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FIXED POINT RESULTS IN EXTENDED RECTANGULAR b-METRIC
SPACES WITH AN APPLICATION

Mohammad Asim', Mohammad Imdad?, Stojan Radenovié?

In this paper, we enlarge the class of rectangular b-metric spaces by considering
the class of extended rectangular b-metric spaces and utilize the same to prove our fized
point results. Our main result extends and improves many results of the existing litera-
ture. We adopt an example to highlight the utility of our main result. Finally, we apply
our result to examine the existence and uniqueness of solution for a system of Fredholm
integral equation.
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1. Introduction

In 1922, Banach proved his classical contraction principle. The investigation of exis-
tence and uniqueness of fixed point for a self-mapping and common fixed points for two or
more mappings has become a very active and natural subject of interest. Many researchers
proved Banach contraction principle in multitude of generalized metric spaces. In 1993, Ste-
fan Czerwik [5] introduced the concept of b-metric space by replacing triangular inequality
with a relatively more general condition which is also utilize to improve generalizing Ba-
nach contraction mapping theorem. In recent years, Imdad [8], Mustafa [10], Suzuki [14],
Wong (15, Piri-Afshari [11] and others proved some fixed point results in b-metric spaces
(see |1471/13]). Very recently, Kamran et al. [9] introduced a new type of generalized b-metric
space and termed it as extended b-metric space. Thereafter, Samreen et al. [12] also proved
some fixed point results in extended b-metric space via contraction condition involved a new
class of comparison functions.

In 2000, Branciari |2] generalized the idea of metric space by replacing the triangular
inequality with more general inequality, namely, quadrilateral inequality (namely, involving
four points instead of three) for introducing the notion of rectangular metric spaces and
generalized Banach contraction theorem. After eight years, George et al. [6] introduced
rectangular b-metric spaces in order to generalized rectangular metric spaces. Finally, au-
thors proved the analogue of Banach contraction mapping principle in the framework of
rectangular b-metric space.

Inspired by the concepts of extended b-metric space and rectangular b-metric space,
we introduce extended rectangular b-metric space and utilize the same to prove fixed point
result. We, also furnish an example to establish the genuineness of our newly proved result.
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2. Preliminaries
In what follows, we collect relevant definitions needed in our subsequent discussions.

Definition 2.1. [5] Let X be a non-empty set. A mapping o : X x X — R, is said to be
a b-metric with coefficient s > 1, if o satisfies the following (for all z,y,z € X):

(1) o(x,y) =0 if and only if z =y,

(2) o(z,y) = oly,x),

(3) o(z,y) < slo(x,2) + o(z,9)]-
Then the pair (X, o) is said to be a b-metric space.

Definition 2.2. [9] Let X be a non-empty set and £ : X x X — [1,00). A mapping
oe : X x X — Ry is said to be an extended b-metric space, if o¢ satisfies the following (for
all z,y,z € X):

(1) oe(z,y) =0if and only if z =y,

(2) o¢(z,y) = oc(y, z),

(3) oc(x,y) < &(x,9)[o¢(x, 2) + o¢(2,y)]-
Then the pair (X, o¢) is said to be an extended b-metric space.

Definition 2.3. [2] Let X be a non-empty set. A mapping r : X x X — R7 is said to
be a rectangular metric on X if, r satisfies the following (for all z,y € X and all distinct
u,v € X\ {z,y},):

(1) r(z,y) =0if and only if x = y,

(2) r(z,y) =r(y,z),

3) r(z,y) <r(z,u)+r(u,v) +r(v,y).
Then the pair (X, r) is said to be a rectangular metric space.

Definition 2.4. [6] Let X be a non-empty set with the coefficient s > 1. A mapping
rp 1 X x X — RT is said to be a rectangular b-metric on X if, r, satisfies the following (for
all z,y € X and all distinet u,v € X \ {z,y}):

(1) rp(z,y) =0 if and only if z =y,

(2) mo(2,y) = ro(y, @),

(3) (@, y) < slro(w,u) +ro(u, v) + 150, 9)].
Then the pair (X, 1) is said to be a rectangular b-metric space.

3. Results

In this section, we introduce yet another type of generalized metric space, which we
refer as extended rectangular b-metric space. We also establish a fixed point theorem besides
deducing natural corollaries.

Definition 3.1. Let X be a non-empty set and { : X xX — [1,00). A mappingre : X xX —
R* is said to be an extended rectangular b-metric on X if, r¢ satisfies the following (for all
z,y € X and all distinct u,v € X \ {x,y}):

(Ire) re(x,y) =0, if and only if z =y,

(2re) re(@,y) = re(y, @),

(3r¢) re(@,y) < €&z, y) [ro(w,u) + re(u,v) + re(v,y)].

Then the pair (X, r¢) is said to be an extended rectangular b-metric space.

The following implications amongst several generalized metric spaces defined earlier
are natural. However, the inverse implications need not be true.
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m.s. b-m.s. extended b-m.s.

| | |

rectangular m.s. —— rectangular b-m.s. —— extended rectangular b-m.s.

The following example demonstrates that the results proved in this paper are gen-
uinely new.

Example 3.1. Consider X = {1,2,3,4,5}. Define £ : X x X — [1,00) by:
&r,y)=z+y+1, forallz,ye X.
Define re : X x X — R by:

re(z,z) = 0, forallz € X;

re(z,y) = re(y,x), forallz,ye X;

re(1,3) = re(2,5) =70, re(1,4) = 1000 and r¢(1,5) = 1200;

re(1,2) = 71e(2,3) =1¢(3,4) = 60, 1¢(3,5) = re(4,5) = re(2,4) = 400.

Now, we show that r¢ is an extended rectangular b-metric space. Here, (1r¢) and (2r¢) are
trivial. Now, for (3re), we have

re(1,5) = 1200, £(1,5)[re(1,3) 4+ 7¢(3,2) 4+ re(2,5)] = 7(70 + 60 + 70) = 1400
and
re(1,4) = 1000, &£(1,4)[re(1,2) 4+ r¢(2,3) 4+ re(3,4)] = 6(60 + 60 + 60) = 1080.

Similarly, other cases can also be argued. Thus, for allx,y € X with distinct u,v € X\{z,y},
we get

7"5(%, y) S f(fL”, y) [Tb(xv u) =+ Tg(u, U) + TE(”; y)} .
Hence, (X,r¢) is extended rectangular b-metric space with &.

In an extended rectangular b-metric space, the concepts of basic topological notions,
such as: Cauchy sequence, convergent sequence and complete extended rectangular b-metric
space can be easily adopted as under.

Definition 3.2. A sequence {z,} in (X,r¢) is said to be Cauchy if

nrlirgoo re(Tn, Tm) = 0.

Definition 3.3. A sequence {z,} in (X,r¢) is said to be convergent to z € X if

HILH;O re(Tn,z) = 0.

Definition 3.4. An extended rectangular b-metric space (X, 7¢) is said to be a complete if
every Cauchy in X is convergent to some point in X.

The following lemma is needed in the proof of our main result.

Lemma 3.1. Let (X,r¢) be an extended rectangular b-metric space and {x,} a Cauchy
sequence in X such that x,, # T, whenever m # n. Then {z,} converges at most one point.

Proof. Let a sequence {z,} in X has two limit point =,y € X, that is, lim r¢(x,,z) =0
n—r oo
and lim r¢(z,,y) = 0. Since, {z,} is Cauchy then for z,, # x,, whenever m # n, so from
n—0o0
(3re), we have

Tﬁ(xvy) < g(xvy)[rﬁ(xvxn) + r&(‘rmxm) + Tﬁ(xmvy)}
— 0asn,m— oo.
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which implies that
re(z,y) =0,
Therefore, {x, } converges at unique limit point. |
In 1974, Cirié considered the concept of orbit and proved some fixed point results
(see [3]).

Definition 3.5. [3] Let (X,7¢) be an extended rectangular b-metric space. For a self-
mapping f: X — X, we define (for x € X and n € N)
O(x;n) = {x, fz, ..., ffz} and O(z;00) = {z, fz, ..., [, ..}.
The set O(x; 00) or simply O(z) is called an orbit of f.
Our main theorem is an analogue of Banach contraction principle in the setting of

extended rectangular b-metric space. All through this section, for a mapping f : X — X
and z € X, we consider an orbit O(z) = {z, fz, ..., [z, ..}.

Definition 3.6. Let (X,r¢) be an extended rectangular b-metric space. A self-mapping
f : X — X is called orbitally continuous if hm f™x = x for some x € X implies

khm f(f™x) = fx. Besides, (X, r¢) is called f- orbltally complete if every Cauchy sequence
—00

which is obtained in {z, fz,..., f*z,..} for some x € X converges to X.
Now, we state and prove our main result as follows:

Theorem 3.1. Let (X,r¢) be an extended rectangular b-metric space and f : X — X.
Suppose that the following conditions hold:

(i) for all x,y € X, we have
re(fa, fy) < Are(a,y)
where A € [0,1),
.o . l
(i) n,rlérgoof(xn,xm) <5,
(i11) (X,re) is f-orbitally complete,
(iv) f is orbitally continuous.

Then f has a unique fized point.
Proof. With initial point 2o € X, construct an iterative sequence {x,} by:
T = fxg, T2 = 220, T3 = [320,...; Tn = fT0, ...
Now, we assert that nll_}IIolo 7¢(@n, Tnt1) = 0. On setting © = x,, and y = x4 in condition

(i), we get

Tf(fnlfo,fnﬂxo) Ti(fl'mfﬁﬁnﬂ)
Are (T, Tng1)

A're(xo, 1),

IAIA

which on making n — oo, gives rise

lim ’I“g(fnxo, fn+1330) =0

n—oo
and lim rg(f"xo,f"“xo) =0.
n—oo

Now, we show that {z,} is a Cauchy sequence in (X,7¢). In doing so, we distinguish two
cases as under:
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Case 1. Firstly let p is odd, that is p = 2m + 1 for any m > 1. Now using (3r¢) for
any n € N, we have

Te(Tny Tntams1) < E@ns Tngoms1) [Te(@ns Tns1) + e (@Tnt1, Tng2) + e (Tntz, Tntomt1)]
< (@, Tngame) [N're (0, 21) + N e (20, 1) | + E(@0, Tngom1) X
T¢ (anr?v mn+2m+1)
= &(@n, Tpyromr1) (A" + )\"Jrl)rg(xo, 71) + &(Tn, Tnyoma1) X
7e(Tnt2, Trng2mt1)
<&@y Tngamr) A"+ X e (0, 21) 4 (T, Tnsamir) X
E(@nt2, Tngomt 1) NP2 AN e (20, 21) + o+
E(Tny Trgoma1) e E(Tngom—2, Tnyomir)(ATT2MT2 4 \n2m=1y
re(20,21) + E(Tn, Tgami1)-E(@npam—2, Tnyomt ) N2 re (20, 1)
m—1 i
= A1+ Nre(wo, 71) Z A% H §(@Tn+2js Tntom+1) +
=0 j=0
m—1
Anram H g(xn+2jazn+2m+1)7’£(5170,131),
3=0
yielding thereby
m—1 i 1 ;
Z A H §(Tni2j; Tntam+1) < Z A% H §(22), Tntram+1)-
i=0 J=0 i=0 j=0

As, in view of condition (ii), we have lim &(z,,zm)A < 1, therefore utilizing the ratio test,
n,Mm—00

we conclude that the series Zfio pRL H;ZO &(z25, Tntom+1) s convergent for each m € N.
Assume that

n 7

S =3 N1y wniamir); Sn =D N[ @nromi):
=0 =0

i=0  j=0
Therefore, from the above inequality, we have

Te(Zn, Tntomi1) < A1+ N)re(zo, 1) [Sm—1 — Sn—1] +

m—1

)\”+2m H E(x7l+2j7xn+2m+1)7"§(l'o,IL’l). (3]_)
=0

Letting n — oo in equation (3.1)), we conclude that r¢(z,, ntom+1) — 0.
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Case 2. Secondly, assume that p is even, that is p = 2m for any m > 1. Then

TE(xnv Tpniom) < &(Tn, Tnjam) [Té(xm Tpi1) + T&(anrlv Tpi2) + Té(xn+2v xn+2m)]
E(Tny Trtom) [)\"rg(xo,xl) + )\"Hrg(xo,xl)] + &(Tn, Tryom) X
Te(Tny2, Tng2m)

£z, xn+2m)()‘n + )‘n+1)r€($07 9Ul) + €<xn> $n+2m)r€($n+27 Trt2m)
§(Tn, Tngom) (A" + )\n+1)7,§(x0’ 1) + &(Tn; Tngam) X

n+2 n+3
n
(a2, Tnarom)(A + A )T&(l‘o,zl)—k....—k
)\n+2m—2 + )\n+2m—1>

IN

IN

r€($07 m1) +

(
(

§($m xn+2m)~-~-£(xn+2m727 xn+2m)(
( )\n+2m

f mnamn+2m+1)~~£(:L'n+2m,72axn+27n+1) T§($O7x1)

m—1 %

= )\n(l + )\)r5<x07$1) Z >\2i H g(xn+2j7xn+2m) +
=0 7=0
m—1

A\nt2m—2 H g(xn+2j, aner)Tg (2o, 2),
j=0

so that
7‘5(.73", xn+2m) < )\n(l + /\)7‘6(330, xl)[Sm—l - Sn—l} +

m—1

)\n+2m—2 H g(.%’nJer,l‘nJrgm)Tg(l‘o,l’g). (32)
7=0

Taking limit n — oo, in (3.2)), we get r¢(zn, Tnt2am) — 0. Therefore, in both the cases, we
have

nh_)rr;<> Te(Zn, Tntp) =0,

which shows that the sequence {z,} is Cauchy in X. Since X is f-orbitally complete then
there exists x € X such that x,, — z. Since, f is orbitally continuous so, we have

Tg(fx, r) < &(fr,x) [Tb(fx» Tn) + TE(xn» Tpy1) + r£($n+1v x)}
< &(fz,z) [Tb(fxy Tn) + 1e(frn—1, frn) + re(Tni1, x)}
§(fx, m) [Tb(fx, T) + )‘Tﬁ(xnfh xn) + T§($n+1, m)]

which are making as n — oo gives rise

re(fx,z) =0,
so that, 7¢(fx,x) = 0. Therefore, fo = x. Hence, x is a fixed point of f. Observe that, in
view of Lemma a sequence {z,} converges uniquely at point z € X. O

Now, we present an example which illustrates the utility of our newly proved result:

Example 3.2. Let X = [0,1]. Define, re(x,y) = |z — y|? and &(z,y) = 2 +y + 3, for all
z,y € X. Then, (X,r¢) is a complete extended rectangular b-metric space. Define a mapping
[ X=X by fze=73.

Observe that, all the conditions of Theorem are satisfied and = = 0 is a unique
fixed point of the involved map f.

The following corollary deduce form Theorem [3.1] remains a new result (due to im-
provement in orbital consideration).
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Corollary 3.1. Let (X,r¢) be an extended rectangular b-metric space and f : X — X.
Suppose that the following conditions hold:

(1) for all x,y € X, we have re(fx, fy) < Are(z,y) where X € [0,1),
(i) nﬂl’ilrgoof(xn,xm) < i,
(i11) (X,re) is complete,

(iv) f is continuous.

Then [ has a unique fized point.

By setting £(z,y) = s > 1 (for all 2,y € X) in Theorem we deduce a sharpened
version of Theorem 2.1 due to George et al. [6]

Corollary 3.2. Let (X,rp) be a rectangular b-metric space with s > 1 and f : X — X.
Suppose that the following conditions hold:

(i) for all x,y € X, we have ry(fz, fy) < Arp(x,y), where X € [0, %),
(i) (X,r) is f-orbitally complete,
(iii) f is orbitally continuous.

Then f has a unique fized point.

On setting &(z,y) = 1 for all 2,y € X in Theorem (3.1} we get the following corollary
due to Das and Lakshmi [4], in 2007.

Corollary 3.3. Let (X,r) be a rectangular metric spacef : X — X. Suppose that the
following conditions hold:

(i) for all x,y € X, we have r(fx, fy) < Mr(z,y), where XA € [0,1),
(ii) (X,r) is f-orbitally complete,
(iii) f is orbitally continuous.

Then f has a unique fixed point.

4. Application

In this section, we endeavor to apply Theorem to prove the existence and unique-
ness of solution of the following integral equation of Fredholm type:

b
2(t) = / G(t, 5,2(s))ds + h(t) for t,5 € [a, ] (4.1)

where, G, h € C([a,b],R) (say X = C([a,b],R)). Define r¢ : X x X — RT by

re(w,y) = Sup |z(t) = y(t)]* and &(z,y) = 2 +y + 3, for all 2,y € X,

where € : X x X — [1,00). Then, (X, 7¢) is a complete extended rectangular b-metric space.
Now, we are equipped to state and prove our result as follows:

Theorem 4.1. Assume that (for all z,y € C([a,b],R))

Gt 5,2(s)) — Gt 5,y(s))] < [2(s) — y(s)], (4.2)

1
3(b—a)
for all t,s € [a,b]. Then the integral equation (4.1) has a unique solution.

Proof. Define f : X — X by fz(t) = f: G(t,s,x(s))ds + h(t) for all t,s € [a,b]. It is clear
that, z is a fixed point of the operator f if and only if it is a solution of the integral equation



50 Mohammad Asim, Mohammad Imdad, Stojan Radenovié

(4.1). Now, for all z,y € X, we have

b
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Thus, the condition (4.2) is satisfied with \ = ﬁ € [0,1). Hence, the operator f has a
unique fixed point, that is, the Fredholm integral Equation (4.1)) has a unique solution. O

5. Conclusion

As the rectangular b-metric space is relatively new addition to the existing literature,
therefore, in this note, we endeavor to further enrich this notion by introducing the idea of
extended rectangular b-metric spaces wherein we generalized the constant s > 1 by a function
&(x,y) in quadrilateral inequality. Our main result (i.e., Theorem is an analogue of
Banach contraction principle wherein we have also exploited the idea of orbit. An example
is also adopted to highlight the realized improvements in our newly proved result. Finally,
we apply Theorem to examine the existence and uniqueness of solution for a system of
Fredholm integral equation.
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