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FRACTIONAL VECTOR CALCULUS IN THE FRAME OF
A GENERALIZED CAPUTO FRACTIONAL DERIVATIVE

Yusuf Ya’u GAMBO?, Fahd JARAD?, Dumitru BALEANU?3,
Thabet ABDELJAWAD*

The authors in [1] recently introduced a new generalized fractional derivative on
AC}'[a, b] and C)'[a, b], and defined their Caputo version. This derivative contains two
parameters and reduces to the classical Caputo derivatives if one of these parameters
tend to certain values. From here and after, by generalized Caputo fractional
derivative, we refer to the Caputo version of the generalized fractional derivative. This
paper studies the generalized Caputo fractional derivative and establishes the
Fundamental Theorem of Fractional Calculus (FTFC) in the sense of this derivative.
The fundamental results are used in establishing some vital theorems and then applied
to vector calculus.

Keywords: Generalized Caputo fractional derivative, fundamental theorem
of fractional calculus (FTFC), fractional vector calculus,
fractional Green’s theorem, fractional Gauss’” theorem.

1. Introduction and Auxiliary Results

The popularity of fractional calculus (calculus of derivatives and integrals of any
arbitrary order) and the interest for the subject have grown astoundingly during the
past three decades or so [3,4,9,10].

Of the many definitions of fractional derivatives, the Caputo derivative
seems to have more demonstrated advantages and numerous seemingly diverse
applications than the others. Such advantages allow the use of the derivative
(Caputo derivative) in modifying other fractional derivatives with some
shortcomings. For example, authors in [2] and [4] have modified the Hadamard
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fractional derivatives into a more convenient one that has initial conditions that can
be physically interpretable similar to the ones in the Caputo settings.

Several real life problems have been studied using the fractional derivatives,
specifically with the Caputo fractional derivative which is widely applied in various
areas of sciences and engineering [11,12]. For instance, it is known that due to their
non-locality, fractional differential operators give a better description of systems
with memory effect even though the non-locality takes different forms [3,9,11,12].
Thus, fractional operators are generalized in order to get the real non-local
phenomena while numerous works are being carried out on fractional integrals and
derivatives with non-local and non-singular kernels [10,13,14].

Recently, the authors in [1] defined a generalized fractional derivative on
the space AC}'[a, b] (the space of functions defined on [a, b] such that y"~'f €

AC[a, b], where y = x17° %) and defined their Caputo version.

Authors in [6] presented FTFC in the sense of Caputo fractional derivative
while developing FTFC using the same fractional derivative and applying it to
fractional vector calculus can be seen in [7-8]. However, in this paper, we present
new and generalized results using a generalized Caputo fractional derivative that
includes two parameters and curtails to the classical Caputo derivative when one
the parameters is replaced by 1 and to Caputo-Hadamard fractional derivative
approaches 0 . The derivative is used to develop a generalized FTFC thereby using
the new results in formulating other theorems. The fundamental result of the FTFC
is applied to vector calculus incorporating the formulations and proofs of Green’s
and Gauss’ theorems. In the present section, we give some fundamental definitions
and known results which are used in this article. Section 2 presents FTFC in the
sense of Caputo — Katugampola fractional derivative and some consequent
results. Applications of the generalized FTFC are given in Section 3 while Section
4 concludes the paper.

1.1 Preliminary definitions
Let [a, b] be a finite interval, 0 < e < 1,p = 0 and AC|[a, b] be the set of
absolute continuous functions on [a, b]. Then we define

d
AC}a,b] = {f: [a,b] » Candy™ 1f € AC[a,bl,y = xl‘pa},ACﬁ[a, b]
= ACla, b] €Y

Cyela, bl = {f: [a,b] = Cand y™~'f € Cla,b],y"f € Cc,la,bl,y

= x1=P i} (2)
dx
endowed with the norm ||fllcp, = XxZolly*fllc + v fllc, . where Cola, b] =
Cy'la, b] endowed with the norm ||f ¢y = oolly®f e
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“p)ef(x) € Cla, b]},p +0 equipped

(xP;aP)E f(x)”C, while C, ,[a, b] = {f; [a,b] > R :

Here, C.,la,b] = {f: [a,b] - R: (xp_

with the norm ||fllc., =

(lni)ef(x)eC[a,b]}when p =0 equipped with the norm ||fll¢c, =

[(n2) ],

The generalized left and right fractional integrals of order a, (Re(a) = 0)
in Katugampola settings are defined [5] respectively by

(W F)() = @ 5 (=2 p)

(1)@ yp )
L’ x) = f ) 4
e =1 ) @
The generalized fractional derivatives of functions in the space AC}[a,b] or
C)'la, b] withn = [Re(a)] + 1, Re(a) > 0 can be defined [1] as

( D‘”’f)(x)

(3)

f y”)" Oy
F(n Q) yl-p
N @ (- ey
+ZF(k—a—1)( p ) ®)
(D“p f)(x)
o =Dn (yp - x”)"'“‘l " H)dy
" Tn—a) . p ti-r
n—1
(=Y)*f(b) (bP —xP\“
+ =0F(k—a—1)< » ) ©)
Definition 1

Let Re(a) = 0 and n = [Re(a)] + 1. If f € AC}}[a,b], where 0 < a < b < oo,
the left generalized Caputo fractional derivative of f of order « is defined by

(D™ f)(x) = <aD“'P

Z i @ (y - “p) D ). )

If 0 < Re(a) < 1 (13) becomes
ED*f)(x) = (D*[f () — f (@)D (x). (8

f»)
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The following theorem gives an alternative definition of the derivative in (13).
Theorem 1 [1]
Let Re(a) =0, n=[Re(a)] +1and f € AC}}[a,b], where 0 < a < b < .

L Ifa &Ny (GDPf)(x) = " P (y™f) (). 9)
2. Ifa €N, SD¥Pf =ynf. (10)
DO f =f. (11)

Theorem 2 [1]
LetRe(a) =0, n = [Re(a)] + 1and f € C}}[a, b], where 0 < a < b < o. Then,
ED%Pf is continuous on [a, b] and

(GD*Pf)(a) = 0. (12)

2. Generalized FTFC
The first fundamental theorem of calculus states that if F is defined by

F(x) = f f(Odt (13)

then
F'(x) = f(x) (14)
at each point in the closed interval.
The second FTC guarantees that if F is the indefinite integral of a
continuous function f on [a, b], then

b
| @it =F®) - @ = FOI2 (15)
a
It is obvious that the generalized fractional derivatives do not have generalization
of the FTFC in the form of (15). Thus,
(%P DUPf)(b) # f(b) — f(a). . (16)
The reasons of this are the facts the differential operators y™ = (xl‘f’ :—x) used in

the definition of the generalized fractional derivatives appear outside the integrals
and these operators do not commute with the integrals. That is,
(l P D“P ) (X) = o Py o I" " P f(x) % oI“P ("~ PY" f (x)

=f(x) (17)
However, it has been proven (see [6]-[8]) that
(I*GD4f)(b) = f(b) — f (@), (18)
where $D? is the Caputo fractional derivative.

Lemma 1l
Let Re(a) = 0 and Re(B) = 0, then
L+a—1

<a1a.p (yp ; ap)ﬁ_1> ) = F(;(f)a) (xp ; ap> | (19)
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The proof of Lemma 1 can be done by using Definition 1 and properties of the
gamma function. Now, using the generalized Caputo fractional derivative, we
present the generalized FTFC.

Theorem 3 (FTFC)

Let0 < Re(a) <1, n=[Re(a)] +1andf € AC}'[a,b],where0 < a < b < oo,
Then,

a. IfF(x) = I%Pf(x), then

) (GD“PF)(x) = f(x). (20)
| (I *PSD¥PF)(b) = F(b) — F(a), (21)
p_yp\®~1
where (%P f)(b) = % :(x py ) FO) y‘ffp.

Proof. Assertion a. can be proved using Theorem 3.5 in [1] while assertion b. can
be proved using Theorem 1, Theorem 4.1 in [5] and Theorem 3.6 in [1].

Lemma 2

Let Re(a) 20, n=[Re(a)]+1 and f € AC}'[a,b], where 0 <a <b < .
Then,

ED%PF(Q) (xp —aPf

ﬂ@zﬂ@+?ﬂ+® . ),Aem@. (22)

Proof. Evaluating the integral in (21) using (3) we obtain

@) - f(@) = (J“PEDHPYf(x)
1 (TP —yP\ T . d
-5 f (=5)  @=nos

At this point, we apply the mean value theorem for integrals. Thus,
dy

1 (% /xP —yP
F@-f@ =N | ((55) 55

A € (a,x). (24)
It can be observed that the right-hand side of (24) involves the generalized
fractional integral, where the function f(t) = 1, that is, ,/“?(1). Therefore, using
. . 1 xP—aP\*
Lemma 1 with B =1 gives ,/*P(1) = r(1+a)( > ) :
Cpa,
Therefore (24) becomes f(x) — f(a) = (id s )(A)(

ri+a)

2 .23)

a-1

xP—aP
p

)a , A€ (ax)

Lemma 3
Let Re(a) =0, n=[Re(a)] +1 and f € AC}[a, b], with 0 < a < b < oo. For

k,m e N,
wpyk(Cpapym gy — WDEIMF(D) xP — aP\E
WD) () =~ ()

T € (a,x). (25)
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Proof. The proof can be done using semi-group property for integrals in [3].
Theorem 4
Let f(x) € C}'[a,b],0 <a <b <ooanda,f € Csuchthat Re(a) = 0,Re(f) =
0. Then

GDP G IPPf(x) = oIF~ %P f(x). (26)
Proof. The proof can be done using (3), Theorem 1 and semi-group properties for
fractional integrals.

3. Applications of the Generalized FTFC in Vector Calculus

We define the generalized Caputo fractional differential operator on [a, b] with a €
C,Re(a) = 0 by

1 X ph — P\ gt a\"
&De"[t] = f ( ) yees (tl“’—)
m—a)l, p ti-p ot

= oy “Plthy™t], (27)
where n = [Re(a)] + 1, p > 0. Note that when p = 1, then (27) corresponds to
the definition of Caputo fractional differential operator given in [8]. Therefore, the
operator notations in (20) and (21) become

D P [tlale P Is1f () = f () (28)

oIy P[X1EDE P [L1f (8) = f(b) — f(a). (29)

Let Q < R3. Then the following defines a fractional generalization of nabla

operator

Vg’,p: CDg,p == echg,p [xl] + eZCDg'p[xZ]
+e3°D " [x3] (30)

where €D [x;] is the generalized Caputo fractional derivative with respect to the
coordinates x;. In the case of parallelpiped domain Q = {a; < x; < b;; j =1,2,3},

‘Do’lx] = Dyl =123 (31)
Definition 2
Let @ c R® and f € AC}}(£). Then we define fractional gradient of f by

Grady”f = D3P f = €;Dg” [x;1f (1, %2, X3)

a, a,
= e,°Dy Pl ]f (xq, %2, %3) + €5 CDgp[xz]f(xsz,xs)
a,
+ e CDQ p[x3]f(x1, X2, X3),

(32)
where 0 < Re(a) < 1.
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Definition 3
If 0 c R® and F € [AC*(Q); R?], then we define its fractional divergence as
Divg”F = (°Do”, F) = D’ || Fj (x1, %2, x3) = €D* [x1]1F; (1, 2, x3) +
CD;'{"’ [x2]F2 (xq, %2, %3) +
CDg'p[xs]Fs(xsz’xQ- (33)
Definition 4
Let @ c R3Q € R® such that F € [AC]'(Q); R®]. The fractional curl operator can
be given by
Curly?F = (D3P, F) = €1&1m D P [xm] Fie (31, x4, x3) = e1(¢Dg* [x;]Fs —
‘D [x31F;) + e;(CDg [x3]1Fy — €Dy [x,1F;) + es( Dy’ [x,]F, —
“Dg* [x;]F1), (34)
where &;,,, is Levi-Civita symbol which is defined by

I{ 0 fori=j,j=kork=i

=1 +1 for (), K) € (123),23,1), (312) (35)
-1 for (i,j, k) € {(1,3,2),(3,2,1),(2,1,3)}.

3.1 Fractional Green’s Theorem
The following theorem gives a fractional generalization of Green’s theorem. The
main step in the proof is the application of FTFC.
Theorem 5 (Fractional Green’s Theorem)
Let Q be a rectangular domain
Q={(x,y) ER*:a<x<bc<y<d} (36)
with boundary dQ. If Pand Qare absolutely continuous or continuously
differentiable on Q and 0 < Re() < 1, then
Iy [x1P(x, y) + I3 [v1Q(x, y) =
= 1" [x,y1(°Dg " [s1Q (s, )
— Dy P[t]P (%, 1)). (37)
Note that Ig'p [x, y] denotes the double integral as in the classical Green’s Theorem

(Pdx + Qdy) = f ] (DxQ — D, P)dA.
20 Q

Proof: Let A(a,c),B(b,c),C(b,d) and D(a, d) be the vertices of Q in (36). Thus,
the boundary 9Q of the rectangular domain Q are the sides AB, BC,CD and DA.
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4 | D(ad) CD C(a,d)
DA\ BC
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A(a,c) AB B(b,c)
a h b'e

Fig 1: The rectangular domain Q.

Before we proceed, it should be noted that

16716, y] = I§P Xl [yl = ol P L] A5 P [y).
Then,
Ly [x]1P(x, y) + I3 [y1Q(x, y)
= Ly [xX]P(x, ©) + 127 [x]P(x, d) + 32 [y1Q (b, y) + 15} [¥]1Q(a, )
= [x]P(x, ¢) — ol P [x]P(x,d) + 3" [y1Q (b, y) — A" [¥]Q(a, y)
= ol PX](P(x,0) = P(x,d)) + 13° [y1(Q(b, ) — Q(a,y)).

Applying (35) of FTFC we obtain
P(x,c) — P(x,d) = — I3 [y]5D; P [t]P(x, t)
Q(b,y) — Q(a,y) = oI, [x15D P [s1Q (s, ).
Hence,
L [xIP(x,y) + I [v1Q(x,y)

(38)
(39)

= oIy P 2] (—eI§ ISPy [E1P G ) + (g Iy] (aly P 2] SD5 P 1510 (s, ) )

= oIy P[] g [y] (505 [s1Q (s, y) — ED§P[E]P(x, 1) )
= 15" [x,y] (D [s1Q(s, y) — D5 P[t]P(x, 1) )
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3.2 Fractional Gauss’ Theorem

The Gauss’ theorem, also known as the divergence theorem, claims that the outward
flux of a vector field through a closed surface is the same as the volume integral of
the divergence over the region inside the surface.

Theorem 6 (Fractional Gauss’ Theorem)
For the parallelpiped Q = {(x,y,z) ER>:a<x<bc<y<d,g<z<h} if
Fi(x,v,2), F,(x,y,z) and F;(x,y,z) are continuously differentiable real-valued
function in Q bounded by the closed surface dQ, then
(I50,F) = 13°Divy”F
Proof: The volume integral 5 [x,y, z] can be written as
167 1%,y,2] = ol P [x]ely P ] g1y [2].

Moreover,

Ly zl = A7 gl lz], Ly lx, 2] = o1y P [x] g1, P 2],
LTyl = oy P Ix] 1y Iy,

Thus,

Igs’lp[y,z]Fl + Ig(’lp[x,z]Fz + Igs’lp[x,y]Fg,

= A" [y]gl,‘f’p [2](FL(b,y,2) — Fi(a,7,2)) + oI, [x]gl,‘f’p [z](F,(x,d, z) —
Fz(x' G Z)) + alg'p[x]clg'p[Y](Fg(x;}"9) - F3(x'y' h)):

oIy PP o1 2] (S5 PIFy (0, v, 2) + Dy [q1F (x, q,2) +

D Ir1Fs(xy,m)) = 16 (CDEP, F) = 157 Divg P F.

4. Conclusion

The generality of the generalized Caputo fractional derivative can be
observed from the limiting case as p — 0 leading to the Caputo-Hadamard

xPoab _ log (ﬁ) Moreover, p = 1 gives the Caputo

fractional derivative since lim
p—0 P

fractional derivatives. Thus, as the generalized Caputo fractional derivative is used
in formulating the FTFC and the consequent theorems in this paper, the results
obtained are also general. For instance, when p = 1, (27) gives the definition of
Caputo fractional differential operator and its application in integral theorems of
vector calculus given in [8]. In fact, we formulated a generalized fractional vector
calculus and defined a generalized fractional differential vector operations.
Moreover, formulations and proofs of some fractional integral theorems
(Green’s and Gauss’ theorems) as an application of the generalized FTFC are given.
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