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AN EFFICIENT CHEBYSHEV SEMI-ITERATIVE METHOD 
FOR THE SOLUTION OF LARGE SYSTEMS 

F. SHARIFFAR1, A. H. refahi SHEIKHANI2, and H. Saberi NAJAFI3 

In this paper, we propose a new method for solving large sparse symmetric 
positive definite linear systems based on a special case of the Richardson iteration 
process. Our algorithm is easy to implement and computationally attractive. The 
convergence analysis and error bounds of our method have been proved under 
suitable restrictions on iteration parameters. Finally, a number of numerical 
computations are presented based on some particular linear systems.  
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1. Introduction 

Consider the following linear system 
Ax b=                                                      (1) 

where , ,n n nA b x×∈ ∈  . Such systems often occur in a wide variety of areas, 
including numerical differential equations [1, 10 and 19], eigenvalue problems 
[16, 17, and 19], design and computer analysis of circuits [2], and physical models 
[15, 18]. There are various iterative methods for solving the linear system (1) 
namely as the SSOR iteration method [9, 14]. Also, as one other resource in this 
regard, we should name the Chebyshev semi-iterative method [13, 12], which is 
considered as a nonstationary iterative method. A large family of iterative 
methods for solving (1) take the splitting form. For any splitting A=M-N, where M 
is nonsingular, the iterative method for solving the linear system of (1) is as: 

( ) ( )1 1 1 ,   0,1, , .i ix M Nx M b i k+ − −= + = …  (2) 
This iterative process converges to the unique solution of system (1) for initial 
vector ( )0 nx ∈  if and only if ( )1 1M Nρ − < , where ( )Aρ shows the spectral 
radius of A . There are many iterative methods based on splitting [7, 11]. For 
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example, suppose ( )D diag A= and  A D L U= − − , where L and U are the strictly 
lower and strictly upper triangular part of A . Set N M A= − , such that for the 
classical Jacobi iterative method M D= , for the Gauss-Seidel M D L= − , for the 
Richardson method ( ), M I Rω ω= ∈ , and for the SOR method 

( ) ( )1 , M I L Rω ω
ω

= − ∈ . In this paper, we focus on such nonstationary one-stage 

iterative methods. Here, we use 2. to denote the Euclidean norm and define 

( )
1

n
ii

i
Tr A a

=
=∑ . Let #.  be an arbitrary vector norm on n . For a nonsingular 

matrix n nA ×∈ , ,# #Ax Ax= defines a vector norm on n  for all nx∈  [6]. 

This paper is organized as follows. In Section 2, we recall a special case of the 
Richardson Iteration Method and its convergence analysis. Section 3 contains our 
new method based on the Chebyshev Semi-iterative Process. The convergence 
analysis and error bounds of our method will be presented in this Section. In 
Section 4, we examine the advantages of our method by carrying out a number of 
numerical computations. Finally, the conclusions are presented in Section 5. 

2. A special case of the Richardson iteration method  

         Let ( )Tr A
M I

ω
=  where I is the identity matrix and ω∈ . Then the 

Richardson iteration method for the solution of the system (1) is as follows: 
Algorithm1.                                                                                                           
Step 1. Choose an initial vector 0 nx ∈  and a parameterω .                              
Step 2. For 0,1  , 2i = …  do  

         ( )
( )

( )
( )

1i ix I A x b
Tr A Tr A
ω ω+  

= − +  
 

, (3) 

Step 3. If ( )1ib Ax tol+− < , then stop; otherwise, set 1i i= + , and go to Step 2.   

We call this algorithm the Trace Iterative Method (TIM). In the following 
Theorem we perform the convergence analysis of the TIM.   
         Theorem 2.1.  Let A  be a symmetric positive definite matrix with 

eigenvalues iµ , ( 1,...,i n= ) and ( ) ( )20 Tr Aω µ< < , ( )max iµ µ= . Then 

Algorithm 1  
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converges to the solution of the system (1) for any choice of initial vector ( )0x . 
Proof. Let iµ  ( 1, 2, ,i n= … )  be the eigenvalues of A . Since A  is SPD, then all 

eigenvalues of A are positive and 1iµ
µ
< . Moreover, we know that ( )

1

n
i

i
Tr Aµ

=
=∑ , 

and
( )

1 i
Tr A
ωµ

−  ( 1,...,i n= ) are the eigenvalues of 
( )
AI

Tr A
ω

− . On the other hand, 

from ( )2
0,

Tr A
ω

µ
 

∈ 
 

, we have 
( )

20 i i
Tr A
ωµ µ

µ
< < , so

( )
21 1 1 1i i

Tr A
µ ωµ
µ

− < − < − < , 

or 
( )

1 1i
Tr A
ωµ

− < . Therefore, 
( )

1 1A
Tr A
ωρ

 
− <  

 
, and the proof is completed.  

3. The Chebyshev-TIM method 

            In this Section, first we discuss the Chebyshev semi-iterative method [3, 
8]. Then we will describe our new iterative method on the basis of combining the 
TIM algorithm and the Chebyshev semi-iterative method. Also, we will discuss 
the convergence theorem and the error bound analysis. Given the results produced 
by the iterative formula in (2) be as ( ) ( )0 , , kx x… , and let ( )ke  be the error vector 
at the k th iteration; then we have: 

( ) ( ) ( )( ) ( ) ( )1 01 1    .
kk k ke x x M N x x M N e−− −= − = − =…=  (4) 

We would like to obtain a better result from their linear combinations, so we have 

                        ( ) ( )
,

0
  ,

k
k j

j k
j

y v x
=

= ∑  (5) 

in which ,j kv  are the blending coefficients to be determined. If the results are good 

already: ( ) ( ) ( )0 1 kx x x= =…= , we must have ( )ky x= . So ,
0

1
k

j k
j

v
=

=∑ . The 

question is how to reduce the error of ( )ky . Using (4) and (5), we have 

     ( ) ( )( ) ( ) ( ) ( ) ( )0 01 1
, ,

0 0
, 

k k jk j
j k j k k

j j
y x v x x v M N e p M N e− −

= =
− = − = =∑ ∑  (6) 
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such that ( ) ( )
,

0

k
j

k j k
j

p x v x
=

= ∑ is a polynomial function. So to reduce the error, we 

must reduce ( ) ( )1
2

max
i

k k ip M N p
λ

λ− =  in which iλ can be any eigenvalue of 

1M N− . Suppose that all of the eigenvalues are real. If we know all of the 
eigenvalues, and if k  is sufficiently large, we can construct the polynomial 
function in a way that ( ) 0k ip λ = , for any iλ . Unfortunately, it is difficult to 
know the eigenvalues when the linear system is large and varying. Instead, if we 
know the spectral radius ρ such that 11 1nρ λ λ ρ− < − ≤ ≤…≤ ≤ < , we let  

( ) ( ){ }maxarg min :k kp x p x xρ ρ= − ≤ ≤ . The unique solution of (6) is given 

by ( )
( )
( )

1

1

k
k

k

C x
p x

C

ρ

ρ

−

−
=  in which ( )kC x is the Chebyshev polynomial with the 

recurrence relation ( ) ( ) ( )1 12k k kC x xC x C x+ −= −  with ( )0 1C x = and ( )1C x x= . 

It is trivial to see that ( )1 1kp = , satisfying ,
0

1
k

j k
j

v
=

=∑ . For any [ ]1,1x∈ − , 

( ) 1kC x ≤  but for any [ ]1,1x∉ − , ( )kC x  grows rapidly when  k →∞ . So 

( )kp x  diminishes quickly for any [ ],x ρ ρ∈ −  when k →∞ . To reduce the 

computational and memory cost, we can avoid calculating 
( )ky  by its definition 

in (4). Instead, we use (6) to formulate the recurrence relation of ( )kp x  as: 
            

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1
1 1 1 12 2 , k k k k k k kp x C xp x C p x C Cρ ρ ρ ρ ρ ρ− − − − − −
+ + − += − − (7) 

which can be reorganized into: 
     ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1

1 1 1 12 .k k k k k kC p x p x C xp x p xρ ρ ρ− − −
+ + − −− = −          (8) 

After replacing x  by 1M N− and multiplying both sides of (8) by ( )0e , we get: 

( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 11 1 1 1
1 2   .k k k k

k kC y y C M N y x y xρ ρ ρ+ − −− − − −
+

 − = − − + 
 

 (9) 

Using the fact that ( )1 1 1M Nx x M M N x M b− − −− + = − = , we can obtain the 
following update function called the Chebyshev semi-iterative method: 



An efficient Chebyshev semi-iterative version                                        243 

( ) ( ) ( )( ) ( )1 1 11 1
1 , i i i i

iy M Ny M b y yω+ − −− −
+= + − +  (10) 

    ( )
( ) ( ) ( ) ( ) ( )1 0 1 01 1 1

1 1
1

2
, ,  1,  1, ,  .k n

k
k

C
M N k y R y M Ny M b

C
σ σ

ω σ ρ ω
σ

−− − −
+

+
= = ≥ = ∈ = +  

Now we can present our new iterative method on the basis of combining the TIM 
algorithm and the Chebyshev semi-iterative method. By applying (3), the 
Chebyshev–TIM method is as follows: 

                   ( )
( )

( )
( )

( ) ( )1 1
1 .i i i i

iy I A y b y y
Tr A Tr A
ω ωω+ −

+
  

= − + − +      
    (11) 

Algorithm 2.                                                                                                         
Step 1. Choose an initial vector ( )0 ny ∈ and a parameterω , and splitting M N− . 

Step 2. Set ( ) ( )1 01 1y M Ny M b− −= +   and ( )1 1
M Nρσ − −

=                                           

Step 3. For 1, 2,3, ,i = … do  

( )
( )

( )
( )

( )
( )

( ) ( )1 1 1
1 1

1

2
, i i i ii

i i
i

C
y I A y b y y

C Tr A Tr A
σσ ω ωω ω
σ

+ − −
+ +

+

  
= = − + − +      

                        

Step 4. If ( )1ib Ay tol+− ≤ , then stop; otherwise, set 1i i= + , and go to Step 3. 

We call Algorithm 2 the Chebyshev-Trace Iterative Method (Chebyshev -TIM). 
However, since the spectral radius of the iterative matrix is not known in advance, 

( )1M Nρ −  is usually replaced by the lower and upper bounds [3], that is, 

( ) ( ) ( ) ( )( ) ( )1 1 1
1 ,i i i i i

iy z y y yω γ+ − −
+= + − +   (12) 

where λ  is the eigenvalue of 1M N− , and 
( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )

0 1 01 1

1
1

,  ,  ,
222 ,  ,  ,  1 1,  .

2

i i n

i
i

i

Mz b Ay y R y M Ny M b
C

C
ν β α

ω ν γ ν α λ β β α
ν β α β α

− −

+
+

= − ∈ = +

− +
= = = − ≤ ≤ ≤ ≤ >

− + −

 

By substituting the above equations in (5), we have: 

   ( )
( ) ( )( ) ( )( ) ( ) ( )1 11 11

12 2 1 ,
2

i i ii
iy M N I y M b yρ

α β ρ
α β

+ −− −+
+= − + + + −

− +
    (13) 

such that  

                 ( ) ( ) 12 2 2
1 2 11,  2 / 2 1 ,    2; 1 / 4 . i kv v for n vρ ρ ρ ρ

−
+= = − ≥ = −                (14) 

Moreover, from (2) we set ( ) ( )i ix xε = − , and from (13) let ( ) ( )i iy xξ = − ,where 
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                            ( )

( )
( )
( )

( )

1

1
1 0

1

2

.    
i

i

i

M N I
C

C v

α β
β α

ξ ε

−

+
+

+

 − +
 
 − =               (15) 

Therefore, we have the following modified algorithm (See [3, 12]). 
Algorithm 3.                                                                                                                   

Step 1. Choose an initial vector ( )0 ny R∈  and parameterω .                                     

Step 2. Set: ( )
( )

( )
( )

1 0y I A y b
Tr A Tr A
ω ω 

= − +  
 

.                                                     

Step 3. For 1, 2, ,i = …  do 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )1 11
12 2 1 .

2
i i ii

iy I A I y b y
Tr A Tr A

ρ ω ωα β ρ
α β

+ −+
+

   
 = − − + + + −     − +    

 

Step 4. If ( )1ib Ay tol+− ≤ , then stop; otherwise, set 1i i= + , and go to Step 3. 

Theorem 3.1. Let T  be the iteration matrix of the TIM, and ( )1
2
2
TP T α β

α β
− −

=
− −

 

 
If ( )( )1 1P Tρ < , then the Chebyshev–TIM method will be convergent.  

Proof. Set ( )2q α β= − + , from (13) we have: 

      ( ) ( )( ) ( )( ) ( ) ( )11 1 12 2 1 ,  1.i i i
i iy q M N I y M b y iρ α β ρ −− − −= − + + + − ≥  (16) 

Introducing the notations: 

( )( )
( ) ( ) ( )

1 1 1 1

1 *

1 ,  2 ,  0 2

0
,  ,

T
i i i i i i

Ti i i
i

i i

d G q M N I h q M b

I
u y y G

d I G

andρ ρ α β ρ− − − −

−

 = − = − + =  

  = =    −   

 

then equation (13) becomes ( ) ( )*i i
i iu G u h= + ; since this is a non-stationary first 

degree iterative method, we can rewrite it into ( ) ( )0i
i iu uφ τ= + , where *

1

i
i r

r
Gφ

=
=∏  

and * * * *
1 1 2 1i i i i i ih G h G G G hτ − −= + +…+ … . Since 1 1ρ = , then 1 1i id G G G= − . 

Therefore, by choosing 
1

0 0
i iV d

I G
 

=  − 
, we get * *

1i iG G V= + . Also, by the 

Ostrowsky theorem [9, pp. 141], there exists a matrix M such that: 



An efficient Chebyshev semi-iterative version                                        245 

( )( ) ( ) ( )( )* * 1 *
1 1 1 1 1 1 ,P G MP G M P Gρ ρ ε−≤ ≤ +  

and a constant 1µ  where ( )1
1 / 2M Mµ ε −

∞ ∞= . It is obvious that the parameter 

iρ  appearing in (16) satisfies 1 2iρ≤ < , so 1id < . Now, by choosing 1G L∞ = , 

we get ( )1i iV d L∞ = + . On the other hand, because 1iρ → , 

1id → when  i →∞ ; then, there exists m∈ such that 1nV µ∞ ≤ , ( )   n m> . 

Introducing a convenient index k , we can write 1,  1, 2,...kV kµ∞ ≤ = . By 

hypothesis, ( )( ) ( )1 1 1 1 , 0P G Gρ ρ ε ε= < − > . Hence, ( )*
1 1Gρ ε+ < . So 

*

1
0

i
i r

r
Gφ

=
= →∏  when i →∞ , and the proof is completed.   

Next, we determine the error bounds for the ( )
,#

i

A
ξ  of the error vector at the ith 

iteration of the Chebyshev-TIM method in terms of ( )1M Nρ − .                

Theorem 3.2.  Let ( )iξ  be the error vector at the ith iteration of the Chebyshev- 
TIM method, ρ  be the spectral radius of iterative matrix in (3), and due to this, 
the conditions of Theorem 2.1 are satisfied. Then we have: 

( )

( )
( )

( ) ( )
,2

0 2 2

,2

2
.

1 1 1 1

i
i

A
i i

A

ξ
β α

ξ α β α β

−
≤
  − + − + − − −  

  

 

Proof. From the TIM scheme, we know that 
( )

1T M N I A
Tr A
ω−= = − . 

According to the Theorem 2.1, for ( )2
0,

Tr A
ω

ρ
 

∈ 
 

, all eigenvalues iλ  of T lie 

in 1 1iα λ β− ≤ ≤ ≤ ≤ . In addition, 
( )

( )
( )

( ) ( ) ( ) ( ) ( )
2 2 2 2 . .
T T AI A vI

Tr A Tr A
β α β α ω ω

β α β α β α β α
   − + − +

= − = −      − − − −   
 (17) 

Let ( )ic C v= , and since ( ) ( )0 0ξ ε= , from (14) we get 

     ( )
( )

( )
( )

( )
( ) ( )

( )0 021 1 2 . .i
i i

i

T I AC C vI
C v c Tr A

α β ωξ ξ ξ
β α β α

    − +
= = −        − −    

 (18) 



246                             F Shariffar, A. H. Refahi. Sheikhani, and H. Saberi Najafi 

Since 
( )

0
Tr A
ω

> , then 
( )

A A
Tr A
ω′ =  is also SPD, and we can obtain TA UDU′ =  

where ', ( )T T
iUU U U D diag µ= =  and '

iµ  ( )1, , i n= …  are the eigenvalues of A′ . 

Multiplying the both sides of (18) by TU A′ , we have: 

( ) ( ) ( ) ( ) ( )0 0

2 2

. 
i i

iT T T
C vI A C vI D

U A U A U A
c c

β α β α
ξ ξ ξ

      
− −            − −   

′

′ ′ ′  = =  (19) 

By choosing ( ) ( ) ( ) ,  0,1, , ,ˆ i i iT TU A DU i nξ ξ ξ= = …′=  we have: 

            ( ) ( ) ( )0ˆ

2

,
i

i
C vI D

c

β α
ξ ξ

  
−    −  =  (20) 

so we obtain: 

( ) ( ) ( ) ( )
2 22 2 2 0'

2,2 2 2 1

ˆ ˆ ,1 2n
i i iT

i i lA i
U A C v

c
ξ ξ ξ µ ξ

β α=

     = = = −      −     
∑  

where ( )0ˆ
lξ is the lth component of the vector ( )0ξ̂ defined in (20). Assume that  

'2
l lvϕ µ

β α
= −

−
, since '1l lλ µ= − , then we have 2

l l
β αϕ λ

β α β α
+

= −
− −

. From 

Theorem 2.1 we have 21 1l
β αλ

β α β α
+

− ≤ − ≤
− −

, so 1 1lϕ− ≤ ≤ , and by (11) we 

have: 

          ( ) ( )( ) ( ) ( )( ) ( )2 22 2 20 0
2 2,2 1 1

1 1 maxˆ ˆ .
n n

i
i l i ll llA l l

C C
c c

ξ ϕ ξ ϕ ξ
= =

   = ≤   
   ∑ ∑  (21) 

Since ( )( )
1 1
max 1

l
i lC

ϕ
ϕ

− ≤ ≤
= , we have: 

   

( )

( )

( )

( ) ( )

2

,2 ,2
2 2 00

,2,2

1 1 .
2

i i

A A

iAA

c C

ξ ξ

β αξξ
β α

≤ ⇒ ≤
 − +
 − 

 (22) 
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It can be shown by mathematical induction that 
( )

( )
( ) ( )( ) ( ) ( )( )2 22 1 1 1 1 1

2

i i
i iC

β α
α β α β

β α β α

 − +  
= − + − + − − −   −  − 

; 

for more details see [8]. Hence, from (22) and the above equality, the inequality of 
theorem 3.2 is hold.  
This theorem shows that if we use the Chebyshev –TIM method for solving the 
SPD linear systems, then this scheme can be terminated after the ith iteration, 
where i satisfies the inequality in the Theorem 3.2. 

4. Numerical Experiments 

         In this Section, we present a number of numerical experiments to illustrate 
the results obtained in the previous Sections. The initial guess was always zero 
vector, and the right hand side was selected such that the exact solution of the 
augmented system (1) is ( )1,2, , T nn… ∈ . The stopping criterion, when the 

current iteration satisfies, is 610tol −= . The number of iterations and CPU time 
are denoted by the Iter and the CPU, respectively.  
Example 4.1. Consider the following three-dimensional convection-diffusion 
equation ( ) ( )2 , , ,xx yy zz x y zu u u u u u f x y z− + + + + + = on the unit cube domain 

Ω=[0,1]×[0,1]×[0,1] with Dirichlet boundary conditions. When the seven-point 
finite difference discretization (e.g., the centered differences approximations to 
the diffusive terms and the convective terms) are applied into the above model of 
convection-diffusion equation, we get the system of linear equations with the 
coefficient matrix ,

x y z

A T I I I T I I I T= ⊗ + ⊗ ⊗ + ⊗⊗ ⊗  where ⊗  denotes the 
Kronecker product, and the equidistant step-size   1  / 1h n= + is used in the 
discretization on all of the three directions, and the natural lexicographic ordering 
is employed to the unknowns. In addition 

2 2 2 2 2 2 2 2,1, , ,1, .
12 12 12 12x y z

h h h hT tridiagonal T T tridiagonal   + − + −       = − − = = − −                    

For details, see [4]. Then, we solve the 3 3n n× matrix yielded by the TIM scheme 
and the Chebyshev–TIM method. In Table 1, we report the CPU time and the 
number of iterations for the corresponding TIM scheme and Chebyshev–TIM 
method with different parameters. 
Example 4.2. (The Poisson's equation) The Poisson’s matrix is the block 
tridiagonal matrix of order 2n  resulting from the discretizing the Poisson's 
equation with the 5-point operator on an n-by-n mesh [5]. To produce a Poisson 
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matrix of dimension n, one may use the MATLAB command 
( )' , .A gallery poisson n′=  In Tables 2-5, 

Table 1 
Results of example 4.1 

3n  w  TIM Chebyshev –TIM 
Iter CPU Iter CPU 

125  (0,134.6041), 120w w∈ =  88 0.016167 29 0.008668 
343 (0,357.4503), 340w w∈ =  150 0.127688 38 0.062618 
729 (0,748.4160), 740w w∈ =  228 0.697578 59 0.216027 

 
we report the CPU time and the number of iterations for different iterative 
methods with different parameters. We can see that the SOR method performs 
much better than the other existing methods. Moreover, for [ ]90,110ω∈ and 

2 100n = , the results of using the Chebyshev–TIM method with 500 iterations, 
based on the Gauss-Seidel splitting, are shown in Figure 1. From Figure 1, we can 
find that the optimal value of ω  lies in ( )99,101 . Also, Figure 2 shows that the 

optimal value ofω  lies in ( )100.18,100.22 ; therefore, by setting 100.2ω = , we 
have a fast convergence. 
 
Example 4.3. In this example we consider system (1) with matrix A  as a Toeplitz 
matrix. Such a system is called the Toeplitz linear system [7]. Suppose that A  is a 
large sparse non-Hermitian positive definite Toeplitz matrix  as  

1 2 3

2

3

3

2

3 2 1

.

−

−

− − −

 
 
 
 

=  
 
 
  
 

 

    

   

   

    

 

n

n

a a a a
 a  
a    

A
  a    

a
a a a a

 

One of the latest iterative methods for solving such a system is the HSS 
method.This method uses the splitting ( ) ( ) ( )kI H y I S x bβ β+ = − + , 

( ) ( ) ( )1kI S x I H y bβ β++ = − +  where β  is a given positive constant.  
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Table 2 
Results of the example 4.2 for the Jacobi method 

2=N n  Iter CPU 

25 34 0.002987 
100 85 0.003971 

1024 297 0.046571 
Table 3 

Results of the example 4.2 for the Gauss Seidel and SOR methods 
 
 
 
 
 
 
 
 
 
 
 

Table 4 
Results of the example 4.2 for the TIM method 

 
 
 
 
 
 
 
 
 

   
Fig. 1.  Generated errors in   Fig. 2. Generated errors in example 4.2 
example 4.2 for [90,110]ω∈ .       for [99,101]ω∈  
 

2=N n  ( )0,2ω∈  Iter CPU 

100 1.0(Gauss-Seidel) 137 0.010002 
 
 

 
1024 

 

1.5 
1.5604(opt) 

1.9 
1.0(Gauss-Seidel) 

1.8 
1.8264 (opt) 

1.9 

44 
32 

133 
975 
118 
88 

134 

0.003181 
0.002441 
0.124887 
3.279529 
0.392415 
0.307156 
0.521695 

2=N n  ω  Iter CPU 

100, 
(0,102.0672)ω∈  

 
1024, 
(0,1026.3)ω∈  

 

97 
99 

101 
102 

1022 
1024 
1026 

298 
292 
286 
283 

2288 
2284 
2280 

0.021206 
0.020938 
0.020428 
0.020291 
11.034147 
10.323143 
10.043827 
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In this example, we consider a Toeplitz linear system with symmetric positive 
definite Toeplitz matrix A  with ( ), 1 1 1a i i j j+ − = + , for 1, ,64i = …  and 

1, ,64 1j i= … − + . Fig. 3 shows the errors generated by the HSS method 
with 25β = , the Richardson iteration method and the Chebyshev –TIM method 
with 6.98β = . From Figure 3 we find that in this example the convergence of the 
Chebyshev–TIM method is much faster than the HSS and Richardson iteration 
methods. Moreover, notice that the HSS method is a method for the Toeplitz 
linear system, but the Chebyshev-TIM method can be used for a variety of linear 
systems. 
 

 
 

Fig. 3. Comparison of numerical errors of Chebyshev -TIM, Richardson iteration method, and 
HSS method 

Table 5 
Results of example 4.2 for the Chebyshev –TIM method 

 
 

 

 

5. Conclusions 

           In this paper, a special case of the Richardson iterative method for solving 
large sparse linear systems has been developed. We have shown that the error 
bounds of this method are smaller than the TIM algorithm (Theorem 3.2). The 
numerical results also proved our claim concerning this issue, and in the most 

2=N n  ω  Iter CPU 

100, 
(0,102.0672)ω∈  

 
1024, 
(0,1026.3)ω∈  

99 
100 
101 

1000 
1010 
1020 

53 
52 
60 

145 
144 
143 

0.004145 
0.004064 
0.004722 
0.560800 
0.584371 
0.521024 
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cases the performance of these methods is much better in comparison with the 
existing methods. The results showed that the new algorithm converges fast and 
works with high accuracy for a variety of linear systems. 
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