
U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 3, 2023                                                    ISSN 2286-3540 

A SMART ADAPTABLE CHARGING METHOD FOR 

ELECTRIC VEHICLES, CONSIDERING URGENT 

CHARGING DEMAND 

Husam Mahdi AL-ALWASH1, Eugen BORCOCI2 

 Electric vehicles (EVs) technologies and usage are increasing, contributing 

to planet pollution reduction. However, smart charging methods are needed, to 

avoid the surge of peak loads and increase the charging cost. This study proposes a 

smart charging method capable to transfer the EVs charging demand from rush 

hours to off-peak hours. An urgent charging scheme has been developed, using 

Particle Swarm Optimisation (PSO) algorithm. The results show that the proposed 

method supports the energy demands, which overcomes the increasing power 

demands of EVs. 
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1. Introduction 

Electric vehicles (EVs) are considered economical and friendly to the 

environment [1]. They provide an alternative option, for achieving cleaner 

transportation systems [2]. The EVs allow almost zero carbon emissions [3] and 

can improve the transportation system's efficiency [4]. However, implementing 

EVs may face some challenges. For example, the EVs batteries could face a 

significant degradation in their charging. Further, the high cost of batteries is still 

a barrier towards EVs usage on a large scale [5][6]. The limitation of charging 

infrastructure is also considered a critical challenge [7][8]. Consequently, several 

research efforts have been carried out so far, focused on charging scheduling 

optimisation [9]. However, the existing research works have been mainly oriented 

to the supply side, aiming to shape the load from the peak-to-valley hours. On the 

user side, a specific charging demand of each EV has not been considered. In 

practice, the charging demands of EV users are different, and in some cases 

urgent charging is needed. To address this issue, a smart charging strategy for 

EVs with a fast-charging mode is required [10]. 

Several EV charging strategies have been proposed, based on 

decentralised or centralised approaches. For example, a decentralised valley-
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filling charging approach is developed in [11][12], aiming to redistribute load 

away from the grid system peak toward evening. Another decentralised method 

called “day-ahead pricing” is proposed in [13][14], trying to reduce the power 

load over the grid during peak hours, based on charging price.  

In the centralised charging strategies, the EVs users have to share their 

charging information with an aggregator. Then, EVs could be scheduled for 

charging in a centralised way; this approach provides more flexible management 

and control in comparison to the decentralised method [15]. The works in [16][17] 

aimed to reduce energy consumption based also on a centralised method. The 

works in [18][19] studied how to integrate renewable energies for EVs charging in 

a centralised manner. The peak load reduction has been discussed in [20] and 

focused on scheduling the EVs users for charging in a centralised way; this could 

guarantee the use of a power supply through the off-peak hours.  

Today, there is not yet a generally adopted method for efficient optimum 

charging scheduling. In addition, the urgent charging situation of some EVs has 

not been yet considered. Another issue is the computational complexity which can 

be significantly increased, especially when a high number of EVs is involved. 

This paper focused on finding an optimum charging method to reduce the total 

load, taking into account the urgent situation.  

The main contributions of this study are:  

1. A smart adaptable charging method was proposed, considering the urgent 

charging, and power load demand. The method can transfer the EV charging 

demand from rush hours to off-peak hours. 

2. The Particle Swarm Optimisation (PSO) algorithm is investigated, to find the 

best charging urgency indicator. PSO algorithms have been used to find the 

optimum solution for similar problems [21]. 

3. Fast-charging and slow-charging modes are studied, to model the uncertainty 

of EVs charging needs. Monte Carlo Simulation with 1000000 random 

realisations is considered to simulate different EVs events and evaluate the 

system performance, under home charging and public charging schemes. 

The results show the effectiveness of our proposed method with different 

charging modes selection for EVs. The method is able to support the energy 

demands by transferring the EVs charging load from rush hours to off-peak hours, 

which has the potential to overcome the increasing power demands. This paper is 

organised as follows. Section 2 presents the proposed system model. Section 3 

presents the proposed adapted EVs charging method. Section 4 outlines the 

optimisation model. Section 5 adapts a PSO algorithm for our needs. Section 6 

shortly describes the simulation model. Section 7 provides the results and 

discussion. Finally, this study is concluded in Section 8.  
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2. System model  

This section provides the system model. The main goal is to find an 

efficient and smart EVs charging method that reduces the peak load of the power 

grid. Each EV driver has a specific charging demand. In the proposed charging 

method, the EVs drivers should share their charging request information with an 

aggregator, which will analyse it. This information represents the state of charge 

(SOC), arriving time, and estimated leaving time. The parameter SOC is essential 

for the stability and safety of the EVs batteries. Charging the EV battery before 

going down from 10% of its capacity and not more than 95% can increase the 

battery lifetime and achieve the safety requirements. The intelligent element is the 

system controller. Based on the collected information from the EVs, it decides 

upon the charging schedule to be applied. The obtained results for the EV driver 

are charging time, the energy required for all EVs batteries to be fully charged, 

and charging cost. Fig. 1 illustrates the architecture of the proposed charging 

scheduling system for EVs, considering also urgent charging demand. 

 

Fig. 1. Architecture of the proposed EVs charging system. 

In this study, the charging urgency indicator could be also implemented, 

which can recognise the urgency of each EV demand. Therefore, a fast-charging 

mode for the EVs with urgent charging demand is applied, and a slow-charging 

mode is applied to the EVs that are scheduled as non-urgent charging demand. In 

a real implementation, the charging system could be supported, for instance, by a 

5G dedicated slice where the slice tenant will include the aggregator and decision 

system (controller) and terminal users are the vehicles. 

3. EVs charging scheme 

The charging behaviour of the EV driver is considered in this study, which 

can be divided into two schemes: home charging and public charging. Typically, 

in the home charging scheme, the charging service for the EVs drivers would start 
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from the evening instant of time when people are arriving at home until the next 

day morning instant when they leave to work. In the home charging scheme, the 

notation for arriving time is  and for leaving time is . As seen in Fig. 2, we 

adopted the view from [22], where the data are generated randomly following a 

normal distribution in the Monte Carlo Simulation method. Then, the probability 

distribution function (PDF) for both arriving time and leaving time is defined in 

[22] as: 

𝑓(𝑡1𝑎  ) =
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(1) 

where parameters ,  ,  and  [9]. In 

the public charging scheme, the charging service starts in the morning when the 

EVs drivers are arriving at work until the evening when they are leaving from the 

work. The arriving time  and leaving time  have also a normal distribution 

[22]. The expressions of the PDF are similar to those of formulas (1) but have 

other values for the mean value and standard deviation, i.e.: , 

, , and  [9]. 

3.1. Time slot and urgent charging indicator for EVs 

Typically, during the day, the charging time scheduled for EVs divided 

into time slots. This allows a discrete treatment of the charging process control. 

 
Fig. 2. Monte Carlo Simulation results of EVs behaviour considering a home charging scheme. 
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This study considers that a whole day duration (24h) can be divided into j=96 

time slots; each time slot is conveniently equal to 15 min. In this paper, we have 

considered the arriving time ( ) and the leaving time ( ) for each EV driver can 

be written as normalised values [22]: 

𝐽𝑖
𝑎 =  

𝑡𝑖
𝑎

∆𝑇
 , and  𝐽𝑖

𝑙 =  
𝑡𝑖
𝑙

∆𝑇
 , 
 

(2) 

where the i is the index of EV so i = 1, 2…, N. The N denotes the number 

of EVs. The  and  represents the number of time slot when an EV is connected 

and disconnected from the power grid, respectively. The length of a time slot is 

given as . The time interval when an EV is connected to the power grid is given 

by subtracting the arriving time slot from the leaving time slot as [22]: 

𝐽𝑖
𝑟  = 𝐽𝑖

𝑙 − 𝐽𝑖
𝑎 ,  

 
(3) 

where  denotes the remaining number of time slots, which allows i EV 

able to keep connected to the power grid. Besides, in these remaining time slots, 

the charging scheme and charging scheduling can be applied. To this end, the 

urgent charging indicator is considered, which reveals the urgency of the 

demand for the EVs charging and can be written as [23]: 

𝐼𝑖 = (𝐽𝑖
𝑟 × ∆𝑇) × 𝒫𝑠𝑙𝑜𝑤 × 𝜂 −  𝑆𝑖

𝑚𝑖𝑛 − 𝑆𝑖
𝑚𝑎𝑥 × 𝐶𝑏𝑎𝑡 , 

 
(4) 

where the  is the power of the slow-charging mode for the EVs, and 

the  is the charging efficiency. The parameters  and  denote the 

minimum and the maximum value of SOC for i EV when its charging is stopped. 

The battery capacity is represented by the parameter . In this study, two 

charging modes are applied slow-charging and fast-charging. Selecting between 

these charging modes can be performed by the charging indicator, so that: 

𝒫𝑖 =  
𝒫𝑓𝑎𝑠𝑡 , 𝐼𝑖 < 0

 𝒫𝑠𝑙𝑜𝑤 , 𝐼𝑖 ≥ 0
 

 
(5) 

where the parameter  represents the power of the fast-charging 

mode. As stated earlier, when the charging indicator , this implies that the 

charging is urgent for the i EV and the fast-charging mode will be selected. On the 

other hand, when the charging indicator is , it implies that the charging 

demand for the i EV is non-urgent, and the slow-charging mode will be selected. 

4. Optimisation model   

The main objective of this paper is to reduce the total load across the 

power grid considering different numbers of EVs. The total load of the power grid 

consists of the basic load and EV charging load. The EV charging load includes 
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the fast-charging demand and the slow-charging demand of the EVs. To this end, 

the total load at the j time slot of the proposed charging method is written as: 

𝒫𝑗
𝑇−𝐶 = 𝒫𝑗

basic +  𝑥𝑖 ,𝑗𝒫𝑖

𝑁

𝑖=1

 

 

(6) 

where  represents the basic load of the power grid, and  is 

the total charging load of all the EVs including fast-charging and slow-charging 

demands. If i EV has an urgent charging demand,  is equal to . On the 

other hand, if i EV has non-urgent charging demand,  is equal to . To this 

end, PSO algorithm is proposed to find the optimum number of EVs that can be 

selected for charging to reduce the load. Therefore, the objective function of 

reducing the load of the power grid from rush hours to off-peak hours can be 

written as: 

𝑚𝑖𝑛   𝒫𝑚𝑎𝑥
𝑇−𝐶 − 𝒫𝑚𝑖𝑛

𝑇−𝐶 , 
 

(7) 

where  represent the maximum load demand and  represent the 

minimum load demand. 

5.  Proposed PSO algorithm 

In the PSO algorithm, the fitness function denotes the objective function of 

the power load problem that needs to be addressed in this study. Swarm based 

method provided in [23], is exploited in this paper to formalise the fitness 

function. This proposed, the EV with an urgent demand needs to be charged with 

a fast-charging mode. This can be prioritised in the aggregator by setting a priority 

weight for that EV. To this end, the fitness function can be mathematically 

formulated as: 

𝑚𝑎𝑥𝑖  𝑤𝑏   𝑓𝑏   𝑖 =  𝑤1 𝐶
𝑏𝑎𝑡 + 𝑤2 𝑆𝑖

𝑚𝑖𝑛

𝐵

𝑏=1

+ 𝑤3 𝑆𝑖
𝑚𝑎𝑥  

 

(8) 

where denotes the performance criteria resulting by i particle in the 

search space, and represents the weighting parameter that can be normalised to 

satisfy the power constraint, so that: 

 𝑤𝑏  = 1

𝐵

𝑏=1

 

 

(9) 

The search space in the proposed PSO algorithm involves all the feasible 

solutions, which can be chosen between  and , so that: 

𝐷 𝑖 = (𝑆𝑚𝑎𝑥 , 𝑆𝑚𝑖𝑛) 
 (10) 

The swarm size represents the number of particles inside the searching 

space. A large swarm size may reduce the number of iterations required to get the 
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optimal value. However, the EVs number is chosen to be uniformly distributed 

within the swarm. A PSO is implemented by the controller, which has the ability 

to select the EV accordingly. To this end, in our proposal, each EV in the swarm 

has a position , a velocity , and the best position in the search space , 

which represents the weight achieved by the objective function for the particle i. 

The largest value amongst all the personal best  is known as the global best 

, which denotes the EV obtained by the current iteration so that: 

𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡 =  

𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡       𝑖𝑓 𝑓(𝑥𝑖

𝑡+1) < 𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡

𝑥𝑖
𝑡+1         𝑖𝑓 𝑓(𝑥𝑖

𝑡+1) ≥ 𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡  

 
(11) 

𝐺𝑏𝑒𝑠𝑡 = 𝑚𝑎𝑥{𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡 } 

 (12) 

After updating the  and  for particle i at iteration t, the position 

and the velocity of the particle will be updated accordingly as: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 

 (13) 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + 𝑐1𝑟1
𝑡[𝑝𝑏𝑒𝑠𝑡,𝑖

𝑡 − 𝑥𝑖
𝑡] + 𝑐2𝑟2

𝑡[𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡] 

 (14) 

In this study, when the i EV is indicated as urgent, we select  to be 1 in 

each arriving time slot. Besides, the EV with urgent charging demand can be 

charged from arriving time to leaving time. However, remaining charging an EV 

after its battery gets fully charged, may cause overcharging. In order to avoid 

overcharging in fast-charging mode, a power constraint has been set to limit the 

charging. This constraint should be lower than . Furthermore, we select  

to be 0 when the i EV is disconnected from the power grid. The time slot when an 

EV stops charging is determined based on leaving time, so that the constraint for 

the EVs with urgent charging can be written as: 

𝑥𝑖 ,𝑗 =  
1,   𝑖𝑓 𝑗 = 𝑗𝑖

𝑎 , . . . 𝑗𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

,

0,                        𝑜𝑡ℎ𝑒𝑟𝑠,
 

 
(15) 

where parameter  represents the time slot when i EV stops charging, 

which is given as: 

𝑗𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

= 𝑚𝑖𝑛  𝑗𝑖
𝑙 ,  

(𝑆𝑖
𝑚𝑎𝑥 − 𝑆𝑖

𝑐𝑜𝑛)𝐶

𝒫𝑓𝑎𝑠𝑡𝜂∆𝑇
 + 𝑗𝑖

𝑎 , 

 
(16) 

where  represents the SOC of an EV when is connected to the power 

grid, and   represents the charging time of an EV that should meet the 

maximum value of SOC: 

𝑆𝑖
𝑚𝑎𝑥 ≥ 𝑆𝑖

𝑙 ≥ 𝑆𝑖
𝑚𝑖𝑛 , 

 
(17) 
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Where the  represents the SOC of i EV when disconnected from the 

power grid. To ensure that a new charging peak load of the power grid in the 

proposed method do not appear, so a constraint for the power grid is given: 

𝒫𝑚𝑎𝑥
𝑇−𝐶 ≤ 𝒫𝑚𝑎𝑥

𝑇−𝑢𝑐(𝑆𝑁
𝑚𝑎𝑥 )

, 
 

(18) 

where  represents the maximum value of the total load in the 

normal charging that meets the constraint of maximum SOC for all EVs ( ) 

over 96-time slots.  

6. Simulation model 

This section provides the simulation model and the evaluation of the 

proposed charging method. In this study, we used our personal laptop, equipped 

with MATLAB 2019, for the simulations and data analysis. Our computer system 

is an Intel Core i7 with 8GB of RAM, which is capable of handling the 

computational demands of the simulations. As for the cost of implementing the 

proposed solution, we only considered the cost of the necessary software licenses 

for the simulations. We generated the input data for our research using Monte 

Carlo simulation, which allowed us to simulate real EV charging behavior by 

generating a large number of samples with different probability distributions. The 

simulations were performed with a different number of EVs considered (e.g., 100 

and 500) and in both home charging and public charging schemes. Based on the 

electricity usage presented in [24], Fig. 3 shows the average basic load of the 

regional power grid that is generated for one-day cycle.  

 
Fig. 3. The basic load of regional power grid for one day. 

 

The basic load is used for benchmark comparison and the results show that 

the peak power happened at around 06:00 am, 10:00 am, and 18:00-20:00 pm. 

The highest load achieved is around 700 KW and the lowers recorded is around 

450 KW. In this study, we consider the  value generated in uniform 
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distribution, which is between (0.1-0.3),  between (0.4 - 0.6) and  

between (0.8-1) as given in [24]. 

7. Results and discussion 

In the home charging scheme, the charging service for EVs is available 

between 18:00 pm and 08:00 am. As illustrated earlier, we considered the one-day 

cycle divided by two half-days. Specifically, 12 hours is a period chosen to be the 

scheduling time of EV charging in the home charging scheme. Fig. 4 shows a plot 

of daily load as a function of time in one day comparing the proposed smart 

adaptable charging method with two methods of normal charging in the home 

charging scheme. In the normal charging process, the EVs start to charge at the 

arriving time until to reach the maximum SOC or until the leaving time. Noting 

that for each EV with urgent charging demand, the charging time for some EVs 

could be too short. As such, the normal (or uncoordinated) charging is not able to 

meet the requirement of minimum SOC for i EV in the urgent charging situation. 

Therefore, urgent charging is performed in the proposed charging method. In the 

proposed method, when the EVs are leaving the power grid, their SOC should be 

between the minimum and maximum SOC. The results show that the power load 

of charging demand in the proposed method is lower than that in the normal 

charging methods especially when the number of EVs is increased. 

 
Fig. 4.  Plots of daily load as a function of time comparing the proposed charging method and 

the normal charging in home-charging for 100 EVs and 500 EVs. 

In-public charging scheme, the charging service for the EVs is available 

between 08:30 am and 05.30 pm. Fig. 5 shows plots of daily load as a function of 

time comparing the proposed smart adaptable charging method with two normal 

charging methods in the public charging scheme. When the number of EVs is 

increased the peak load happens at 06:00 am, 10:00 am, and 20:00 pm. The basic 

load in public charging can only be filled by a few EVs. This is because most of 

the EVs are charged during off-peak hours. However, urgent charging is 
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considered in the proposed method. The results show that the power of EVs 

demand in the proposed method is significantly lower than that method of normal 

charging especially when the number of EVs is increased. 

Fig. 6 shows results comparing the proposed charging method and two 

methods of normal charging, respectively, over different charging stations. In 

these figures, we have selected a very large number of EVs and a small number of 

charging stations to investigate the variation in the probability of selecting a 

charging station between the two charging schemes. Clearly, unlike normal 

charging, the results show that the proposed charging method provides an equal 

probability of charging overall the charging stations. Specifically, an almost equal 

number of EVs are using the charging station in the proposed method. This is 

clearly illustrating the fair comparison between different methods. 

 
Fig. 6. EVs at charging stations with normal charging and using a proposed method. 

Fig. 7 shows the results of comparing the load difference between the 

normal charging methods and the proposed charging method. The results 

demonstrate the effectiveness of the proposed method in reducing the total load in 

 
Fig. 5. Plots of daily load as a function of time comparing the proposed adapted charging 

method and the normal charging in public-charging for 100 EVs and 500 EVs. 
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comparison to the normal charging methods. The difference is significantly 

increased when the number of EVs is increased. 
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Fig. 7. Comparing load difference of normal charging method and proposed method. 

8. Conclusions  

A smart charging method for EVs has been proposed. The urgent charging 

demand of each EV, and the total load demand have been considered.  Besides, a 

PSO algorithm has been invested to find the best charging urgency indicator. This 

study evaluated the system performance by considering a different number of EVs 

and two charging schemes namely home and public charging. The results showed 

that the proposed charging method reduced the load efficiently by transferring the 

EVs power demand from rush hours to off-peak hours. 
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