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ETUDE DE LA NATURE DES ETATS ELECTRONIQUES
DANS LES SYSTEMES 2D AVEC DESORDRE CORRELE

Aicha DJERABA', Nouredine ZEKRI?, Khaled SENOUCT

Nous étudions numeériquement [’effet du désordre corrélé sur la nature des
états électroniques des systemes 2D. Nous considérons un réseau carré avec un
deésordre diagonal corrélé des sites d’énergie. Les états électroniques sont obtenus
en diagonalisant [’hamiltonien d’Anderson. Pour caractériser la nature des états,
on examine la densité d’état (DOS), l'inverse du rapport de participation (IRP) et
la longueur de localisation pour différentes valeurs du désordre et tailles du systeme
a l'énergie E=0. Nous n'avons trouvé que des états délocalisés dans la plage
d'énergie et de désordre suggérée.

We numerically study the effect of correlated disorder on the nature of the
electronic states in 2D systems. We consider a square lattice with a correlated
diagonal disorder on energy sites. The electronic states are obtained by exact
diagonalization of Anderson Hamiltonian. To characterize the nature of states, we
examine the density of states (DOS), the inverse of the participation ratio (IRP) and
the localization length for different values of the disorder and the system sizes at
energy E =0. We only found delocalized states within the suggested energy and
disorder range.

Mots clés: Mod¢le d’ Anderson, transition localisation-délocalisation, désordre
corrélé, densité d’état, inverse du rapport de participation et longueur
de localisation.

1. Introduction

En 1958, Anderson [1] avait suggéré que le désordre induit une transition
métal isolant (TMI) qui demeure d’un grand intérét dans I’étude du probléme de
localisation. Pour les systémes sans interaction entre les électrons, une approche
fortement réussie, établie en 1979 par Abrahams et al [2] qu’est la théorie
d’échelle de localisation, suggérant qu'une TMI existe pour ces systeémes a 3D en
absence de champ magnétique et de couplage spin orbite. Beaucoup de travaux
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analytiques et numériques ont supporté cette théorie [3,4]. Cette méme théorie
prouve qu'il n'y a pas d’états étendus a 1D et 2D. Comme 2 est la dimension
critique inférieure du probléme de localisation, le cas 2D est en un sens proche du
cas 3D ; les états sont seulement marginalement localisés pour un faible désordre
et un faible champ magnétique ou couplage spin orbite peut mener a l'existence
d’états étendus et ainsi d'une TMI. Par conséquent les longueurs de localisation
d'un systeme 2D avec désordre du potentiel peuvent étre tout a fait grandes [5,6]
de sorte que des approches numériques peuvent trouvées une localisation
délocalisation quand on diminue la taille du systéme en fixant le désordre ou en
diminuant le désordre pour une taille fixée [7]. Les expériences pionnicres de
Kravchenko et al [8] en 1996 ont montré 1’existence d’une TMI dans certains gaz
d’¢électrons 2D en interaction a faible densité et trés récemment Yang et al [9] ont
trouvé par des mesures spectroscopiques I’existence d’une forte corrélation
¢lectronique dans un matériau 2D de type graphéne tri-couche ABC (TLG/hBN),
il a déja été montré que ce matériau présenté une TMI a un supraconducteur, ce
qui ouvre un défi a la compréhension courante du probléme 2D. D’autre part, il a
été montré théoriquement I’existence de la phase métallique dans les systémes 1D
et 2D avec désordre corrélé [10-15]. La plupart des approches numériques au
probléme de localisation utilisent 1’hamiltonien des liaisons fortes d’Anderson
avec un désordre du potentiel. Afin de caractériser les états électroniques, des
calculs du rapport de participation ou de I’inverse du rapport de participation IRP
[16,17] sont obtenus par une diagonalisation exacte, les propriétés multi-fractales,
les statistiques des niveaux d’énergie..... Particulierement fructueuse est la
méthode de la matrice de transfert (TMM) [18-20] qui permet un calcul direct de
la longueur de localisation et valide les hypothéses de la théorie d’échelle par une
preuve numérique d'une fonction d’échelle. Dans notre travail, nous présentons
des résultats numériques obtenus par diagonalisation exacte en considérant le
modele d'Anderson a 2D dans lequel on tient compte de I’interaction entre les
plus proches voisins avec une corrélation du désordre. Ceci afin de calculer la
DOS et de voir son comportement en centre de bande E=0, ensuite on étudie le
IRP en fonction du désordre et enfin on fait une analyse d’échelle de IRP ce qui
nous a permis préalablement de définir la nature de 1’état puis de le vérifier en
calculant la longueur de localisation en fonction du désordre pour différentes
tailles du systéme.

2. Modéle de localisation d’Anderson

Le modele 2D d’Anderson [4] est un modele standard pour la description
des systemes désordonnés avec un hamiltonien donné par:
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Les sites i=(x,y) forment un réseau carré de taille N=LxL.

& : énergie du site i, de valeurs aléatoires €[-w/2,+w/2] avec w=vw ou nw le

degré du désordre.

tij: terme d’interaction entre les plus proches voisins, de valeur tj=1 pour un

désordre diagonal vw ou nw.

3. Modéle du désordre corrélé

Le désordre corrélé est décrit dans notre étude par des sites nommeés
visibles vw ou non visibles nw. Ces sites sont obtenus par un simple algorithme
mathématique qui géncre des nombres premiers ou non entre eux, voir la
répartition des sites visibles figurel.

On remarque que ce type de corrélation du désordre peut créer des canaux,
permettant le transport €électronique. L’¢lectron peut diffuser a travers ces canaux,
créant ainsi des états étendus ou bien délocalisés.
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Fig. 1. Répartition du désordre corrélé pour un réseau carré de taille :
La densité¢ d’état est calculée numériquement a partir du spectre de

I’hamiltonien des liaisons fortes en utilisant la technique DE4CSB [22] pour
diagonaliser les matrices carrées creuses. La figure 2 montre le comportement de

la DOS pour différentes valeurs de désordre sur les sites visibles et non visibles,

4. Calcul de la densité d’état
0 ou il y’a une différence entre la corrélation non visible et visible. Donc on

peut déduire déja qu’un faible désordre non visible peut délocaliser les états a

E=0.

visibles et non visibles au méme temps, la singularité tend a disparaitre quand le

prononcé avec un désordre sur les sites non visibles nw=2,4,5 avec vw=0. Le pic
est moins prononcé quand le désordre est totalement diagonal c'est-a-dire sur les
désordre devient plus grand nw=vw=5. Il apparait donc qu’en centre de bande

2-¢ I’existence d’une singularit¢ en centre de bande a E

la taille du systéme est N:

E
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Fig. 2. Densité d’état pour différentes valeurs du désordre diagonal
sur les sites visibles et non visibles pour N=40x40.

5. Calcul de ’'IRP

Le rapport de participation Py est une mesure pratique de la localisation
d’une fonction d’onde dans un systéme de taille finie, en évaluant le nombre de
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sites qui contribuent a I’amplitude de la fonction d’onde i de I’¢tat propre j sur le
site i=(n,m), son inverse est défini par :

4
oo il
RP=Py ' = 1 )
N Xpi)?
Il se comporte : IRP~ L7 3)

e Siv=d état délocalis¢ ou étendu (d la dimension du systéme)

e Siv=0 état localisé
La figure 3 montre le comportement de I'IRP en fonction des états j pour la taille
du systeme N=40x40. On voit sur la figure 3-a et 3-b que pour toutes les valeurs
du désordre considérées le comportement est pratiquement le méme présence de
maximum en milieu et en bords des états j, ce qui nous amene a dire que le pic
présenté par la DOS a E=0 peut étre un état faiblement localisé ou délocalisé,
¢tant donné que le nombre de sites contribuant a ’amplitude de la fonction
d’onde n’est pas nulle.
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Fig. 3. Inverse du rapport de participation en fonction des états j, pour différentes valeurs du
désordre diagonal sur les sites visibles et non visibles pour N=40x40.

6. Etude de ’IRP en fonction de I’énergie

Les valeurs du rapport de participation inverse ne reflétent pas directement
I’existence d’une transition localisation-délocalisation, c’est pour cela qu’il est
nécessaire de voir le comportement de I’IRP en fonction de la taille N du systéme.
Sur la figure 4, nous montrons la dépendance de IRP en fonction de N pour un
degré de désordre diagonal moyen nw=4 a E=0, pour des tailles du systéme allant
de N=10x10 jusqu’a N=90x90, avec un &cart énergétique AE=0,01. Un fit linéaire
avec une échelle log-log donne une droite de pente égale a v=1,86=2 qui est la
dimension du systeme. Ceci montre que 1’état est délocalisé en centre de bande
pour nw=4. Vu que nous sommes limités par la taille selon nos moyens de calculs,
nous avons pris un désordre nw=4 afin de voir son effet sur I’IRP, ce choix du
désordre est a la base du comportement de la DOS en fonction de I’énergie pour
nw=4 du fait de ’existence d’une singularité a E=0. Comme le montre la figure 4
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jusqu’a une certaine taille N=70x70, on remarque qu’il y’a une signature de
localisation marquée par des fluctuations au dela de cette taille.

nw=4, vww=0
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Fig. 4. Inverse du rapport de participation en fonction de la taille N du systéme.
7. Etude de la longueur de localisation en fonction du désordre

La longueur de localisation est calculée numériquement par la méthode de
la matrice de transfert (TMM) [19,20], elle est utilisée pour étudier les propriétés
de localisation des états dans les systémes désordonnés afin de calculer la
longueur de décroissance de la fonction d’onde dans les systémes quasi 1D de
largeur M et de longueur L>>M. L’hamiltonien du systéme équation (1) est donné
sous forme matricielle ci-dessous:

- 1
(%Hlj: HLJ (E-¢,~H,) _HH i [t//n J:Tn( v, j @
l//n 1 0 Wl’l—l '//n—l

vy est la fonction d’onde sur chaque site, E est I’énergie, Hi est ’hamiltonien, 1 et
0 sont la matrice unité et la matrice zero, tall est une matrice diagonale represantant
I’interaction entre les plus proches voisins, Tn est la matrice de transfert.
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Les valeurs propres exp(yi(M)) de In(ITLN"*Ti"Ti)/2N existent et le plus petit
exposant de Lyapunov ymin détermine la longueur de localisation par :

A= 5)

Y min

Afin d’étudier la dépendance de la longueur de localisation A en fonction du
désordre nw et vw, la longueur de localisation est définie comme I’inverse du plus
petit exposant de Lyapunov qui est calculé numériquement en utilisant la méthode
standard de réorthonormalisation de Gram-Schmidt. L’exposant de Lyapunov est
calculé apres dix étapes de multiplication des matrices de transferts moyennés sur
10000 échantillons avec une précision de 1%. Pour une énergie et un degré de
désordre donné, les propriétés de localisation peuvent étre analysés en taille ou en
désordre si la longueur de localisation augmente ou reste constante avec la taille,
les états sont délocalisés ou étendus. Pour les états localisés, la longueur de
localisation décroit en augmentant la taille. Dans la figure 5, on trace la
dépendance de A avec le désordre nw et vw pour les états a E=0 a différentes
tailles du systéme de largeur M. On voit sur la figure (5-a) et (5-b) que la longueur
de localisation diminue avec I’augmentation du désordre avec 1’existence d’une
premicre phase ou les états sont délocalisés pour un désordre de [0-1] avec une
longueur de localisation supérieure a la taille du systéme A>M, puis une deuxiéme
phase ou les états sont faiblement délocalisés pour un désordre de [1-4] avec une
longueur de localisation presque égale a la taille du systéme A=M et une troisieéme
phase ou les états sont localisés pour un désordre de ]4-10] avec une longueur de
localisation tres faible devant la taille du systéme A<<M. On remarque aussi que
la décroissance de la longueur de localisation est plus rapide en présence du
désordre vw avec un effet de taille pour M supérieure a 100 contrairement au
désordre nw ou la longueur de localisation est supérieure a la taille du systeme
quelque soit M pour un désordre de [0-1]. Ce résultat est en accord avec ceux de
Eilmes et al pour un désordre non diagonal [17,18] et plus récemment ceux de
Cadez et al [21].
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Fig. 5. Longueur de localisation en fonction du désordre
(5-a) non visible nw et (5-b) visible vw.
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8. Conclusions

Nous avons étudi¢ ’hamiltonien d’Anderson 2D avec un désordre diagonal
corrélé sur les énergies des sites aléatoires. Notre but était de voir I’effet des
corrélations visibles et non visibles sur la nature des états a I’énergie E=0. La
densité d’états montre une singularité a 1’énergie E=0 qui est supprimée si le
systtme est complétement désordonné avec un fort degré de désordre.
Particulierement I’étude de I’inverse du rapport de participation en fonction de la
taille du systeme montre I’existence d’une délocalisation des états en centre de
bande E=0 pour un degré de désordre non visible faible a la limite moyen jusqu’a
une taille de 70x70 au-dela de laquelle on a une signature de localisation. Cette
délocalisation est incohérente avec la théorie d'échelle pour les systémes 2D. Du
comportement de la longueur de localisation en fonction du désordre pour
différentes tailles du systéme en E=0, on trouve que les états sont délocalisés pour
un désordre faible avec D’existence d’une transition du type délocalisation-
localisation pour un désordre égale a 4 caractéristique du comportement de
I’inverse du rapport de participation en fonction de la taille du systéme. Le
systeme 2D décrit dans ce travail peut étre réalisé expérimentalement en cultivant
des points quantiques sur un substrat dans les positions non visibles. Comme
l'origine de la localisation est la nature ondulatoire des électrons, des systemes
classiques équivalents peuvent également étre réalisés sur des murs pour
I’acoustique et 'optique.

REFERENCES

[1]. P.W.Anderson, Phys Rev, vol 109, n°5, Mars 1958, pp 1492-1505.

[2]. E.Abrahams et al, Phys Rev lett, vol 42, n°10, Mars 1979, pp 673-676.

[3]. B.Kramer et A. Makinnon, Rep Prog Phys, vol 56, n°12, Décembre 1993, pp 1469-1564.

[4]. P.A.Lee et al, Rev Mod Phys, vol 57, n°2, Avril 1985, pp 285-337.

[5]. J.L.Pichard et G.Sarma, J Phys C: Solid State Phys, vol 14, n°6, Février 1981, pp 127-132.

[6]. A.MacKinnon et B.Kramer, Z Phys B: Condensed Matter, vol 53, n°1, Mars 1983, pp 1-13.

[7]. K.Muller et al, Phys Rev Lett, vol 78, n°2, Janvier 1997, pp 215-218.

[8]. S.V.Kravchenko et al, Phys Rev, vol 77, n°24, Décembre 1996, pp 4938-4941.

[9]. J.Yang et al, Science, vol 375, n° 6586, Mars 2022, pp 1295-1299.

[10]. C.M.Soukoulis et al, Phys Rev B, vol 50, n°8, Aout 1993, pp 5110-5118.

[11]. Z.Okbani, R.Ouasti et N.Zekri, Physica A, vol 234, n°1l, Décembre 1996, pp 38-52.

[12]. Gregory M. Petersen, Anderson Localization in Low Dimensional Systems with Long Range
Correlated Disorder, Doctor of Philosophy, College of Arts and Sciences of Ohio
University, Mai 2014.

[13]. Niaz A.Khan, Correlated Disorder in One-dimensional Electronic Systems, PhD Thesis,
Sciences Faculty of Porto University Portugal, Mai 2019.

[14]. Brianna S. Dillon Thomas, Localization and delocalization in two-dimensional quantum
percolation, Doctor of Philosophy, Purdue University Indiana, Aott 2016.

[15]. Ling Z.Tang et al, arXiv: 2005.13205v2 [cond-mat.mes-hall], 10 Juin 2020, pp 1-7.



186 Aicha Djeraba, Nouredine Zekri, Khaled Senouci

[16]. M.Schreiber, Phys Rev B, vol 31, n°9, Mai 1985, pp 6146-6149.

[17]. A.Eilmes, R.A.Romer et M.Schreiber, Eur Phys J B, vol 1, n°1, Janvier 1998, pp 29-38.

[18]. A.Eilmes et al, Physica Status Solidi (b), vol 241, n°® 9, Juillet 2004, pp 2079-2088.

[19]. A.MacKinnon et B.Kramer, Z Phys B, vol 53, n°1, Mars 1983, pp 1-13.

[20]. A.MacKinnon, Transfer Matrices and Disordered Systems. Lecture Notes in Physics, vol 630,
Springer, Berlin, Heidelberg, 2004.

[21]. T.Cadez et al, phys Rev B140, n°18, Novembre 2021, pp 11-15.

[22]. W.H Press et al, Numerical Recipes in Fortran 77: The Art of Scientific Computing 2"
Edition, Cambridge University Press, Etats Unis, 1992.



