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AN EFFICIENT CHEBYSHEV SEMI-ITERATIVE METHOD
FOR THE SOLUTION OF LARGE SYSTEMS

F. SHARIFFAR?, A. H. refahi SHEIKHANI?, and H. Saberi NAJAFI®

In this paper, we propose a new method for solving large sparse symmetric
positive definite linear systems based on a special case of the Richardson iteration
process. Our algorithm is easy to implement and computationally attractive. The
convergence analysis and error bounds of our method have been proved under
suitable restrictions on iteration parameters. Finally, a number of numerical
computations are presented based on some particular linear systems.
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1. Introduction

Consider the following linear system
Ax=b 1)
where Ael] ™ b,xel]". Such systems often occur in a wide variety of areas,

including numerical differential equations [1, 10 and 19], eigenvalue problems
[16, 17, and 19], design and computer analysis of circuits [2], and physical models
[15, 18]. There are various iterative methods for solving the linear system (1)
namely as the SSOR iteration method [9, 14]. Also, as one other resource in this
regard, we should name the Chebyshev semi-iterative method [13, 12], which is
considered as a nonstationary iterative method. A large family of iterative
methods for solving (1) take the splitting form. For any splitting A=M-N, where M
Is nonsingular, the iterative method for solving the linear system of (1) is as:

) — MmNk oMb, i = 0,1, k. )
This iterative process converges to the unique solution of system (1) for initial
vector x(o) el if and only ifp(M‘lN)<1, Wherep(A)shows the spectral
radius of A. There are many iterative methods based on splitting [7, 11]. For
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example, suppose D = diag (A) and A=D-L-U, whereLand U are the strictly

lower and strictly upper triangular part of A. Set N =M — A, such that for the
classical Jacobi iterative method M = D, for the Gauss-Seidel M =D —L, for the

Richardson method M =wl,(weR), and for the SOR method

M =£(I —wL),(weR). In this paper, we focus on such nonstationary one-stage
w

iterative methods. Here, we use ||.||2to denote the Euclidean norm and define

n
Tr(A)=>a. Let ||, be an arbitrary vector norm on(J". For a nonsingular
i=1

X
Dnn

matrix A e =| Ax|,, defines a vector normon [1 " for all xe [ " [6].

X
This paper is organized as follows. In Section 2, we recall a special case of the
Richardson Iteration Method and its convergence analysis. Section 3 contains our
new method based on the Chebyshev Semi-iterative Process. The convergence
analysis and error bounds of our method will be presented in this Section. In
Section 4, we examine the advantages of our method by carrying out a number of
numerical computations. Finally, the conclusions are presented in Section 5.

2. A special case of the Richardson iteration method

Tr(A)

Richardson iteration method for the solution of the system (1) is as follows:
Algorithm1.

Step 1. Choose an initial vector x0c0" and a parameter @ .
Step 2. For i=0,1,2... do

(i+) _| | __@ (i), @
X _[ Tr(A)A]X +Tr(A)b’ ®)

Let M = | wherel is the identity matrix and well . Then the

Step 3. If Hb— Ax()

<tol, then stop; otherwise, set i=i+1, and go to Step 2.

We call this algorithm the Trace Iterative Method (TIM). In the following
Theorem we perform the convergence analysis of the TIM.
Theorem 2.1. Let A be a symmetric positive definite matrix with

eigenvalues 4, (i=1..,n) and 0<a)<(%)Tr(A), pu=max(g). Then
Algorithm 1
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converges to the solution of the system (1) for any choice of initial vector x(o) .
Proof. Lety; (i=12,...,n) be the eigenvalues of A. Since A is SPD, then all

. n
eigenvalues of Aare positive andi_'<1. Moreover, we know thatZui :Tr(A),

H i1
and1——2Hi_ (i=1,...,n) are the eigenvalues of I — @A . On the other hand,
2Tr (A : , : ,
H Tr(A) & 7 Tr(A)

oA
Tr(A)

O

Tr(A)

3. The Chebyshev-TIM method

or 1-

<1. Therefore, p(l— ] <1, and the proof is completed. m

In this Section, first we discuss the Chebyshev semi-iterative method [3,
8]. Then we will describe our new iterative method on the basis of combining the
TIM algorithm and the Chebyshev semi-iterative method. Also, we will discuss
the convergence theorem and the error bound analysis. Given the results produced

by the iterative formula in (2) be as x(o),..., x(k), and let e(k) be the error vector
at the k th iteration; then we have:

k
e = x(¥) _x—m-IN (x(k_l) - x) =... :(M _1N) o0, (4)
We would like to obtain a better result from their linear combinations, so we have

k
‘ :
y) = ZVj,kX(J), ()
j=0
inwhichv;  are the blending coefficients to be determined. If the results are good
K

already: x(o) = x(l) =...= x(k), we must have y(k) =X. So ZVj,k =1. The

j=0

question is how to reduce the error of y(k). Using (4) and (5), we have

k _ k i
y(k) —X= jZ:%)Vj'k (X(J) —x): J;)Vj'k (M‘lN)J o0 - Pk (M_lN)e(O), (6)
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k :
such that py (x)= ZVj,kX(J) is a polynomial function. So to reduce the error, we
j=0

must reduce H Py (M _1N)H = max|pg (4 )] in which 4 can be any eigenvalue of
2 4

MIN. Suppose that all of the eigenvalues are real. If we know all of the
eigenvalues, and if k is sufficiently large, we can construct the polynomial

function in a way that py (21-):0, for any 4. Unfortunately, it is difficult to
know the eigenvalues when the linear system is large and varying. Instead, if we
know the spectral radius psuch that-1<-p<A,<..<A4 <p<1, we let

pk (x)=arg min{max‘pk(x)‘:—pSXSp}. The unique solution of (6) is given
Ck (p_lx)
Ck (,0_1

recurrence relation Cy ,q (X)=2xCy (x)—Cy_1(x) with Cy(x)=1and Cy(x)=x.
k

It is trivial to see that py(1)=1, satisfying Y vj, =1. For any xe[-11],
j=0

Cx (x)|<1 but for any xe[-11], |Cy(x)| grows rapidly when k —oo. So

by pe(x)= in whichCy (x)is the Chebyshev polynomial with the

pk (x) diminishes quickly for anyxe[-p,p] when k —o. To reduce the

computational and memory cost, we can avoid calculating y(k) by its definition
in (4). Instead, we use (6) to formulate the recurrence relation of py (x) as:

pk+1(X)Ck+1(P_1) =2p""xpy (X)C (P_l)— pk—l(x)(zp_lck (/fl)—Ckﬂ(/fl)), ()
which can be reorganized into:

Ck+1(,0_1)( P2 ()= P (%)) =207'Ci (P_l)(ka (X)=Pea(x)).  (8)
After replacing x by M ~IN and multiplying both sides of (8) bye(o) , We get:
Cua(p78) s =y ) =2p70c (p‘l)(M N[y -x] -y x). ©)

Using the fact that —M “INx+x=M _1(M -N)x=M b, we can obtain the
following update function called the Chebyshev semi-iterative method:
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(i) _ le(M ST MUIRYE SV GG (10)

_ 20Cy (o)

Ck+1(‘7)
Now we can present our new iterative method on the basis of combining the TIM
algorithm and the Chebyshev semi-iterative method. By applying (3), the
Chebyshev-TIM method is as follows:

(i+1) _ o B, o (-9 0 11
y = |+1[(| Tr(A)Ajy +Tr(A)b y ]er : (11)

-1
s o=p(M7N) " k>La =1 YO erMy® = m-Ingl® 4 M1,

Algorithm 2.
Step 1. Choose an initial vector y(o) e[l "and a parameter @, and splittingM — N .

-1
Step 2. Set y(l) =M _1Ny(0) +M ™ and o= p(l\/l _1N)
Step 3. For i=1,2,3,...,do

oo 20G0) i (e ), e ), )
|+1‘Ci+1(o_)ly = |+1[[| Tr(A)A]y +Tr(A)b y ty

Step 4. |be _ay()

<tol , then stop; otherwise, set i =i+1, and go to Step 3.

We call Algorithm 2 the Chebyshev-Trace Iterative Method (Chebyshev -TIM).
However, since the spectral radius of the iterative matrix is not known in advance,

p(M ‘1N) is usually replaced by the lower and upper bounds [3], that is,
Y a2y -y ) 07, (12)

where A is the eigenvalue of M ~IN, and
Mz b — Ayl (@ e R y®) = M -Iny(©) 1 M1,
Ci(v) 2 2—(B+a)
!7/ = 1V =
Cu() " 2-(pra)” " (p-a)
By substituting the above equations in (5), we have:

(4 :—Z—f;iﬂ)((m (@) s 2m o) -pa)yY, (9

i =2v —l<a<A<p<lp>a.

such that
2 (o2 2\
pL=lpp,=2v /(2v —1),f0rn22;pi+1:(1—pk/4v ) . (14)

Moreover, from (2) we set g(i) = x(i) — X, and from (13) let f(i) = y(i) — X ,where
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c [2M‘1N —(a+ﬂ)lj
gy (e )
Ci+l(v)
Therefore, we have the following modified algorithm (See [3, 12]).
Algorithm 3.

(15)

Step 1. Choose an initial vector y(o) e R" and parameter .

Step 2. Set: ylY) = £| — Tr((oA) AJ (04

Step 3. Fori=12,..., do

y(i+1) _%[[Z[I —#A]—(a+ﬂ) I J y(i) +2Tr((0A) bJ+(1_pi+l) y(i‘l).

Tr(A)b

Step 4. If Hb— Ay(i+1) <tol , then stop; otherwise, set i =i+1, and go to Step 3.

. . . 2T —a—-p

Theorem 3.1. Let T be the iteration matrix of the TIM, and P, (T ) = Y a p
— a —

If p(P(T))<1, then the Chebyshev—TIM method will be convergent.
Proof. Setq=2—(a+ f), from (13) we have:

y = q1p ((2|v| AN (a+p)] ) y1 oM _1b)+(1—pi izt (1)
Introducing the notations:

di=1- .G, =q 1p (2|v| IN—(a+p)] ),hi —qtp [o 2M ‘%JT and

)=y y(i)T’Gr{—g' (;}

then equation (13) becomes u(i) =Gi*u(i) +h;; since this is a non-stationary first

. |
degree iterative method, we can rewrite it into ul®) = ¢,u(0) +7j, where ¢ = HGr
r=1

and 7 =h+Gih_;+...+G;G, ;...Gohy. Since p =1, then d;G;=G;—G.
0 0 *_*
Therefore, by choosing V; :d{_l GJ' we get Gj =Gy +V;. Also, by the

Ostrowsky theorem [9, pp. 141], there exists a matrix M such that:
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p(Pl(Gf)) <MR (G )Mt < p(Pl(Gf))+g,
and a constant 4 where 14 :g/(ZMOOM —100)' It is obvious that the parameter
pi appearing in (16) satisfies 1< pj <2, so d; <1. Now, by choosing |Gy =L,
we get [Vi|_=dj(1+L). On the other hand, because p;—>1,

dj >1wheni—co; then, there exists mel such that |V,| <gz4,(n>m).

Introducing a convenient index k, we can write |[\/k||oosu1,k:1,2,.... By

hypothesis, p(P(Gy))=p(Gy)<1-¢,&>0. Hence, p(Gf)+g<1. So

|
&= HG: — 0 wheni — oo, and the proof is completed. m
r=1

Next, we determine the error bounds for the Hg(')H of the error vector at the ith
A#

iteration of the Chebyshev-TIM method in terms of p(M_lN).
Theorem 3.2. Let §(i) be the error vector at the ith iteration of the Chebyshev-

TIM method, p be the spectral radius of iterative matrix in (3), and due to this,
the conditions of Theorem 2.1 are satisfied. Then we have:

(i) _
Hf' HA,Z S 2(-,3—a)| .
FOL. (e ) (e o))
Proof. From the TIM scheme, we know that T = M Nz - @
Tr(A)

2Tr (A
According to the Theorem 2.1, for me(o,—()j , all eigenvalues 4; of T lie
Yo

iN-1<a <4 <F<1.Inaddition,

2T—(ﬁ+a): 2T —(B+a)), 2w s 5 A .
(B-a) ( (B-a) }I (,3—04)Tr(A)A ! [(ﬂ—a)'Tr(A)J'( )

Let c=Cj(v), and since 5(0) = g(o)’ from (14) we get

(). 1 o[ZT—(a+p)) 0 1 .{V_ 2 oA J(O)'
: -v)C'{ = Jf " '((M) Tr(A)l‘f =
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Since _® >0, then A'= LA is also SPD, and we can obtain A' = ubpuT

Tr(A)" Tr(A)
where UUT =UTU, D =diag(x;) and z; (i=1...,n) are the eigenvalues of A'.
Multiplying the both sides of (18) by UT A, we have:

ol
uT el —uTa h=e) ) o) (f_a) uTae. 9)

c
By choosing cf(i) =UTA’§(i) = DUch(i),i =0,1,...,n, we have:

() q{w_&ﬁfa)Dn 0

) = £0) (20)

c

SO we obtain:

(O o = L3525 )

where cfl(o) is the Ith component of the vector 5( )defined in (20). Assume that

,u|', since A :1—,u|l, then we have ¢ = 2 /11_,3+a. From

=V-—-
N pal pa
2 p+a
Theorem 2.1 we have-1< A - <1, so-1<¢ <1, and by (11) we
p-a p-a
have:

H (. HAZ é:( ) ( ( )) <i2 aX(Ci (gf’l))zzn:(gl(o))z- (21)
)=

Since max (
—1<(/)|<l

1, we have:

§O

PR X N -

==

L )
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It can be shown by mathematical induction that

2—(ﬂ+a)] 1 ( 2 ZiJ.
G = : 1-a)+,(1-8)) +|/(l-a)—4/(1-8 ;
[ s R (L o I NEDR )

for more details see [8]. Hence, from (22) and the above equality, the inequality of
theorem 3.2 is hold. m

This theorem shows that if we use the Chebyshev —TIM method for solving the
SPD linear systems, then this scheme can be terminated after the ith iteration,
where i satisfies the inequality in the Theorem 3.2.

4. Numerical Experiments

In this Section, we present a number of numerical experiments to illustrate
the results obtained in the previous Sections. The initial guess was always zero
vector, and the right hand side was selected such that the exact solution of the

augmented system (1) is(1,2,...,n)T e0". The stopping criterion, when the

current iteration satisfies, is tol =107®. The number of iterations and CPU time
are denoted by the Iter and the CPU, respectively.
Example 4.1. Consider the following three-dimensional convection-diffusion

equation—(uxx +Uyy +uzz)+2uX +Uy +U; = f (x,y,z),0n the unit cube domain

Q=[0,1]x[0,1]x[0,1] with Dirichlet boundary conditions. When the seven-point
finite difference discretization (e.g., the centered differences approximations to
the diffusive terms and the convective terms) are applied into the above model of
convection-diffusion equation, we get the system of linear equations with the
coefficient matrix A=TRIRI+1TR®I1+1®1®T, where ® denotes the

Kronecker product, and the equidistant step-size h=1/n+1is used in the
discretization on all of the three directions, and the natural lexicographic ordering
is employed to the unknowns. In addition

Ty =tridiagonal —[2+2hj,1,—(2_—2hj T, =T, =tridiagonal —(“2“),1,—(2_2“) .
12 12 12 12

For details, see [4]. Then, we solve the n® x n® matrix yielded by the TIM scheme
and the Chebyshev—TIM method. In Table 1, we report the CPU time and the
number of iterations for the corresponding TIM scheme and Chebyshev-TIM
method with different parameters.

Example 4.2. (The Poisson's equation) The Poisson’s matrix is the block

tridiagonal matrix of order n? resulting from the discretizing the Poisson's
equation with the 5-point operator on an n-by-n mesh [5]. To produce a Poisson
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matrix of dimension n, one may use the MATLAB command
A= gallery (' poisson’,n). In Tables 2-5,

Table 1
Results of example 4.1
3 W TIM Chebyshev -TIM
n Iter CPU Iter CPU
125 w e (0,134.6041), w =120 88 0.016167 29 0.008668
343 w e (0,357.4503), w = 340 150 0.127688 38 0.062618
729 w e (0,748.4160),w = 740 228 0.697578 59 0.216027

we report the CPU time and the number of iterations for different iterative
methods with different parameters. We can see that the SOR method performs

much better than the other existing methods. Moreover, fora)e[go,llo] and

n? =100, the results of using the Chebyshev—TIM method with 500 iterations,
based on the Gauss-Seidel splitting, are shown in Figure 1. From Figure 1, we can

find that the optimal value of @ lies in (99,101). Also, Figure 2 shows that the
optimal value of » lies in (100.18,100.22); therefore, by settingw =100.2, we
have a fast convergence.

Example 4.3. In this example we consider system (1) with matrix A as a Toeplitz
matrix. Such a system is called the Toeplitz linear system [7]. Suppose that A is a
large sparse non-Hermitian positive definite Toeplitz matrix as

1 ap ag - RN
a, o )
a_

A=| 3 .
as
ap

a_n cee cee a_3 a_2 al

One of the latest iterative methods for solving such a system is the HSS
method. This method uses the splitting (I +H)y:(,BI—S)x(k)+b,

(B1+ S)x(k+1) =(B1—H)y+b where j is a given positive constant.
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Results of the example 4.2 for the Jacobi method
N =n? Iter CPU
25 34 0.002987
100 85 0.003971
1024 297 0.046571
Results of the example 4.2 for the Gauss Seidel and SOR methods
N = n?2 we(0,2) Iter CPU
100 1.0(Gauss-Seidel) 137 0.010002
15 44 0.003181
1.5604(opt) 32 0.002441
1.9 133 0.124887
1024 1.0(Gauss-Seidel) 975 3.279529
1.8 118 0.392415
1.8264 (opt) 88 0.307156
1.9 134 0.521695
Results of the example 4.2 for the TIM method
N = n2 ® Iter CPU
100, 97 298 0.021206
€ (0,102.0672) 99 292 0.020938
101 286 0.020428
1024 102 283 0.020291
e (0,1026.3) 1022 2288 11.034147
1024 2284 10.323143
1026 2280 10.043827

1020

-10

log(error)

90 91 92 93 94 95 96 97 98 99 100101102103104105106107108109110

omega

Fig. 1. Generated errors in

107

Table 2

Table 3

Table 4

99.18 99.38 9958 99.78 99.98 100.18 100.38 100.58 100.78 100 .98

omega

Fig. 2. Generated errors in example 4.2

example 4.2 for @ €[90,110].

for @ €[99,101]
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In this example, we consider a Toeplitz linear system with symmetric positive
definite Toeplitz matrix A with a(i,i+j-1)=1/\[j+1, for i=1...,64 and
j=1,...,64—i+1. Fig. 3 shows the errors generated by the HSS method
with g =25, the Richardson iteration method and the Chebyshev —TIM method
with £ =6.98. From Figure 3 we find that in this example the convergence of the

Chebyshev—-TIM method is much faster than the HSS and Richardson iteration
methods. Moreover, notice that the HSS method is a method for the Toeplitz
linear system, but the Chebyshev-TIM method can be used for a variety of linear
systems.

log(Error)

Chebyshev -TIM method
Richardson iteration method
108 HSS method

10-10 -
10° 10’ 102 10%
log(lteration)

Fig. 3. Comparison of numerical errors of Chebyshev -TIM, Richardson iteration method, and

HSS method
Table 5
Results of example 4.2 for the Chebyshev —TIM method
N = n2 0 Iter CPU
100, 99 53 0.004145
o < (0,102.0672) 100 52 0.004064
101 60 0.004722
1024 1000 145 0.560800
w e (0,1026.3) 1010 144 0.584371
1020 143 0.521024

5. Conclusions

In this paper, a special case of the Richardson iterative method for solving
large sparse linear systems has been developed. We have shown that the error
bounds of this method are smaller than the TIM algorithm (Theorem 3.2). The
numerical results also proved our claim concerning this issue, and in the most



An efficient Chebyshev semi-iterative version 251

cases the performance of these methods is much better in comparison with the
existing methods. The results showed that the new algorithm converges fast and
works with high accuracy for a variety of linear systems.
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