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ETUDE DE LA NATURE DES ÉTATS ÉLECTRONIQUES 
DANS LES SYSTEMES 2D AVEC  DÉSORDRE CORRÉLÉ 

Aicha DJERABA1, Nouredine ZEKRI2, Khaled SENOUCI3 

Nous étudions numériquement l’effet du désordre corrélé sur la nature des 
états électroniques des systèmes 2D. Nous considérons un réseau carré  avec un 
désordre diagonal corrélé des sites d’énergie. Les états électroniques  sont obtenus  
en diagonalisant l’hamiltonien  d’Anderson. Pour caractériser la nature des états, 
on  examine la densité d’état (DOS), l’inverse du rapport de participation (IRP) et 
la longueur de localisation pour différentes valeurs du désordre et tailles du système 
à l’énergie E=0. Nous n'avons trouvé que des états délocalisés dans la plage 
d'énergie et de désordre suggérée.   

We numerically study the effect of correlated disorder on the nature of the 
electronic states in 2D systems. We consider a square lattice with a correlated 
diagonal disorder on energy sites. The electronic states are obtained by exact 
diagonalization of Anderson Hamiltonian. To characterize the nature of states, we 
examine the density of states (DOS), the inverse of the participation ratio (IRP) and 
the localization length for different values of the disorder and the system sizes at 
energy E =0. We only found delocalized states within the suggested energy and 
disorder range. 

Mots clés: Modèle d’Anderson, transition localisation-délocalisation, désordre     
                  corrélé, densité d’état, inverse du rapport de participation et longueur         
                  de localisation. 

1. Introduction 

En 1958, Anderson [1] avait suggéré que le désordre induit une transition 
métal isolant (TMI) qui demeure d’un grand intérêt dans l’étude du problème de 
localisation. Pour les systèmes sans interaction entre les électrons, une approche  
fortement réussie, établie en 1979 par Abrahams et al [2] qu’est la théorie 
d’échelle de localisation, suggérant qu’une TMI existe pour ces systèmes  à 3D en 
absence de champ magnétique et de couplage spin orbite. Beaucoup  de travaux 
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analytiques et numériques ont supporté cette théorie [3,4]. Cette même théorie 
prouve qu'il n'y a pas d’états étendus à 1D et 2D. Comme 2 est la dimension 
critique inférieure du  problème de localisation, le cas 2D est en un sens proche du 
cas 3D ; les états sont seulement marginalement localisés pour un faible désordre 
et un faible champ magnétique ou couplage spin orbite peut mener à l'existence 
d’états étendus et ainsi d'une TMI. Par conséquent  les longueurs de localisation 
d'un système 2D avec désordre du potentiel peuvent être tout à fait grandes [5,6] 
de sorte que des approches numériques peuvent trouvées une localisation 
délocalisation quand on diminue la taille du système en fixant le désordre ou en 
diminuant le désordre pour une taille fixée [7]. Les expériences pionnières de 
Kravchenko et al [8] en 1996 ont montré l’existence d’une TMI dans certains gaz 
d’électrons 2D en interaction à faible densité et très récemment Yang et al [9] ont 
trouvé par des mesures spectroscopiques l’existence d’une forte corrélation 
électronique dans un matériau 2D de type graphène tri-couche ABC (TLG/hBN), 
il a déjà été montré que ce matériau présenté une TMI à un supraconducteur, ce 
qui ouvre un défi à la compréhension courante du problème 2D. D’autre part, il a 
été montré théoriquement l’existence de la phase métallique dans les systèmes 1D 
et 2D avec désordre corrélé [10-15]. La plupart des approches numériques au 
problème de localisation utilisent l’hamiltonien des liaisons fortes d’Anderson 
avec un désordre du potentiel. Afin de caractériser les états électroniques, des 
calculs du rapport de participation ou de l’inverse du rapport de participation IRP 
[16,17] sont obtenus par une diagonalisation exacte, les propriétés multi-fractales, 
les statistiques des niveaux d’énergie….. Particulièrement fructueuse est la 
méthode de la matrice de transfert (TMM) [18-20] qui permet un calcul direct de 
la longueur de  localisation et valide les hypothèses de la théorie d’échelle par une  
preuve numérique d'une fonction d’échelle. Dans  notre  travail, nous présentons 
des résultats numériques obtenus par diagonalisation exacte en considérant le 
modèle  d'Anderson à 2D dans lequel on tient compte de l’interaction entre les 
plus proches voisins avec une corrélation du désordre. Ceci afin de calculer la 
DOS et de voir son comportement en centre de bande E=0, ensuite on étudie le 
IRP en fonction du désordre et enfin on fait une analyse d’échelle de IRP ce qui 
nous a permis préalablement de définir la nature de l’état puis de le vérifier en 
calculant la longueur de localisation en fonction du désordre pour différentes 
tailles du système. 

2. Modèle de localisation d’Anderson 

Le modèle 2D d’Anderson [4] est un modèle standard pour la description 
des systèmes désordonnés avec un hamiltonien donné par: 
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Les sites i=(x,y) forment un réseau carré de taille N=L×L.  
εi : énergie du site , de valeurs aléatoires ∈[-w/2,+w/2] avec w=vw ou nw le 
degré du désordre. 
tij: terme d’interaction entre les plus proches voisins, de valeur tij=1 pour un 
désordre diagonal vw ou nw. 

3. Modèle du désordre corrélé  

Le désordre corrélé est décrit dans notre étude par des sites nommés 
visibles vw ou  non visibles nw. Ces sites sont obtenus par un simple algorithme 
mathématique qui génère des nombres premiers ou non entre eux, voir la 
répartition des sites visibles figure1.  
On remarque que ce type de corrélation du désordre peut créer des canaux, 
permettant le transport électronique. L’électron peut diffuser à travers ces canaux, 
créant ainsi des états étendus ou bien délocalisés.   
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Fig. 1. Répartition du désordre corrélé pour un réseau carré de taille : 

(1-a) N=30×30 et (1-b) N=40×40. 

4. Calcul de la densité d’état 

La densité d’état est calculée numériquement à partir du spectre de 
l’hamiltonien des liaisons fortes en utilisant la technique DE4CSB [22] pour 
diagonaliser les matrices carrées creuses. La figure 2 montre le comportement de 
la DOS pour différentes valeurs de  désordre sur les sites visibles et non visibles, 
la taille du système est N=40×40. Nous constatons d’après les figures 2-a, 2-b et 
2-c l’existence d’une singularité en centre de bande à E=0, le pic est plus 
prononcé avec un désordre sur les sites non visibles nw=2,4,5 avec vw=0. Le pic 
est moins prononcé quand le désordre est totalement diagonal c'est-à-dire sur les 
visibles et non visibles au même temps, la singularité tend à disparaître quand le 
désordre devient plus grand  nw=vw=5. Il apparaît donc qu’en centre de bande 
E=0 où il y’a une différence entre la corrélation non visible et visible. Donc on 
peut déduire déjà qu’un faible désordre non visible peut délocaliser les états à 
E=0. 
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Fig. 2. Densité d’état pour différentes valeurs du désordre diagonal   

sur les sites visibles et non visibles pour N=40×40. 

 5. Calcul de l’IRP 

 Le rapport de participation PN est une mesure pratique de la localisation 
d’une fonction d’onde dans un système de taille finie, en évaluant le nombre de 
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sites qui contribuent à l’amplitude de la fonction d’onde ψi de l’état propre j sur le 
site i=(n,m), son inverse est défini par : 
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Il se comporte :           ν−≈ LIRP                                                 (3) 
• Si ν=d état délocalisé ou étendu  (d  la dimension du système) 
• Si ν=0 état localisé 

La figure 3 montre le comportement de l'IRP en fonction des états j pour la taille 
du système N=40×40. On voit sur la figure 3-a et 3-b que pour toutes les valeurs 
du désordre considérées le comportement est pratiquement le même présence de 
maximum en milieu et en bords des états j, ce qui nous amène à dire que le pic 
présenté par la DOS à E=0 peut être un état faiblement localisé ou délocalisé, 
étant donné que le nombre de sites contribuant à l’amplitude de  la fonction 
d’onde n’est pas nulle. 
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Fig. 3. Inverse du rapport de participation en fonction des états j, pour différentes valeurs du 

désordre diagonal  sur les sites visibles et non visibles pour N=40×40. 
 

6. Etude de l’IRP en fonction de l’énergie 

Les valeurs du rapport de participation inverse ne reflètent pas directement 
l’existence d’une transition localisation-délocalisation, c’est pour cela qu’il est 
nécessaire de voir le comportement de l’IRP en fonction de la taille N du système. 
Sur la figure 4,  nous montrons  la dépendance de IRP en fonction de N pour un 
degré de désordre diagonal moyen nw=4 à E=0, pour des tailles du système allant 
de N=10×10 jusqu’à N=90×90, avec un écart énergétique ∆Ε=0,01. Un fit linéaire 
avec une échelle log-log donne une droite de pente égale à ν=1,86≈2 qui est la 
dimension du système. Ceci montre que l’état est délocalisé en centre de bande 
pour nw=4. Vu que nous sommes limités par la taille selon nos moyens de calculs, 
nous avons pris un désordre nw=4 afin de voir son effet sur l’IRP, ce choix du 
désordre est à la base du comportement de la DOS en fonction de l’énergie pour 
nw=4 du fait de l’existence d’une singularité à E=0. Comme le montre la figure 4 
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jusqu’à une certaine taille N=70×70, on remarque qu’il y’a une signature de 
localisation  marquée par des fluctuations au delà de cette taille.   
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Fig. 4. Inverse du rapport de participation en fonction de la taille N du système. 

7. Etude de la longueur de localisation en fonction du désordre 

La longueur de localisation est calculée numériquement par la méthode de 
la matrice de transfert (TMM) [19,20], elle est utilisée pour étudier les propriétés 
de localisation des états dans les systèmes désordonnés afin de calculer la 
longueur de décroissance de la fonction d’onde dans les systèmes quasi 1D de 
largeur M et de longueur L>>M. L’hamiltonien du système équation (1) est donné 
sous forme matricielle ci-dessous: 
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ψn est la fonction d’onde sur chaque site, E est l’énergie, H⊥ est l’hamiltonien, 1 et 
0 sont la matrice unité et la matrice zero, tn|| est une matrice diagonale represantant 
l’interaction entre les plus proches voisins, Tn  est la matrice de transfert.  
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Les valeurs propres exp(±γi(M)) de ln(∏i
N→∞Ti

+Ti)/2N existent et le plus petit 
exposant de  Lyapunov γmin détermine la longueur de localisation par :            

min

1
γ

λ =                                                                            (5) 

Afin d’étudier  la dépendance de la longueur de localisation λ en fonction du 
désordre nw et vw, la longueur de localisation est définie comme l’inverse du plus 
petit exposant de Lyapunov qui est calculé numériquement en utilisant la méthode 
standard de réorthonormalisation de Gram-Schmidt. L’exposant de Lyapunov est 
calculé après dix étapes de multiplication des matrices de transferts moyennés sur 
10000 échantillons avec une précision de 1%. Pour une énergie et un degré de 
désordre donné, les propriétés de localisation peuvent être analysés  en taille ou en 
désordre si la longueur de localisation augmente ou reste constante avec la taille, 
les états sont délocalisés ou étendus. Pour les états localisés, la longueur de 
localisation décroit en augmentant la taille. Dans la figure 5, on trace la 
dépendance de λ avec le désordre nw et vw pour les états à E=0 à différentes 
tailles du système de largeur M. On voit sur la figure (5-a) et (5-b) que la longueur 
de localisation diminue avec l’augmentation du désordre avec l’existence d’une 
première phase où les états sont délocalisés pour un désordre de [0-1] avec une 
longueur de localisation supérieure à la taille du système λ>M, puis une deuxième 
phase où les états sont faiblement délocalisés  pour un désordre de [1-4] avec une 
longueur de localisation presque égale à la taille du système λ≈M et une troisième 
phase ou les états sont localisés pour un désordre de ]4-10] avec une longueur de 
localisation très faible devant la taille du système λ<<M. On remarque aussi que 
la décroissance de la longueur de localisation est plus rapide en présence du 
désordre vw avec un effet de taille pour M supérieure à 100 contrairement au 
désordre nw ou la longueur de localisation est supérieure à la taille du système 
quelque soit M pour un désordre de [0-1]. Ce résultat est en accord avec ceux de 
Eilmes et al pour un désordre non diagonal [17,18] et plus récemment ceux de 
Cadez et al [21]. 
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Fig. 5. Longueur de localisation en fonction  du désordre 

(5-a)  non visible nw et (5-b) visible vw. 
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8. Conclusions 

Nous avons étudié l’hamiltonien d’Anderson 2D avec un désordre diagonal 
corrélé sur les énergies des sites aléatoires. Notre but était de voir l’effet des 
corrélations visibles et non visibles sur la nature des états à l’énergie E=0. La 
densité d’états montre une singularité à l’énergie E=0 qui est supprimée si le 
système est complètement désordonné avec un fort degré de désordre. 
Particulièrement  l’étude de l’inverse du rapport de participation en fonction de la 
taille du système montre l’existence d’une délocalisation des états en centre de 
bande E=0 pour un degré de désordre non visible faible à la limite moyen jusqu’à 
une taille de 70×70 au-delà de laquelle on a une signature de localisation. Cette 
délocalisation est incohérente avec la théorie d'échelle pour les systèmes 2D. Du 
comportement de la longueur de localisation en fonction du désordre pour 
différentes tailles du système en E=0, on trouve que les états sont délocalisés pour 
un désordre faible avec l’existence d’une transition du type délocalisation-
localisation pour un désordre égale à 4 caractéristique du comportement de 
l’inverse du rapport de participation en fonction de la taille du système. Le 
système 2D décrit dans ce travail peut être réalisé expérimentalement en cultivant 
des points quantiques sur un substrat dans les positions non visibles. Comme 
l'origine de la localisation est la nature ondulatoire des électrons, des systèmes 
classiques équivalents peuvent également être réalisés sur des murs pour 
l’acoustique et l'optique. 
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