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FRACTIONAL VECTOR CALCULUS IN THE FRAME OF 
A GENERALIZED CAPUTO FRACTIONAL DERIVATIVE 

Yusuf Ya’u GAMBO1, Fahd JARAD2, Dumitru BALEANU2,3,                               
Thabet ABDELJAWAD4 

 
 

The authors in [1] recently introduced a new generalized fractional derivative on 
𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏] and 𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏], and defined their Caputo version. This derivative contains two 
parameters and reduces to the classical Caputo derivatives if one of these parameters 
tend to certain values. From here and after, by generalized Caputo fractional 
derivative, we refer to the Caputo version of the generalized fractional derivative. This 
paper studies the generalized Caputo fractional derivative and establishes the 
Fundamental Theorem of Fractional Calculus (FTFC) in the sense of this derivative. 
The fundamental results are used in establishing some vital theorems and then applied 
to vector calculus. 

 
Keywords: Generalized Caputo fractional derivative, fundamental theorem 

of fractional calculus (FTFC), fractional vector calculus, 
fractional Green’s theorem, fractional Gauss’ theorem. 

 
1. Introduction and Auxiliary Results 

 
The popularity of fractional calculus (calculus of derivatives and integrals of any 
arbitrary order) and the interest for the subject have grown astoundingly during the 
past three decades or so [3,4,9,10]. 

Of the many definitions of fractional derivatives, the Caputo derivative 
seems to have more demonstrated advantages and numerous seemingly diverse 
applications than the others. Such advantages allow the use of the derivative 
(Caputo derivative) in modifying other fractional derivatives with some 
shortcomings. For example, authors in [2] and [4] have modified the Hadamard 
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fractional derivatives into a more convenient one that has initial conditions that can 
be physically interpretable similar to the ones in the Caputo settings. 

Several real life problems have been studied using the fractional derivatives, 
specifically with the Caputo fractional derivative which is widely applied in various 
areas of sciences and engineering [11,12]. For instance, it is known that due to their 
non-locality, fractional differential operators give a better description of systems 
with memory effect even though the non-locality takes different forms [3,9,11,12]. 
Thus, fractional operators are generalized in order to get the real non-local 
phenomena while numerous works are being carried out on fractional integrals and 
derivatives with non-local and non-singular kernels [10,13,14]. 

Recently, the authors in [1] defined a generalized fractional derivative on 
the space 𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏] (the space of functions defined on [𝑎𝑎, 𝑏𝑏] such that 𝛾𝛾𝑛𝑛−1𝑓𝑓 ∈
𝐴𝐴𝐴𝐴[𝑎𝑎, 𝑏𝑏], where 𝛾𝛾 = 𝑥𝑥1−𝜌𝜌 𝑑𝑑

𝑑𝑑𝑑𝑑
 ) and defined their Caputo version. 

 Authors in [6] presented FTFC in the sense of Caputo fractional derivative 
while developing FTFC using the same fractional derivative and applying it to 
fractional vector calculus can be seen in [7-8]. However, in this paper, we present 
new and generalized results using a generalized Caputo fractional derivative that 
includes two parameters and curtails to the classical Caputo derivative when one 
the parameters is replaced by 1 and to Caputo-Hadamard fractional derivative 
approaches 0 . The derivative is used to develop a generalized FTFC thereby using 
the new results in formulating other theorems. The fundamental result of the FTFC 
is applied to vector calculus incorporating the formulations and proofs of Green’s 
and Gauss’ theorems. In the present section, we give some fundamental definitions 
and known results which are used in this article. Section 2 presents FTFC in the 
sense of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 fractional derivative and some consequent 
results. Applications of the generalized FTFC are given in Section 3 while Section 
4 concludes the paper. 

1.1 Preliminary definitions 
Let [𝑎𝑎, 𝑏𝑏] be a finite interval, 0 ≤ 𝜖𝜖 ≤ 1,𝜌𝜌 ≥ 0 and 𝐴𝐴𝐴𝐴[𝑎𝑎, 𝑏𝑏] be the set of 

absolute continuous functions on [𝑎𝑎, 𝑏𝑏]. Then we define 

𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏] = �𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → ℂ and 𝛾𝛾𝑛𝑛−1𝑓𝑓 ∈ 𝐴𝐴𝐴𝐴[𝑎𝑎, 𝑏𝑏], 𝛾𝛾 = 𝑥𝑥1−𝜌𝜌
𝑑𝑑
𝑑𝑑𝑑𝑑

 � ,𝐴𝐴𝐶𝐶𝛾𝛾1[𝑎𝑎, 𝑏𝑏] 
= 𝐴𝐴𝐴𝐴[𝑎𝑎, 𝑏𝑏]                                                                                                              (1) 

𝐶𝐶𝛾𝛾,𝜖𝜖
𝑛𝑛 [𝑎𝑎, 𝑏𝑏] = �𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → ℂ and 𝛾𝛾𝑛𝑛−1𝑓𝑓 ∈ 𝐶𝐶[𝑎𝑎, 𝑏𝑏], 𝛾𝛾𝑛𝑛𝑓𝑓 ∈ 𝐶𝐶𝜖𝜖,𝜌𝜌[𝑎𝑎, 𝑏𝑏], 𝛾𝛾

= 𝑥𝑥1−𝜌𝜌
𝑑𝑑
𝑑𝑑𝑑𝑑

 �  (2) 

endowed with the norm ‖𝑓𝑓‖𝐶𝐶𝛾𝛾,𝜖𝜖
𝑛𝑛 = ∑ ‖𝛾𝛾𝑘𝑘𝑓𝑓‖𝐶𝐶𝑛𝑛−1

𝑘𝑘=0 + ‖𝛾𝛾𝑛𝑛𝑓𝑓‖𝐶𝐶𝜖𝜖,𝜌𝜌, where 𝐶𝐶𝛾𝛾,0
𝑛𝑛 [𝑎𝑎, 𝑏𝑏] =

𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏] endowed with the norm ‖𝑓𝑓‖𝐶𝐶𝛾𝛾𝑛𝑛 = ∑ ‖𝛾𝛾𝑘𝑘𝑓𝑓‖𝐶𝐶𝑛𝑛
𝑘𝑘=0 . 
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Here, 𝐶𝐶𝜖𝜖,𝜌𝜌[𝑎𝑎, 𝑏𝑏] = �𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → ℝ ∶ �𝑥𝑥
𝜌𝜌−𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝜖𝜖
𝑓𝑓(𝑥𝑥) ∈ 𝐶𝐶[𝑎𝑎, 𝑏𝑏]� ,𝜌𝜌 ≠ 0 equipped 

with the norm ‖𝑓𝑓‖𝐶𝐶𝜖𝜖,𝜌𝜌 = ��𝑥𝑥
𝜌𝜌−𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝜖𝜖
𝑓𝑓(𝑥𝑥)�

𝐶𝐶
, while 𝐶𝐶𝜖𝜖,𝜌𝜌[𝑎𝑎, 𝑏𝑏] = �𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → ℝ ∶

�ln 𝑥𝑥
𝑎𝑎
�
𝜖𝜖
𝑓𝑓(𝑥𝑥) ∈ 𝐶𝐶[𝑎𝑎, 𝑏𝑏]� when 𝜌𝜌 = 0 equipped with the norm ‖𝑓𝑓‖𝐶𝐶𝜖𝜖,𝜌𝜌 =

��ln 𝑥𝑥
𝑎𝑎
�
𝜖𝜖
𝑓𝑓(𝑥𝑥)�

𝐶𝐶
. 

The generalized left and right fractional integrals of order 𝛼𝛼, (𝑅𝑅𝑅𝑅(𝛼𝛼) ≥ 0)  
in Katugampola settings are defined [5] respectively by 

( 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑥𝑥) =
1

Γ(𝛼𝛼)
� �

𝑥𝑥𝜌𝜌 − 𝑦𝑦𝜌𝜌

𝜌𝜌
�
𝛼𝛼−1

𝑓𝑓(𝑦𝑦)
𝑑𝑑𝑑𝑑
𝑦𝑦1−𝜌𝜌

𝑥𝑥

𝑎𝑎
                                          (3) 

�𝐼𝐼𝑏𝑏
𝛼𝛼,𝜌𝜌𝑓𝑓�(𝑥𝑥) =

1
Γ(𝛼𝛼)

� �
𝑦𝑦𝜌𝜌 − 𝑥𝑥𝜌𝜌

𝜌𝜌
�
𝛼𝛼−1

𝑓𝑓(𝑦𝑦)
𝑑𝑑𝑑𝑑
𝑦𝑦1−𝜌𝜌

𝑏𝑏

𝑥𝑥
.                                        (4) 

The generalized fractional derivatives of functions in the space 𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏] or 
𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏] with 𝑛𝑛 = [𝑅𝑅𝑅𝑅(𝛼𝛼)] + 1, 𝑅𝑅𝑅𝑅(𝛼𝛼) > 0 can be defined [1] as  

( 𝐷𝐷𝑎𝑎 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑥𝑥)

=
1

Γ(𝑛𝑛 − 𝛼𝛼)
� �

𝑥𝑥𝜌𝜌 − 𝑦𝑦𝜌𝜌

𝜌𝜌
�
𝑛𝑛−𝛼𝛼−1 (𝛾𝛾𝑛𝑛𝑓𝑓)(𝑦𝑦)𝑑𝑑𝑑𝑑

𝑦𝑦1−𝜌𝜌
𝑥𝑥

𝑎𝑎

+ �
𝛾𝛾𝑘𝑘𝑓𝑓(𝑎𝑎)

Γ(𝑘𝑘 − 𝛼𝛼 − 1)
�
𝑦𝑦𝜌𝜌 − 𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝑘𝑘−𝛼𝛼𝑛𝑛−1

𝑘𝑘=0

                                                          (5) 

     �𝐷𝐷𝑏𝑏
𝛼𝛼,𝜌𝜌𝑓𝑓�(𝑥𝑥)

=
(−1)𝑛𝑛

Γ(𝑛𝑛 − 𝛼𝛼)� �
𝑦𝑦𝜌𝜌 − 𝑥𝑥𝜌𝜌

𝜌𝜌
�
𝑛𝑛−𝛼𝛼−1 (𝛾𝛾𝑛𝑛𝑓𝑓)(𝑦𝑦)𝑑𝑑𝑑𝑑

𝑡𝑡1−𝜌𝜌
𝑏𝑏

𝑥𝑥
 

+ �
(−𝛾𝛾)𝑘𝑘𝑓𝑓(𝑏𝑏)
Γ(𝑘𝑘 − 𝛼𝛼 − 1) �

𝑏𝑏𝜌𝜌 − 𝑥𝑥𝜌𝜌

𝜌𝜌
�
𝑘𝑘−𝛼𝛼

                                                          (6)
𝑛𝑛−1

𝑘𝑘=0

 

 
Definition 1 
Let 𝑅𝑅𝑅𝑅(𝛼𝛼) ≥ 0 and 𝑛𝑛 = [𝑅𝑅𝑅𝑅(𝛼𝛼)] + 1. If 𝑓𝑓 ∈ 𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏], where 0 < 𝑎𝑎 < 𝑏𝑏 < ∞,  
the left generalized Caputo fractional derivative of 𝑓𝑓 of order 𝛼𝛼 is defined  by 

( 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑥𝑥) = � 𝐷𝐷𝑎𝑎 𝛼𝛼,𝜌𝜌 �𝑓𝑓(𝑦𝑦)

−�
𝛾𝛾𝑘𝑘𝑓𝑓(𝑎𝑎)
𝑘𝑘!

�
𝑦𝑦𝜌𝜌 − 𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝑘𝑘𝑛𝑛−1

𝑘𝑘=0

�� (𝑥𝑥).                            (7) 

If 0 < 𝑅𝑅𝑅𝑅(𝛼𝛼) < 1, (13) becomes 
( 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑥𝑥) = ( 𝐷𝐷𝑎𝑎 𝛼𝛼,𝜌𝜌[𝑓𝑓(𝑦𝑦) − 𝑓𝑓(𝑎𝑎)])(𝑥𝑥).                                                         (8) 
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The following theorem gives an alternative definition of the derivative in (13). 
Theorem 1 [1] 
Let 𝑅𝑅𝑅𝑅(𝛼𝛼) ≥ 0,   𝑛𝑛 = [𝑅𝑅𝑅𝑅(𝛼𝛼)] + 1 and 𝑓𝑓 ∈ 𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏], where 0 < 𝑎𝑎 < 𝑏𝑏 < ∞. 

1. If 𝛼𝛼 ∉ ℕ0  ( 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑥𝑥) = 𝐼𝐼𝑎𝑎 𝑛𝑛−𝛼𝛼,𝜌𝜌(𝛾𝛾𝑛𝑛𝑓𝑓)(𝑥𝑥).                                              (9) 
2.  If 𝛼𝛼 ∈ ℕ,  𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓 = 𝛾𝛾𝑛𝑛𝑓𝑓.                                                                       (10) 

𝐷𝐷𝑎𝑎𝐶𝐶 0,𝜌𝜌𝑓𝑓 = 𝑓𝑓.                                                                (11) 
Theorem 2 [1] 
Let 𝑅𝑅𝑅𝑅(𝛼𝛼) ≥ 0,   𝑛𝑛 = [𝑅𝑅𝑅𝑅(𝛼𝛼)] + 1 and 𝑓𝑓 ∈ 𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏], where 0 < 𝑎𝑎 < 𝑏𝑏 < ∞. Then, 
𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓 is continuous on [𝑎𝑎, 𝑏𝑏] and 

( 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑎𝑎) = 0.                                                      (12) 
 
2. Generalized FTFC 
The first fundamental theorem of calculus states that if 𝐹𝐹 is defined by 

                                         𝐹𝐹(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

𝑎𝑎
                                                          (13) 

then 
𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)                                                                    (14) 

at each point in the closed interval. 
The second FTC guarantees that if  𝐹𝐹 is the indefinite integral of  a 

continuous function 𝑓𝑓 on [𝑎𝑎, 𝑏𝑏],  then 

� 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
= 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) = 𝐹𝐹(𝑡𝑡)|𝑎𝑎𝑏𝑏 .                                         (15) 

It is obvious that the generalized fractional derivatives do not have generalization 
of the FTFC in the form of (15). Thus, 

( 𝐼𝐼𝑎𝑎  
𝛼𝛼,𝜌𝜌 𝐷𝐷𝑎𝑎 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑏𝑏) ≠ 𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎).                                           (16) 

The reasons of this are the facts the differential operators 𝛾𝛾𝑛𝑛 = �𝑥𝑥1−𝜌𝜌 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑛𝑛

 used in 
the definition of the generalized fractional derivatives appear outside the integrals 
and these operators do not commute with the integrals. That is, 

( 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌 𝐷𝐷𝑎𝑎 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑥𝑥) = 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌𝛾𝛾𝑛𝑛 𝐼𝐼𝑎𝑎 𝑛𝑛−𝛼𝛼,𝜌𝜌𝑓𝑓(𝑥𝑥) ≠ 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌 𝐼𝐼𝑎𝑎 𝑛𝑛−𝛼𝛼,𝜌𝜌𝛾𝛾𝑛𝑛𝑓𝑓(𝑥𝑥)
= 𝑓𝑓(𝑥𝑥)             (17) 

      However, it has been proven (see [6]-[8]) that 
( 𝐼𝐼𝑎𝑎  

𝛼𝛼 𝒟𝒟𝑎𝑎𝐶𝐶 𝛼𝛼𝑓𝑓)(𝑏𝑏) = 𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎),                                            (18) 
where 𝒟𝒟𝑎𝑎𝐶𝐶 𝛼𝛼 is the Caputo fractional derivative.  
Lemma 1 
Let 𝑅𝑅𝑅𝑅(𝛼𝛼) ≥ 0 and 𝑅𝑅𝑅𝑅(𝛽𝛽) ≥ 0, then 

� 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌 �
𝑦𝑦𝜌𝜌 − 𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝛽𝛽−1

� (𝑥𝑥) =
Γ(𝛽𝛽)

Γ(𝛽𝛽 + 𝛼𝛼) �
𝑥𝑥𝜌𝜌 − 𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝛽𝛽+𝛼𝛼−1

.                   (19) 
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The proof of Lemma 1 can be done by using Definition 1 and properties of the 
gamma function. Now, using the generalized Caputo fractional derivative, we 
present the generalized FTFC. 
Theorem 3 (FTFC) 
Let 0 < 𝑅𝑅𝑅𝑅(𝛼𝛼) ≤ 1,   𝑛𝑛 = [𝑅𝑅𝑒𝑒(𝛼𝛼)] + 1 and 𝑓𝑓 ∈ 𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏], where 0 < 𝑎𝑎 < 𝑏𝑏 < ∞. 
Then, 
a. If 𝐹𝐹(𝑥𝑥) = 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌𝑓𝑓(𝑥𝑥), then 

( 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝐹𝐹)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥).                                                             (20) 
b.  

( 𝐼𝐼𝑎𝑎  
𝛼𝛼,𝜌𝜌 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝐹𝐹)(𝑏𝑏) = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎),                                             (21) 

where ( 𝐼𝐼𝑎𝑎  
𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑏𝑏) = 1

Γ(𝛼𝛼)∫ �𝑥𝑥
𝜌𝜌−𝑦𝑦𝜌𝜌

𝜌𝜌
�
𝛼𝛼−1

𝑓𝑓(𝑦𝑦) 𝑑𝑑𝑑𝑑
𝑦𝑦1−𝜌𝜌

𝑏𝑏
𝑎𝑎 . 

Proof. Assertion a. can be proved using Theorem 3.5 in [1] while assertion b. can 
be proved using Theorem 1, Theorem 4.1 in [5] and Theorem 3.6 in [1]. 
Lemma 2  
Let 𝑅𝑅𝑅𝑅(𝛼𝛼) ≥ 0, 𝑛𝑛 = [𝑅𝑅𝑅𝑅(𝛼𝛼)] + 1 and 𝑓𝑓 ∈ 𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏], where 0 < 𝑎𝑎 < 𝑏𝑏 < ∞. 
Then, 

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎) +
𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓(𝜆𝜆)
Γ(1 + α)

�
𝑥𝑥𝜌𝜌 − 𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝛼𝛼

,     𝜆𝜆 ∈ (𝑎𝑎, 𝑥𝑥).                        (22) 

Proof.  Evaluating the integral in (21) using (3) we obtain 
𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑎𝑎) = ( 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌)𝑓𝑓(𝑥𝑥)

=
1

Γ(𝛼𝛼)� �
𝑥𝑥𝜌𝜌 − 𝑦𝑦𝜌𝜌

𝜌𝜌
�
𝛼𝛼−1

( 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝑦𝑦)
𝑑𝑑𝑑𝑑
𝑦𝑦1−𝜌𝜌

𝑥𝑥

𝑎𝑎
. (23) 

At this point, we apply the mean value theorem for integrals. Thus, 

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑎𝑎) = ( 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓)(𝜆𝜆)
1

Γ(𝛼𝛼)� �
𝑥𝑥𝜌𝜌 − 𝑦𝑦𝜌𝜌

𝜌𝜌
�
𝛼𝛼−1 𝑑𝑑𝑑𝑑

𝑦𝑦1−𝜌𝜌
𝑥𝑥

𝑎𝑎
 ,

𝜆𝜆 ∈ (𝑎𝑎, 𝑥𝑥).                                                                                             (24) 
It can be observed that the right-hand side of (24) involves the generalized 
fractional integral, where the function 𝑓𝑓(𝑡𝑡) = 1, that is, 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌(1). Therefore, using 
Lemma 1 with 𝛽𝛽 = 1  gives 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌(1) = 1

Γ(1+𝛼𝛼) �
𝑥𝑥𝜌𝜌−𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝛼𝛼

. 

Therefore (24) becomes  𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑎𝑎) = � 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌𝑓𝑓�(𝜆𝜆)
Γ(1+𝛼𝛼) �𝑥𝑥

𝜌𝜌−𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝛼𝛼

 ,       𝜆𝜆 ∈ (𝑎𝑎, 𝑥𝑥) 
Lemma 3 
Let 𝑅𝑅𝑅𝑅(𝛼𝛼) ≥ 0,   𝑛𝑛 = [𝑅𝑅𝑅𝑅(𝛼𝛼)] + 1 and 𝑓𝑓 ∈ 𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏], with 0 < 𝑎𝑎 < 𝑏𝑏 < ∞. For 
𝑘𝑘,𝑚𝑚 ∈ ℕ,  

( 𝐼𝐼𝑎𝑎 𝛼𝛼,𝜌𝜌)𝑘𝑘( 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌)𝑚𝑚𝑓𝑓(𝑥𝑥) =
( 𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌)𝑚𝑚𝑓𝑓(𝜏𝜏)
Γ(𝑘𝑘𝑘𝑘 + 1) �

𝑥𝑥𝜌𝜌 − 𝑎𝑎𝜌𝜌

𝜌𝜌
�
𝑘𝑘𝑘𝑘

 ,

𝜏𝜏 ∈ (𝑎𝑎, 𝑥𝑥).                                                                                               (25) 
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Proof.  The proof can be done using semi-group property for integrals in [3]. 
Theorem 4 
Let 𝑓𝑓(𝑥𝑥) ∈ 𝐶𝐶𝛾𝛾𝑛𝑛[𝑎𝑎, 𝑏𝑏], 0 < 𝑎𝑎 < 𝑏𝑏 < ∞ and 𝛼𝛼,𝛽𝛽 ∈ ℂ such that 𝑅𝑅𝑅𝑅(𝛼𝛼) ≥ 0,𝑅𝑅𝑅𝑅(𝛽𝛽) ≥
0. Then 

𝐷𝐷𝑎𝑎𝐶𝐶 𝛼𝛼,𝜌𝜌 𝐼𝐼𝑎𝑎 𝛽𝛽,𝜌𝜌𝑓𝑓(𝑥𝑥) = 𝐼𝐼𝑎𝑎 𝛽𝛽−𝛼𝛼,𝜌𝜌𝑓𝑓(𝑥𝑥).                                            (26) 
Proof. The proof can be done using (3), Theorem 1 and semi-group properties for 
fractional integrals. 
 

3. Applications of the Generalized FTFC in Vector Calculus 
 
We define the generalized Caputo fractional differential operator on [𝑎𝑎, 𝑏𝑏] with 𝛼𝛼 ∈
ℂ,𝑅𝑅𝑅𝑅(𝛼𝛼) ≥ 0 by 

𝐷𝐷𝑎𝑎𝐶𝐶 𝑥𝑥
𝛼𝛼,𝜌𝜌[𝑡𝑡] =

1
Γ(𝑛𝑛 − 𝛼𝛼)� �

𝑥𝑥𝜌𝜌 − 𝑡𝑡𝜌𝜌

𝜌𝜌
�
𝑛𝑛−𝛼𝛼−1 𝑑𝑑𝑑𝑑

𝑡𝑡1−𝜌𝜌
𝑥𝑥

𝑎𝑎
�𝑡𝑡1−𝜌𝜌

𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑛𝑛

= 𝐼𝐼𝑎𝑎 
𝑥𝑥
𝑛𝑛−𝛼𝛼,𝜌𝜌[𝑡𝑡]𝛾𝛾𝑛𝑛[𝑡𝑡],     (27) 

where 𝑛𝑛 = [𝑅𝑅𝑅𝑅(𝛼𝛼)] + 1, 𝜌𝜌 > 0. Note that when 𝜌𝜌 = 1, then (27) corresponds to 
the definition of Caputo fractional differential operator given in [8]. Therefore, the 
operator notations in (20) and (21) become 

𝐷𝐷𝑎𝑎𝐶𝐶 𝑥𝑥
𝛼𝛼,𝜌𝜌[𝑡𝑡] 𝐼𝐼𝑎𝑎 

𝑡𝑡
𝛼𝛼,𝜌𝜌[𝑠𝑠]𝑓𝑓(𝑠𝑠) = 𝑓𝑓(𝑥𝑥)                                                           (28) 

𝐼𝐼𝑎𝑎 
𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐷𝐷𝑎𝑎𝐶𝐶 𝑥𝑥

𝛼𝛼,𝜌𝜌[𝑡𝑡]𝑓𝑓(𝑡𝑡) = 𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎).                                             (29) 
Let Ω ⊂ ℝ3. Then the following defines a fractional generalization of nabla 

operator 
∇Ω
𝛼𝛼,𝜌𝜌= 𝑫𝑫 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌 = 𝒆𝒆1 𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥1] + 𝒆𝒆2 𝐷𝐷 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥2]
+ 𝒆𝒆3 𝐷𝐷 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥3]                                 (30) 
where 𝐷𝐷 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌�𝑥𝑥𝑗𝑗� is the generalized Caputo fractional derivative with respect to the 
coordinates 𝑥𝑥𝑗𝑗. In the case of parallelpiped domain Ω = �𝑎𝑎𝑗𝑗 < 𝑥𝑥𝑗𝑗 < 𝑏𝑏𝑗𝑗;    𝑗𝑗 = 1,2,3�, 

𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌�𝑥𝑥𝑗𝑗� = 𝐷𝐷 𝑎𝑎𝑗𝑗

𝐶𝐶
𝑏𝑏𝑗𝑗
𝛼𝛼,𝜌𝜌�𝑥𝑥𝑗𝑗�,          𝑗𝑗 = 1,2,3.                                             (31) 

Definition 2 
Let Ω ⊂ ℝ3 and 𝑓𝑓 ∈ 𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛(Ω). Then we define fractional gradient of 𝑓𝑓 by 

GradΩ
𝛼𝛼,𝜌𝜌𝑓𝑓 = 𝑫𝑫 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌𝑓𝑓 = 𝒆𝒆𝑗𝑗 𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥𝑗𝑗]𝑓𝑓(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) 

= 𝒆𝒆1 𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥1]𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) + 𝒆𝒆2 𝐷𝐷 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥2]𝑓𝑓(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3)
+ 𝒆𝒆3 𝐷𝐷 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥3]𝑓𝑓(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3), 
            (32) 

where 0 < 𝑅𝑅𝑅𝑅(𝛼𝛼) ≤ 1. 
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Definition 3 
If Ω ⊂ ℝ3 and 𝑭𝑭 ∈ �𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛(Ω);ℝ3�, then we define its fractional divergence as 
DivΩ

𝛼𝛼,𝜌𝜌𝑭𝑭 = � 𝑫𝑫 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌,𝑭𝑭� = 𝐷𝐷 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌�𝑥𝑥𝑗𝑗�𝐹𝐹𝑗𝑗(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = 𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥1]𝐹𝐹1(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) +

𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥2]𝐹𝐹2(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) +

𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥3]𝐹𝐹3(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3).                                                       (33)  

Definition 4 
Let Ω ⊂ ℝ3Ω ∈ ℝ3 such that 𝑭𝑭 ∈ �𝐴𝐴𝐶𝐶𝛾𝛾𝑛𝑛(Ω);ℝ3�. The fractional curl operator can 
be given by 
CurlΩ

𝛼𝛼,𝜌𝜌𝑭𝑭 = � 𝑫𝑫 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌,𝑭𝑭� = 𝒆𝒆𝒍𝒍𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥𝑚𝑚]𝐹𝐹𝑘𝑘(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) = 𝒆𝒆𝟏𝟏� 𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥2]𝐹𝐹3 −

𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥3]𝐹𝐹2� + 𝒆𝒆𝟐𝟐� 𝐷𝐷 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥3]𝐹𝐹1 − 𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥1]𝐹𝐹3� + 𝒆𝒆𝟑𝟑�  𝐷𝐷 𝐶𝐶 Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥1]𝐹𝐹2  −
𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥2]𝐹𝐹1�,                                                                                                                         (34)  

where 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 is Levi-Civita symbol which is defined by 

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

0      for 𝑖𝑖 = 𝑗𝑗, 𝑗𝑗 = 𝑘𝑘 or 𝑘𝑘 = 𝑖𝑖                          
 

+1     for (𝑖𝑖, 𝑗𝑗,𝑘𝑘) ∈ {(1,2,3), (2,3,1), (3,1,2)}
 

−1     for (𝑖𝑖, 𝑗𝑗,𝑘𝑘) ∈ {(1,3,2), (3,2,1), (2,1,3)}.

                              (35) 

3.1 Fractional Green’s Theorem 
The following theorem gives a fractional generalization of Green’s theorem. The 
main step in the proof is the application of FTFC. 
Theorem 5 (Fractional Green’s Theorem) 
Let Ω be a rectangular domain 

Ω = {(𝑥𝑥, 𝑦𝑦) ∈ ℝ2:𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 𝑐𝑐 ≤ 𝑦𝑦 ≤ 𝑑𝑑}                                           (36) 
with boundary 𝜕𝜕Ω. If 𝑃𝑃and 𝑄𝑄are absolutely continuous or continuously 
differentiable on Ω� and 0 < 𝑅𝑅𝑅𝑅(𝛼𝛼) ≤ 1, then 

𝐼𝐼𝜕𝜕Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥]𝑃𝑃(𝑥𝑥,𝑦𝑦) + 𝐼𝐼𝜕𝜕Ω

𝛼𝛼,𝜌𝜌[𝑦𝑦]𝑄𝑄(𝑥𝑥,𝑦𝑦) =
= 𝐼𝐼Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥,𝑦𝑦]� 𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑠𝑠]𝑄𝑄(𝑠𝑠,𝑦𝑦)

− 𝐷𝐷 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌[𝑡𝑡]𝑃𝑃(𝑥𝑥, 𝑡𝑡)�.                                                                             (37) 

Note that 𝐼𝐼Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥, 𝑦𝑦] denotes the double integral as in the classical Green’s Theorem 

� (𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑄𝑄𝑄𝑄𝑄𝑄) = �� (𝐷𝐷𝑥𝑥𝑄𝑄 − 𝐷𝐷𝑦𝑦𝑃𝑃)𝑑𝑑𝑑𝑑
Ω𝜕𝜕Ω

. 

Proof: Let 𝐴𝐴(𝑎𝑎, 𝑐𝑐),𝐵𝐵(𝑏𝑏, 𝑐𝑐),𝐶𝐶(𝑏𝑏, 𝑑𝑑) and 𝐷𝐷(𝑎𝑎, 𝑑𝑑) be the vertices of Ω in (36). Thus, 
the boundary 𝜕𝜕Ω of the rectangular domain Ω are the sides 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶 and 𝐷𝐷𝐷𝐷. 
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Before we proceed, it should be noted that 

𝐼𝐼Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥,𝑦𝑦] = 𝐼𝐼Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥]𝐼𝐼Ω
𝛼𝛼,𝜌𝜌[𝑦𝑦] = 𝐼𝐼𝑎𝑎 𝑏𝑏

𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐼𝐼𝑐𝑐 𝑑𝑑
𝛼𝛼,𝜌𝜌[𝑦𝑦]. 

Then,  
𝐼𝐼𝜕𝜕Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥]𝑃𝑃(𝑥𝑥,𝑦𝑦) +  𝐼𝐼𝜕𝜕Ω

𝛼𝛼,𝜌𝜌[𝑦𝑦]𝑄𝑄(𝑥𝑥,𝑦𝑦)        
= 𝐼𝐼𝐴𝐴𝐴𝐴

𝛼𝛼,𝜌𝜌[𝑥𝑥]𝑃𝑃(𝑥𝑥, 𝑐𝑐) + 𝐼𝐼𝐶𝐶𝐶𝐶
𝛼𝛼,𝜌𝜌[𝑥𝑥]𝑃𝑃(𝑥𝑥,𝑑𝑑) + 𝐼𝐼𝐵𝐵𝐵𝐵

𝛼𝛼,𝜌𝜌[𝑦𝑦]𝑄𝑄(𝑏𝑏,𝑦𝑦) + 𝐼𝐼𝐷𝐷𝐷𝐷
𝛼𝛼,𝜌𝜌[𝑦𝑦]𝑄𝑄(𝑎𝑎,𝑦𝑦)  

= [𝑥𝑥]𝑃𝑃(𝑥𝑥, 𝑐𝑐) − 𝐼𝐼𝑎𝑎 𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥]𝑃𝑃(𝑥𝑥, 𝑑𝑑) + 𝐼𝐼𝑐𝑐 𝑑𝑑

𝛼𝛼,𝜌𝜌[𝑦𝑦]𝑄𝑄(𝑏𝑏,𝑦𝑦) − 𝐼𝐼𝑐𝑐 𝑑𝑑
𝛼𝛼,𝜌𝜌[𝑦𝑦]𝑄𝑄(𝑎𝑎,𝑦𝑦) 

= 𝐼𝐼𝑎𝑎 
𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥]�𝑃𝑃(𝑥𝑥, 𝑐𝑐) − 𝑃𝑃(𝑥𝑥,𝑑𝑑)� + 𝐼𝐼𝑐𝑐 𝑑𝑑

𝛼𝛼,𝜌𝜌[𝑦𝑦]�𝑄𝑄(𝑏𝑏,𝑦𝑦) − 𝑄𝑄(𝑎𝑎, 𝑦𝑦)�. 
 
Applying (35) of FTFC we obtain 

𝑃𝑃(𝑥𝑥, 𝑐𝑐) − 𝑃𝑃(𝑥𝑥,𝑑𝑑) = − 𝐼𝐼𝑐𝑐 𝑑𝑑
𝛼𝛼,𝜌𝜌[𝑦𝑦] 𝐷𝐷𝑐𝑐𝐶𝐶 𝑦𝑦

𝛼𝛼,𝜌𝜌[𝑡𝑡]𝑃𝑃(𝑥𝑥, 𝑡𝑡)                                      (38) 
𝑄𝑄(𝑏𝑏, 𝑦𝑦) − 𝑄𝑄(𝑎𝑎,𝑦𝑦) = 𝐼𝐼𝑎𝑎 𝑏𝑏

𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐷𝐷𝑎𝑎𝐶𝐶 𝑥𝑥
𝛼𝛼,𝜌𝜌[𝑠𝑠]𝑄𝑄(𝑠𝑠,𝑦𝑦).                                        (39) 

Hence, 
                𝐼𝐼𝜕𝜕Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥]𝑃𝑃(𝑥𝑥,𝑦𝑦) +  𝐼𝐼𝜕𝜕Ω
𝛼𝛼,𝜌𝜌[𝑦𝑦]𝑄𝑄(𝑥𝑥,𝑦𝑦)  

= 𝐼𝐼𝑎𝑎 
𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥] �− 𝐼𝐼𝑐𝑐 𝑑𝑑

𝛼𝛼,𝜌𝜌[𝑦𝑦] 𝐷𝐷𝑐𝑐𝐶𝐶 𝑦𝑦
𝛼𝛼,𝜌𝜌[𝑡𝑡]𝑃𝑃(𝑥𝑥, 𝑡𝑡)� + 𝐼𝐼𝑐𝑐 𝑑𝑑

𝛼𝛼,𝜌𝜌[𝑦𝑦] � 𝐼𝐼𝑎𝑎 𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐷𝐷𝑎𝑎𝐶𝐶 𝑥𝑥

𝛼𝛼,𝜌𝜌[𝑠𝑠]𝑄𝑄(𝑠𝑠,𝑦𝑦)� 

= 𝐼𝐼𝑎𝑎 
𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐼𝐼𝑐𝑐 𝑑𝑑

𝛼𝛼,𝜌𝜌[𝑦𝑦] � 𝐷𝐷𝑎𝑎𝐶𝐶 𝑥𝑥
𝛼𝛼,𝜌𝜌[𝑠𝑠]𝑄𝑄(𝑠𝑠,𝑦𝑦) − 𝐷𝐷𝑐𝑐𝐶𝐶 𝑦𝑦

𝛼𝛼,𝜌𝜌[𝑡𝑡]𝑃𝑃(𝑥𝑥, 𝑡𝑡)� 

= 𝐼𝐼Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥, 𝑦𝑦] � 𝐷𝐷𝑎𝑎𝐶𝐶 𝑥𝑥

𝛼𝛼,𝜌𝜌[𝑠𝑠]𝑄𝑄(𝑠𝑠,𝑦𝑦) − 𝐷𝐷𝑐𝑐𝐶𝐶 𝑦𝑦
𝛼𝛼,𝜌𝜌[𝑡𝑡]𝑃𝑃(𝑥𝑥, 𝑡𝑡)�. 

𝑦𝑦 

𝑥𝑥 

𝑑𝑑 

𝑐𝑐 

𝑎𝑎 𝑏𝑏 

𝐷𝐷(𝑎𝑎,𝑑𝑑)            𝐶𝐶𝐶𝐶                 𝐶𝐶(𝑎𝑎,𝑑𝑑) 

𝐴𝐴(𝑎𝑎, 𝑐𝑐)            𝐴𝐴𝐴𝐴                 𝐵𝐵(𝑏𝑏, 𝑐𝑐) 

𝐷𝐷𝐷𝐷                                              𝐵𝐵𝐵𝐵 

Fig 1: The rectangular domain Ω. 
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3.2 Fractional Gauss’ Theorem 
The Gauss’ theorem, also known as the divergence theorem, claims that the outward 
flux of a vector field through a closed surface is the same as the volume integral of 
the divergence over the region inside the surface. 

Theorem 6 (Fractional Gauss’ Theorem) 
For the parallelpiped Ω = {(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3:𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 𝑐𝑐 ≤ 𝑦𝑦 ≤ 𝑑𝑑,𝑔𝑔 ≤ 𝑧𝑧 ≤ ℎ}, if 
𝐹𝐹1(𝑥𝑥,𝑦𝑦, 𝑧𝑧), 𝐹𝐹2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and 𝐹𝐹3(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) are continuously differentiable real-valued 
function in Ω bounded by the closed surface 𝜕𝜕Ω, then 

�𝑰𝑰𝜕𝜕Ω
𝛼𝛼,𝜌𝜌,𝑭𝑭� = 𝐼𝐼Ω

𝛼𝛼,𝜌𝜌DivΩ
𝛼𝛼,𝜌𝜌𝑭𝑭 

Proof:  The volume integral 𝐼𝐼Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥,𝑦𝑦, 𝑧𝑧] can be written as 

𝐼𝐼Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥,𝑦𝑦, 𝑧𝑧] = 𝐼𝐼𝑎𝑎 𝑏𝑏

𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐼𝐼𝑐𝑐 𝑑𝑑
𝛼𝛼,𝜌𝜌[𝑦𝑦] 𝐼𝐼𝑔𝑔 

ℎ
𝛼𝛼,𝜌𝜌[𝑧𝑧]. 

Moreover, 
𝐼𝐼𝜕𝜕Ω
𝛼𝛼,𝜌𝜌[𝑦𝑦, 𝑧𝑧] = 𝐼𝐼𝑐𝑐 𝑑𝑑

𝛼𝛼,𝜌𝜌[𝑦𝑦] 𝐼𝐼𝑔𝑔 
ℎ
𝛼𝛼,𝜌𝜌[𝑧𝑧], 𝐼𝐼𝜕𝜕Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥, 𝑧𝑧] = 𝐼𝐼𝑎𝑎 𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐼𝐼𝑔𝑔 

ℎ
𝛼𝛼,𝜌𝜌[𝑧𝑧], 

𝐼𝐼𝜕𝜕Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥,𝑦𝑦] = 𝐼𝐼𝑎𝑎 

𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐼𝐼𝑐𝑐 𝑑𝑑

𝛼𝛼,𝜌𝜌[𝑦𝑦]. 
Thus, 
𝐼𝐼𝜕𝜕Ω
𝛼𝛼,𝜌𝜌[𝑦𝑦, 𝑧𝑧]𝐹𝐹1 + 𝐼𝐼𝜕𝜕Ω

𝛼𝛼,𝜌𝜌[𝑥𝑥, 𝑧𝑧]𝐹𝐹2 + 𝐼𝐼𝜕𝜕Ω
𝛼𝛼,𝜌𝜌[𝑥𝑥,𝑦𝑦]𝐹𝐹3                                                                                          

= 𝐼𝐼𝑐𝑐 𝑑𝑑
𝛼𝛼,𝜌𝜌[𝑦𝑦] 𝐼𝐼𝑔𝑔 

ℎ
𝛼𝛼,𝜌𝜌[𝑧𝑧]�𝐹𝐹1(𝑏𝑏,𝑦𝑦, 𝑧𝑧) − 𝐹𝐹1(𝑎𝑎,𝑦𝑦, 𝑧𝑧)� + 𝐼𝐼𝑎𝑎 𝑏𝑏

𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐼𝐼𝑔𝑔 
ℎ
𝛼𝛼,𝜌𝜌[𝑧𝑧]�𝐹𝐹2(𝑥𝑥,𝑑𝑑, 𝑧𝑧) −

𝐹𝐹2(𝑥𝑥, 𝑐𝑐, 𝑧𝑧)� + 𝐼𝐼𝑎𝑎 
𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐼𝐼𝑐𝑐 𝑑𝑑

𝛼𝛼,𝜌𝜌[𝑦𝑦]�𝐹𝐹3(𝑥𝑥,𝑦𝑦,𝑔𝑔) − 𝐹𝐹3(𝑥𝑥,𝑦𝑦, ℎ)�= 
 𝐼𝐼𝑎𝑎 

𝑏𝑏
𝛼𝛼,𝜌𝜌[𝑥𝑥] 𝐼𝐼𝑐𝑐 𝑑𝑑

𝛼𝛼,𝜌𝜌[𝑦𝑦] 𝐼𝐼𝑔𝑔 
ℎ
𝛼𝛼,𝜌𝜌[𝑧𝑧] � 𝐷𝐷𝑎𝑎𝐶𝐶 𝑥𝑥

𝛼𝛼,𝜌𝜌[𝑝𝑝]𝐹𝐹1(𝑝𝑝,𝑦𝑦, 𝑧𝑧) + 𝐷𝐷𝑐𝑐𝐶𝐶 𝑦𝑦
𝛼𝛼,𝜌𝜌[𝑞𝑞]𝐹𝐹2(𝑥𝑥, 𝑞𝑞, 𝑧𝑧) +

𝐷𝐷𝑔𝑔𝐶𝐶 𝑧𝑧
𝛼𝛼,𝜌𝜌[𝑟𝑟]𝐹𝐹3(𝑥𝑥,𝑦𝑦, 𝑟𝑟)� = 𝐼𝐼Ω

𝛼𝛼,𝜌𝜌� 𝑫𝑫 𝐶𝐶 Ω
𝛼𝛼,𝜌𝜌,𝑭𝑭� = 𝐼𝐼Ω

𝛼𝛼,𝜌𝜌DivΩ
𝛼𝛼,𝜌𝜌𝑭𝑭. 

 
4. Conclusion 

 
The generality of the generalized Caputo fractional derivative can be 

observed from the limiting case as 𝜌𝜌 → 0 leading to the Caputo-Hadamard 
fractional derivative since lim

𝜌𝜌→0

𝑥𝑥𝜌𝜌−𝑎𝑎𝜌𝜌

𝜌𝜌
= log �𝑥𝑥

𝑎𝑎
�. Moreover, 𝜌𝜌 = 1 gives the Caputo 

fractional derivatives. Thus, as the generalized Caputo fractional derivative is used 
in formulating the FTFC and the consequent theorems in this paper, the results 
obtained are also general. For instance, when 𝜌𝜌 = 1, (27) gives the definition of 
Caputo fractional differential operator and its application in integral theorems of 
vector calculus given in [8]. In fact, we formulated a generalized fractional vector 
calculus and defined a generalized fractional differential vector operations. 
Moreover, formulations and proofs of some fractional integral theorems 
(Green’s and Gauss’ theorems) as an application of the generalized FTFC are given. 
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