures phases are mimed. The 
phase corresponds with a specific flow regime, while the fluidization is associated 
with convective instabilities. 
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1. Introduction 

Fluidized beds consist of granular particles confined in a tall chamber with 
distributer for the fluid flow at the bottom [1-8]. In experiments injection of the 
energy in a system is controlled by the flow rate of fluid (we note that, since the 
granular materials are dissipative injection of the energy is necessary to preserve 
steady states). At low flow rate, the system is in the fixed phase where particle 
rest at the bottom. When the flow rate exceeds the critical value, the particles start 
moving. This state is called the fluidized phase, which contains sub-phases, for 
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instance, the homogeneous phase, the bubbling phase, the channeling phase, etc 
[9]. 

There are many models to describe fluidized beds (two-fluid models, 
particle-dynamics models, etc). In the two-fluid models, the particles are treated 
as a fluid [10-13, 15, 17]. These models benefit by analytical treatments [22]. 
However, their bases, such as stress tensor and constitution equations for the 
particle-phase pressure have not been established. The particle-dynamics models 
describe the direct motion of the particles. There are various models which are 
kinetic theories [2], the discrete element method [23, 24] etc. These models 
cannot be the basis for the two-fluid models. Their main problem is that 
hydrodynamic interactions among particles are over simplified. For instance, the 
boundary conditions between particles and fluid are not satisfied in the scale of 
particles, and the fluid equation is calculated under inviscid limit. 

A numerical model on the fluidized beds has been proposed in [9] where 
hydrodynamic interaction among particles is calculated with reliable accuracy. 
From its simulation, it results both the fact that fluidization is a continuous 
transition and that the two type of fluidized phases (the channeling phase and the 
bubbling one) exist. Also, close relations between the averaged behaviours in 
fluidized beds and quasi-equilibrium states in dense fluids are found. We note that 
by means of such simulation in fluidized beds, the flow rate plays the role of the 
effective temperature and existences of a kind of the fluctuation-dissipation 
relation are suggested. 

According to our opinion, since in fluidized beds the interaction 
phenomena are of multi-scale type, dynamics in a complex fluid are practically 
analyzed in [9, 21, 25]. The homogeneous, the channeling and bubbling phase 
type cataloguing given by numerical simulations in [9, 25, 26] are not the best 
choices. In what follows, considering that a complex fluid (fluid + solid particle) 
is characterized by effective parameters, we numerical simulate the speed and 
temperature transfers for various flow regimes. These regimes will be assimilated 
to different fluid sub-phases (homogeneous, bubbling and channeling phases) or 
mixtures of fluidized beds sub-phases. Therefore, in what follows behaviours of 
fluidized beds through various flow regimes (speed and temperature fields) of a 
complex fluid will be mimed. 

2. Specific parameters of a biphasic fluid 

The biphasic fluid (fluid + solid particles) can work as a monophasic one, 
having effective fluid-phase parameters. In what fallows we shall define the 
effective parameters: 

i) Effective density, 
ߩ ൌ ሺ1 െ ௙ߩሻߝ ൅ ௣ (1)ߩߝ
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where ߩ௙ is fluid density and ߩ௣ the density of the solid particle [1-3 ]; 
ii) Effective specific heat, 

ܿ ൌ ሺ1 െ ሻߝ ௙ܿ ൅ ௣ (2)ܿߝ
where ௙ܿ is the specific heat fluid and ܿ௣ is the specific heat of the solid particle 
[1-2 ]; 

iii) Effective thermal conductivity, 

ߣ ൌ
௣ߣൣ ൅ ሺ݊ െ 1ሻߣ௙ െ ሺ݊ െ 1ሻሺߣ௙ െ ൧ߝ௣ሻߣ

௣ߣൣ ൅ ሺ݊ െ 1ሻߣ௙ ൅ ሺߣ௙ െ ൧ߝ௣ሻߣ
௙ (3)ߣ

where ߣ௙ is the thermal conductivity of the fluid, ߣ௣ is the thermal conductivity of 
the particle and n is the empirical shape factor, 

n ൌ 3
ψൗ  ሺ4ሻ

where ψ is the ratio between the area of a sphere and the area of a particle having 
the same volume. Equation (3) specifies that the effective thermal conductivity is 
maximal for spherical particles. Furthermore, it ignores both particle size and 
radiation effect that can occur among particles [1-3]; 

iv) effective thermal expansion coefficient, 
ߙ ൌ ሺ1 െ ௙ߙሻߝ ൅ ௣ (5)ߙߝ

where ߙ௙ is the coefficient of fluid thermal expansion and ߙ௣ is the solid particle 
thermal expansion coefficient [ 1-3]; 

v) Effective viscosity, 
ߟ ൌ ሺ306ߝଶ െ ߝ0,19 ൅ 1ሻߟ௙ (6)

where ߟ௙ is fluid viscosity [1-2]. 
In relations (1), (2), (3), (5) and (6) ε correspond to particle volume 

fraction. 

3. Convective instabilities in biphasic fluid 

3.1. Convective instabilities phenomenology 

Let us consider a biphasic fluid layer of thickness d subject to thermal 
gradient, 
 

ߚ ൌ
∆ܶ
݀ ൌ ଵܶ െ ଴ܶ

݀  (7)

where ∆T ൌ Tଵ െ T଴ ൏ 0 is the temperature difference between upper and lower 
borders of biphasic fluid  layer. The pure conduction regime with the biphasic 
fluid at rest and undisturbed temperature distribution belongs to the 
thermodynamic branch continuously correlating the non-equilibrium state (ΔT ≠ 
0) with the balanced oneሺ∆T ൌ 0ሻ. 
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Let us examine the dynamics of temperature fluctuations, θ, in the vicinity 
of unperturbed temperature profile ଴ܶሺݖሻ. Let us also consider an element of 
biphasic fluid with a higher temperature as compared to that of the environment, 
θ> 0. Density decreases with temperature, so the biphasic fluid element is lighter 
than any of its vicinities, with the tendency to rise. Heating the biphasic fluid in its 
inferior part, its density will increase with the altitude, so that the item meets an 
increasingly colder biphasic fluid, tending to increase faster and faster. The initial 
fluctuation is amplified. Two dissipative processes tend to maintain the biphasic 
fluid at rest: 

- internal friction (the damping of the motion through viscosity); 
- thermal conduction that reduces the temperature difference between the 

average element biphasic fluid   and the environment, thus reducing buoyancy. 
Instability cannot develop unless biphasic fluid element is accelerated 

enough to overcome the effect of dissipative processes. Temperature gradient β, 
which represents the control parameter of this instability, exceeds the critical 
value ߚ஼. 

An organized structure of convection cells type is generated above the 
critical limit. 

3.2. Biphasic fluid dynamic equations 

For a biphasic fluid, the mass, momentum and internal energy equations 

are:

డఘ
డ௧

൅ ׏ · ሺߩvሬԦሻ ൌ 0
డሺఘ୴ሬሬԦሻ

డ௧
൅ ׏ · ൫ിܲ ൅ vሬԦvሬԦ൯ߩ ൌ ߩ Ԧ݃

డሺఘఌሻ
డ௧

൅ ׏ · ൫ߝߩvሬԦ ൅ ଔԦ௤൯ ൌ െിܲ: ሺ׏vሬԦሻ

                                                           (8 a-c) 

where ρ is the mass density of the biphasic fluid , vሬԦ is its speed, Ԧ݃ is the 
gravitational acceleration, ߝ is the internal energy of unit volume and ଔԦ௤ is the heat 
flux. Pressure tensor was noted with Pി and ܣി: ിܤ ൌ  ௖௜ the tensor product whereܤ௜௖ܣ
Einstein’s mute index summing convention (summing according to the repeated 
indices) was considered. Pressure tensor can be written as: 
  

ിܲ ൌ ിܲ௘ ൅ ിܲ୴ (9)
where ിܲ௘  is the balanced part depending on the state system and ിܲ୴ is the non-
balanced one corresponding to viscous pressure tensor. When balanced, viscous 
stress tensor components are null for an isotropic fluid at rest 

Pിୣ ൌ ൭
p 0 0
0 p 0
0 0 p

൱ ൌ pIി (10)
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where p is the hydrostatic pressure while for a non-balanced  viscous biphasic 
fluid, the viscous stress tensor is not null. Now, according to relations (8) and (9), 
the pressure tensor for a balanced homogeneous and isotropic viscous biphasic 
fluid will be: 

ിܲ ൌ ി൅ܫ݌ ിܲ௩ (11)

3.3 Constraints in biphasic fluid dynamics. Simplified dynamic 
equations 

Let us admit the following assumptions: 
i) The biphasic fluid is assumed Newtonian, a case in which the 

pressure tensor is given by equation (10). The viscous stress tensor 
is: 

ఈܲఉ
୴ ൌ െߦሺ׏ · vሬԦሻߜఈఉ െ ߟ ቈ

߲vఈ

ఉݔ߲
൅

߲vఉ

ఈݔ߲
െ

2
3 ሺ׏ · vിሻߜఈఉ቉ (12)

where ߦ is the volume viscosity, and η is the tangential one (shear); 
ii) Fourier type thermal conduction  

ଔԦ௤ ൌ െ(13) ܶ׏ߣ
where λ is the effective thermal conductivity; 

iii) Thermal expansion is linear 
ߩ ൌ ଴ሾ1ߩ െ ሺܶߙ െ ଴ܶሻሿ (14)

where α is the effective thermal expansion coefficient; 
iv) The biphasic fluid  satisfies caloric equation of state, 

ҧ=cT (15)ߝ
where c is the heat capacity of unit volume of the biphasic fluid  at constant 
pressure; 

v) Thermal expansion of the biphasic fluid is small. Then we can 
consider the effective density everywhere constant, and denote it 
with ߩ଴, except for the momentum balance equation. 

Given these assumptions and using the method from [27, 28], the system 
of equations (8a-c) becomes: 

׏ · vሬԦ ൌ 0

଴ߩ ቈ
߲vሬԦ
ݐ߲ ൅ ሺvሬԦ · ሻvሬԦ቉׏ ൅ p׏ ൌ ሺߩ଴ ൅ ሻߩߜ Ԧ݃ ൅ vሬԦ∆ߟ

߲ܶ
ݐ߲ ൅ ሺvሬԦ · ሻܶ׏ ൌ

ߣ
଴ܿߩ ∆ܶ

 (16a-c)

where ρ is the effective perturbed  density 
ߩ ൌ ଴ߩ ൅ (17) ߩߜ 
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Equation (16a) specifies that the biphasic fluid   should be incompressible. 
The convection in the layer of biphasic fluid releases when the buoyancy 

generated by thermal expansion is stronger than viscous forces. The Rayleigh 
number results 

Rൌ หிԦೌ ೞ೎ห
หிԦ౬â౩ౙห

ൎ
ቚഃഐ೒ሬሬԦ

ഐబ
ቚ

ቚആ∆౬ሬሬԦ
ഐబ

ቚ
 (18)

The explicit dependence of the Rayleigh number must take into account 
the following: 

i) the effective density perturbation  satisfies through (14) the 
relationship 

ߩߜ
଴ߩ

ൎ (19) ܶ∆ߙ

ii) from the internal energy balance equation (16c), relationship  
v ൎ ఒ

ఘబ௖
ଵ
ௗ
  (20)

is found. Substituting (19) and (20) in (18), for the Rayleigh number we 
obtain: 

Rൌ ஑ஒ஡బ
మୡ୥

஗஛
dସ (21)

or more, taking into account (1)-(6), 

Rൌ gβdସ ൣሺଵିகሻ஑౜ାக஑౦൧ൣሺଵିகሻୡ౜ାகୡ౦൧ൣሺଵିகሻ஡౜ାக஡౦൧మ

஗౜஛౜ሺଷ଴଺கమି଴,ଵଽகାଵሻ
ൣಓ౦శሺ౤షభሻಓ౜షሺ౤షభሻሺಓ౜షಓ౦ሻ಍൧

ൣಓ౦శሺ౤షభሻಓ౜శሺಓ౜షಓ౦ሻ಍൧

 (22)

In convection, the control parameter is the Rayleigh number (22) mainly 
"manipulated", by the temperature gradient β. 

3.4. Reference state and perturbations in biphasic fluid dynamics. 
Dynamic equations for perturbations. 

We choose the reference stationary state condition vሬԦୱ ൌ 0, for which 
equations (16b) and (16c) become: 

௦݌׏ ൌ െߩ௦݃̂ݖ ൌ െߩ଴ሾ1 െ ሺߙ ௦ܶ െ ଴ܶሻሿ݃̂ݖ
∆ ௦ܶ ൌ 0  (23 a,b)

where ̂ݖ is the unit vector of vertical direction. We believe that pressure and 
temperature will only vertically vary. For temperature, boundary conditions are 

ܶሺݔ, ,ݕ 0ሻ ൌ ଴ܶ;  ܶሺݔ, ,ݕ ݀ሻ ൌ ଵܶ                                                              (24) 
Integrating equation (23b) with these boundary conditions, the vertical 

temperature profile in reference state, will be linear  
௦ܶ ൌ ଴ܶ െ (25) ݖߚ

Substituting (25) in (23a) and integrating, we obtain: 



Behaviours of fluidized beds through flow regimes of a complex fluid                 187 

ሻݖ௦ሺ݌ ൌ ଴݌ െ ଴݃ߩ ൬1 ൅
ݖߚߙ

2 ൰ (26) ݖ

The system condition depends on η and λ kinetic coefficients that appear 
in equations (16a-c). We study the stability of the reference state through the 
small perturbations method. The perturbation state is characterized by relations 

T ൌ ௦ܶሺݖሻ ൅ ,Ԧݎሺߠ ሻݐ
ρ ൌ ሻݖ௦ሺߩ ൅ ,Ԧݎሺߩߜ ሻݐ
p ൌ ሻݖ௦ሺ݌ ൅ ,Ԧݎሺ݌ߜ ሻݐ

vሬԦ ൌ ,ԦݎvሬԦሺߜ ሻݐ ൌ ሺݑ, v, ሻݓ

 (27a-d)

As shown in (27a-d), perturbation are time and position dependant. 
Substituting (27a-d) in equations (16a-c) and taking into account (25) and (26), 
we obtain, in linear approximation, the following equations for perturbations: 

׏ · vሬԦߜ ൌ 0 
ߠ߲
ݐ߲ ൌ ݓߚ ൅  ߠଶ׏݇
vሬԦߜ߲
ݐ߲ ൌ െ

1
଴ߩ

݌ߜ׏ ൅ ν׏ଶߜvሬԦ

൅  ݖ̂ߠߙ݃

(28a-c)

where ݇ ൌ ߣ ଴ܿൗߩ  is the effective thermal diffusivity and ν ൌ ߟ
଴ ൗߩ is the effective 

kinematic viscosity. 
 

3.5. Dynamic dimensionless equations of perturbation 

 Let us introduce dimensionless variables in the system (28a-c)  
ξԦ ൌ ୰ሬԦ

ୢ
 , τ ൌ ୩

ୢమ t , vሬԦ ൌ ୢ
୩

δݒԦ , P ൌ ୢమ

஡బ஝୩
δp , Θ ൌ ௚ఈௗయ

஝୩
(29a-e) ߠ

 It follows that the perturbations satisfy dimensionless equations: 
P-1ቀడ୴ሬሬԦ

డఛ
൅ vሬԦ · ߲కሬԦvሬԦቁ ൌ െ߲కሬԦܲ ൅ Θzො ൅ ߲కሬԦకሬԦvሬԦ 

డ஀
డఛ

൅ vሬԦ · ߲కሬԦ߆ ൌR ݓ ൅ ߲కሬԦకሬԦ߆ 
߲కሬԦvሬԦ ൌ 0 

(30a-c)

where P  is the Prandtl number 

Pൌ ஝
௞

ൌ ఎ௖
ఒ

ൌ ఎ೑൫ଷ଴଺ఌమି଴,ଵଽఌାଵ൯ൣሺଵିఌሻ௖೑ାఌ௖೛൧

ఒ೑
ቂഊ೛శሺ೙షభሻഊ೑షሺ೙షభሻሺഊ೑షഊ೛ሻഄቃ

ቂഊ೛శሺ೙షభሻഊ೑శሺഊ೑షഊ೛ሻഄቃ

 (31)
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3.6. Numerical simulation 

It is difficult to obtain some analytical solutions of the system of equations 
(30a-c). That is why we will numerically integrate it through the Lattice 
Boltzmann (LB) method, using the Bhatnagar-Gross-Krook (BGK) model [27]. 

Numerical simulation using Mattlab programming mode (our adaptive 
version [28] of the software from [13, 15]) corresponds to different flow regimes 
of a biphasic fluid as specified by Nusselt's number [1, 2]. 

ࣨ ൌ
൫f

8ൗ ൯ሺ࣬ െ 1000ሻ࣪

1 ൅ 12,7൫f
8ൗ ൯

ଵ
ଶൗ

ቀ࣪ଶ
ଷൗ െ 1ቁ

 

 
f ൌ ሾ0,79lnሺ࣬ሻ െ 1,64ሿିଶ 

(32a,b) 

Figures (1 a-e) show the numerical solutions (curves of equal speed and 
temperature) for 0,6 < N < 3,5.  An entire scenario for the evolution of convective 
instabilities will sequentially result: initiation for N < 0,7, extension for 0,7< N < 
1,6 and generation of convection patterns for 2,9 < N < 3,2. 

Assimiling the different flow regimes of the complex fluid with 
fluidization it results that this is a continuous transition process. That, many type 
of fluidized phases are presented: homogeneous phase for N < 0,7, channeling 
phase for 0,7< N < 1,6 and bubbling phase for 2,9 < N < 3,2. Moreover many 
mixture phase results: for example channeling - bubbling phase for 1,6< N < 2,9, 
etc. 
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Figs. 1 (a-e) The numerical solutions (curves of equal speed and temperature) for 0,6 < N < 3,5. 

 
 
Now, considering that the complex fluid is nitrogen gas and sand particles with 
the average parameters: ߩ௙=1,2506 kg/m3, ߩ௣=3690 kg/m3, ௙ܿ=1039,5 J/KgK, 
ܿ௉=880 J/KgK, ߣ௙=0,02583 W/mK, ߣ௣=30 W/mK, ߟ௙=0,0000152789, 1/3=ߝ, 
n=21,86389 for a rotational ellipsoid (a=100 µm, b=300 µm, c=25 µm), β=12.500 
K/m, d=0,8 mm, according with relation (32a,b), it results  N=1,340212.  This 
means that a mixture phase (channeling – bubbling phase) in the fluidized beds 
appears. This result was confirmed by experiment [16,13]. 

4. Conclusions 

The main conclusions of the present paper are follows: i) the behaviours of 
fluidized beds through the different flow regimes of a complex fluid are analyzed; 
ii) the complex fluid (fluid + solid particles) is characterized by effective 
parameters (effective density, effective specific heat, effective thermal 
conductivity, effective thermal expansion coefficient, effective viscosity); iii) 
various flow regimes through numerical simulations are mimed; it results that the 
fluidization is a continuous transition process. Moreover, many type of fluidized 
phases (homogeneous phase, channeling phase, bubbling phase, mixture phase) 
are presented; the each phase correspond with a specific flow regime, while the 
fluidization is associated with convective instabilities. 

Temperature (Nu=3.2495) 

Speed 

e) 0 X 
Y 

z 
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