U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 3, 2023 ISSN 2286-3540

A SMART ADAPTABLE CHARGING METHOD FOR
ELECTRIC VEHICLES, CONSIDERING URGENT
CHARGING DEMAND

Husam Mahdi AL-ALWASH?!, Eugen BORCOCI?

Electric vehicles (EVs) technologies and usage are increasing, contributing
to planet pollution reduction. However, smart charging methods are needed, to
avoid the surge of peak loads and increase the charging cost. This study proposes a
smart charging method capable to transfer the EVs charging demand from rush
hours to off-peak hours. An urgent charging scheme has been developed, using
Particle Swarm Optimisation (PSO) algorithm. The results show that the proposed
method supports the energy demands, which overcomes the increasing power
demands of EVs.
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1. Introduction

Electric vehicles (EVs) are considered economical and friendly to the
environment [1]. They provide an alternative option, for achieving cleaner
transportation systems [2]. The EVs allow almost zero carbon emissions [3] and
can improve the transportation system's efficiency [4]. However, implementing
EVs may face some challenges. For example, the EVs batteries could face a
significant degradation in their charging. Further, the high cost of batteries is still
a barrier towards EVs usage on a large scale [5][6]. The limitation of charging
infrastructure is also considered a critical challenge [7][8]. Consequently, several
research efforts have been carried out so far, focused on charging scheduling
optimisation [9]. However, the existing research works have been mainly oriented
to the supply side, aiming to shape the load from the peak-to-valley hours. On the
user side, a specific charging demand of each EV has not been considered. In
practice, the charging demands of EV users are different, and in some cases
urgent charging is needed. To address this issue, a smart charging strategy for
EVs with a fast-charging mode is required [10].

Several EV charging strategies have been proposed, based on
decentralised or centralised approaches. For example, a decentralised valley-
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filling charging approach is developed in [11][12], aiming to redistribute load

away from the grid system peak toward evening. Another decentralised method

called “day-ahead pricing” is proposed in [13][14], trying to reduce the power
load over the grid during peak hours, based on charging price.

In the centralised charging strategies, the EVs users have to share their
charging information with an aggregator. Then, EVs could be scheduled for
charging in a centralised way; this approach provides more flexible management
and control in comparison to the decentralised method [15]. The works in [16][17]
aimed to reduce energy consumption based also on a centralised method. The
works in [18][19] studied how to integrate renewable energies for EVs charging in
a centralised manner. The peak load reduction has been discussed in [20] and
focused on scheduling the EVs users for charging in a centralised way; this could
guarantee the use of a power supply through the off-peak hours.

Today, there is not yet a generally adopted method for efficient optimum
charging scheduling. In addition, the urgent charging situation of some EVs has
not been yet considered. Another issue is the computational complexity which can
be significantly increased, especially when a high number of EVs is involved.
This paper focused on finding an optimum charging method to reduce the total
load, taking into account the urgent situation.

The main contributions of this study are:

1. A smart adaptable charging method was proposed, considering the urgent
charging, and power load demand. The method can transfer the EV charging
demand from rush hours to off-peak hours.

2. The Particle Swarm Optimisation (PSO) algorithm is investigated, to find the
best charging urgency indicator. PSO algorithms have been used to find the
optimum solution for similar problems [21].

3. Fast-charging and slow-charging modes are studied, to model the uncertainty
of EVs charging needs. Monte Carlo Simulation with 1000000 random
realisations is considered to simulate different EVs events and evaluate the
system performance, under home charging and public charging schemes.

The results show the effectiveness of our proposed method with different
charging modes selection for EVs. The method is able to support the energy
demands by transferring the EVs charging load from rush hours to off-peak hours,
which has the potential to overcome the increasing power demands. This paper is
organised as follows. Section 2 presents the proposed system model. Section 3
presents the proposed adapted EVs charging method. Section 4 outlines the
optimisation model. Section 5 adapts a PSO algorithm for our needs. Section 6
shortly describes the simulation model. Section 7 provides the results and
discussion. Finally, this study is concluded in Section 8.
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2. System model

This section provides the system model. The main goal is to find an
efficient and smart EVs charging method that reduces the peak load of the power
grid. Each EV driver has a specific charging demand. In the proposed charging
method, the EVs drivers should share their charging request information with an
aggregator, which will analyse it. This information represents the state of charge
(SOC), arriving time, and estimated leaving time. The parameter SOC is essential
for the stability and safety of the EVs batteries. Charging the EV battery before
going down from 10% of its capacity and not more than 95% can increase the
battery lifetime and achieve the safety requirements. The intelligent element is the
system controller. Based on the collected information from the EVs, it decides
upon the charging schedule to be applied. The obtained results for the EV driver
are charging time, the energy required for all EVs batteries to be fully charged,
and charging cost. Fig. 1 illustrates the architecture of the proposed charging
scheduling system for EVSs, considering also urgent charging demand.

E‘s

Controller

Aggmgamr ’ .

ﬂﬂﬂﬂﬂ

Fig. 1. Architecture of the proposed EVs charging system.

In this study, the charging urgency indicator could be also implemented,
which can recognise the urgency of each EV demand. Therefore, a fast-charging
mode for the EVs with urgent charging demand is applied, and a slow-charging
mode is applied to the EVs that are scheduled as non-urgent charging demand. In
a real implementation, the charging system could be supported, for instance, by a
5G dedicated slice where the slice tenant will include the aggregator and decision
system (controller) and terminal users are the vehicles.

3. EVs charging scheme

The charging behaviour of the EV driver is considered in this study, which
can be divided into two schemes: home charging and public charging. Typically,
in the home charging scheme, the charging service for the EVs drivers would start
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from the evening instant of time when people are arriving at home until the next
day morning instant when they leave to work. In the home charging scheme, the

notation for arriving time is t1a and for leaving time is t1: . As seen in Fig. 2, we
adopted the view from [22], where the data are generated randomly following a
normal distribution in the Monte Carlo Simulation method. Then, the probability
distribution function (PDF) for both arriving time and leaving time is defined in
[22] as:
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where parameters Hita = 18 f1r, =8, o1, = 3.3 and 71t — 3.24 19]. In
the public charging scheme, the charging service starts in the morning when the
EVs drivers are arriving at work until the evening when they are leaving from the
work. The arriving time tza and leaving time tz: have also a normal distribution
[22]. The expressions of the PDF are similar to those of formulas (1) but have
other values for the mean value and standard deviation, i.e.. Hzta = 85
Mot = 17.5, Oat, = 3.3, and 926 = 3.24 [9].
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Fig. 2. Monte Carlo Simulation results of EVs behaviour considering a home charging scheme.

3.1. Time slot and urgent charging indicator for EVs

Typically, during the day, the charging time scheduled for EVs divided
into time slots. This allows a discrete treatment of the charging process control.
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This study considers that a whole day duration (24h) can be divided into j=96
time slots; each time slot is conveniently equal to 15 min. In this paper, we have
considered the arriving time (t) and the leaving time (t}) for each EV driver can
be written as normalised values [22]:

a tia l til
Ji = [ﬁ‘:and Ji= lﬁ] 2
where the i is the index of EV so i =1, 2..., N. The N denotes the number
of EVs. The /" and /i represents the number of time slot when an EV is connected
and disconnected from the power grid, respectively. The length of a time slot is

given as AT, The time interval when an EV is connected to the power grid is given
by subtracting the arriving time slot from the leaving time slot as [22]:

i=J-I )

where J; denotes the remaining number of time slots, which allows i EV

able to keep connected to the power grid. Besides, in these remaining time slots,

the charging scheme and charging scheduling can be applied. To this end, the

urgent charging indicator I;is considered, which reveals the urgency of the
demand for the EVs charging and can be written as [23]:

I, = (J7 X AT) x Pstow x g — (Smin — gmax) x cbat (4)
where the P*"® s the power of the slow-charging mode for the EVs, and
the 7 is the charging efficiency. The parameters S and Si™ denote the

minimum and the maximum value of SOC for i EV when its charging is stopped.

The battery capacity is represented by the parameter C 7 In this study, two
charging modes are applied slow-charging and fast-charging. Selecting between
these charging modes can be performed by the charging indicator, so that:
P plast, <0
i :pslow' Ii >0 (5)

where the parameter P72t represents the power of the fast-charging
mode. As stated earlier, when the charging indicator Z: < O, this implies that the
charging is urgent for the i EV and the fast-charging mode will be selected. On the
other hand, when the charging indicator is /: = 0, it implies that the charging
demand for the i EV is non-urgent, and the slow-charging mode will be selected.

4. Optimisation model

The main objective of this paper is to reduce the total load across the
power grid considering different numbers of EVs. The total load of the power grid
consists of the basic load and EV charging load. The EV charging load includes
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the fast-charging demand and the slow-charging demand of the EVs. To this end,
the total load at the j time slot of the proposed charging method is written as:
N

?}T—C — jpjbasic + Z xi,j:Pi (6)
i=1

where %' represents the basic load of the power grid, and X, x; ;P is
the total charging load of all the EVs including fast-charging and slow-charging
demands. If i EV has an urgent charging demand, P; is equal to P72t, On the
other hand, if i EV has non-urgent charging demand, ®; is equal to P<'°". To this
end, PSO algorithm is proposed to find the optimum number of EVs that can be
selected for charging to reduce the load. Therefore, the objective function of
reducing the load of the power grid from rush hours to off-peak hours can be
written as:

min [ Prad = Poi | 7)
where PI-€ represent the maximum load demand and P1 . represent the
minimum load demand.

5. Proposed PSO algorithm

In the PSO algorithm, the fitness function denotes the objective function of
the power load problem that needs to be addressed in this study. Swarm based
method provided in [23], is exploited in this paper to formalise the fitness
function. This proposed, the EV with an urgent demand needs to be charged with
a fast-charging mode. This can be prioritised in the aggregator by setting a priority
weight for that EV. To this end, the fitness function can be mathematically

formulated as:
B

max; Wp fb (l) =W chat + w, Simin + wy Simax (8)
b=1
where f» (1) denotes the performance criteria resulting by i particle in the

search space, and Wn represents the weighting parameter that can be normalised to
satisfy the power constraint, so that:

B
Z w, =1 )
b=1

The search space in the proposed PSO algorithm involves all the feasible
solutions, which can be chosen between S™* and S™", so that;

D(i) = (s™ex,s™™) (10)

The swarm size represents the number of particles inside the searching

space. A large swarm size may reduce the number of iterations required to get the
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optimal value. However, the EVs number is chosen to be uniformly distributed
within the swarm. A PSO is implemented by the controller, which has the ability
to select the EV accordingly. To this end, in our proposal, each EV in the swarm

. : L t
has a position Xi, a velocity Vi, and the best position in the search space Phbest.i,
which represents the weight achieved by the objective function for the particle i.

t
The largest value amongst all the personal best Prest.i is known as the global best
Gpest, which denotes the EV obtained by the current iteration so that:
pt o {pzest,i lf f(xit+1) < plgest,i
T T FOET 2 Pl
Gbest = max{plt;est,i} (12)

After updating the Prest.: and Grest for particle i at iteration t, the position
and the velocity of the particle will be updated accordingly as:
Xt =x vt (13)

(11)

1
'Uit+ = ‘Uit + C17"1t [plgest,i - xlt] + CZth [Gbest - xlt] (14)

In this study, when the i EV is indicated as urgent, we select *ij to be 1 in
each arriving time slot. Besides, the EV with urgent charging demand can be
charged from arriving time to leaving time. However, remaining charging an EV
after its battery gets fully charged, may cause overcharging. In order to avoid
overcharging in fast-charging mode, a power constraint has been set to limit the

charging. This constraint should be lower than §/**. Furthermore, we select *i.j
to be 0 when the i EV is disconnected from the power grid. The time slot when an
EV stops charging is determined based on leaving time, so that the constraint for
the EVs with urgent charging can be written as:

.. :a .finish
xi; = L oifj=jisJi (15)
0, others.
where parameter ;7" represents the time slot when i EV stops charging,
which is given as:
.finish _ . .1 (Slmax B Simn)c .
Ji = min {]i, { PIastyAT +j (16)

where S represents the SOC of an EV when is connected to the power

Max _ -Con
—5i )

grid, and w‘?ﬁu—tmﬂc represents the charging time of an EV that should meet the

maximum value of SOC:
smax > gl > gmin (17)
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Where the S} represents the SOC of i EV when disconnected from the
power grid. To ensure that a new charging peak load of the power grid in the
proposed method do not appear, so a constraint for the power grid is given:

Phaf < Prauc G (18)

max

) represents the maximum value of the total load in the

max)

normal charging that meets the constraint of maximum SOC for all EVs (°~
over 96 time slots.

T— e §TaX
where P! ucSy

may

6. Simulation model

This section provides the simulation model and the evaluation of the
proposed charging method. In this study, we used our personal laptop, equipped
with MATLAB 2019, for the simulations and data analysis. Our computer system
is an Intel Core i7 with 8GB of RAM, which is capable of handling the
computational demands of the simulations. As for the cost of implementing the
proposed solution, we only considered the cost of the necessary software licenses
for the simulations. We generated the input data for our research using Monte
Carlo simulation, which allowed us to simulate real EV charging behavior by
generating a large number of samples with different probability distributions. The
simulations were performed with a different number of EVs considered (e.g., 100
and 500) and in both home charging and public charging schemes. Based on the
electricity usage presented in [24], Fig. 3 shows the average basic load of the
regional power grid that is generated for one-day cycle.

Typical Daly Load (

o =z 4 6 8 10 12 14 18 18 20 22 24
Time

Fig. 3. The basic load of regional power grid for one day.

The basic load is used for benchmark comparison and the results show that
the peak power happened at around 06:00 am, 10:00 am, and 18:00-20:00 pm.
The highest load achieved is around 700 KW and the lowers recorded is around

450 KW. In this study, we consider the S value generated in uniform
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distribution, which is between (0.1-0.3), 5™ between (0.4 - 0.6) and S/™**
between (0.8-1) as given in [24].

7. Results and discussion

In the home charging scheme, the charging service for EVs is available
between 18:00 pm and 08:00 am. As illustrated earlier, we considered the one-day
cycle divided by two half-days. Specifically, 12 hours is a period chosen to be the
scheduling time of EV charging in the home charging scheme. Fig. 4 shows a plot
of daily load as a function of time in one day comparing the proposed smart
adaptable charging method with two methods of normal charging in the home
charging scheme. In the normal charging process, the EVs start to charge at the
arriving time until to reach the maximum SOC or until the leaving time. Noting
that for each EV with urgent charging demand, the charging time for some EVs
could be too short. As such, the normal (or uncoordinated) charging is not able to
meet the requirement of minimum SOC for i EV in the urgent charging situation.
Therefore, urgent charging is performed in the proposed charging method. In the
proposed method, when the EVs are leaving the power grid, their SOC should be
between the minimum and maximum SOC. The results show that the power load
of charging demand in the proposed method is lower than that in the normal
charging methods especially when the number of EVs is increased.
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Fig. 4. Plots of daily load as a function of time comparing the proposed charging method and
the normal charging in home-charging for 100 EVs and 500 EVs.
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In-public charging scheme, the charging service for the EVs is available
between 08:30 am and 05.30 pm. Fig. 5 shows plots of daily load as a function of
time comparing the proposed smart adaptable charging method with two normal
charging methods in the public charging scheme. When the number of EVs is
increased the peak load happens at 06:00 am, 10:00 am, and 20:00 pm. The basic
load in public charging can only be filled by a few EVs. This is because most of
the EVs are charged during off-peak hours. However, urgent charging is
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Fig. 5. Plots of daily load as a function of time comparing the proposed adapted charging
method and the normal charging in public-charging for 100 EVs and 500 EVs.

considered in the proposed method. The results show that the power of EVs
demand in the proposed method is significantly lower than that method of normal
charging especially when the number of EVs is increased.

Fig. 6 shows results comparing the proposed charging method and two
methods of normal charging, respectively, over different charging stations. In
these figures, we have selected a very large number of EVs and a small number of
charging stations to investigate the variation in the probability of selecting a
charging station between the two charging schemes. Clearly, unlike normal
charging, the results show that the proposed charging method provides an equal
probability of charging overall the charging stations. Specifically, an almost equal
number of EVs are using the charging station in the proposed method. This is
clearly illustrating the fair comparison between different methods.
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Fig. 6. EVs at charging stations with normal charging and using a proposed method.

Fig. 7 shows the results of comparing the load difference between the
normal charging methods and the proposed charging method. The results
demonstrate the effectiveness of the proposed method in reducing the total load in
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comparison to the normal charging methods. The difference is significantly
increased when the number of EVs is increased.
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Fig. 7. Comparing load difference of normal charging method and proposed method.
8. Conclusions

A smart charging method for EVs has been proposed. The urgent charging
demand of each EV, and the total load demand have been considered. Besides, a
PSO algorithm has been invested to find the best charging urgency indicator. This
study evaluated the system performance by considering a different number of EVs
and two charging schemes namely home and public charging. The results showed
that the proposed charging method reduced the load efficiently by transferring the
EVs power demand from rush hours to off-peak hours.
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