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In aceasta lucrare este prezentată problema reglarii ieşirii dacă se 

consideră sisteme neliniare MIMO. In acest context formele normale pentru 
reprezentarea sistemelor neliniare sunt de mare interes. Două forme normale 
pentru sisteme neliniare MIMO sunt prezentate. Prima releva vectorul de grade 
relative si poate fi aplicată pentru sisteme pătrate inversabile (forma normală 
clasică), a doua poate fi utilizată şi pentru sisteme nepatrate şi dă 
detalii/informaţii despre proprietatile de inversabilitate ale sistemului scris în 
această formă (forma normala recentă). Condiţiile necesare pentru rezolvarea 
problemei reglarii ieşirii pentru sisteme scrise în forma clasică şi cea recentă sunt 
prezentate. Din discuţia prezentată rezultă că problema pusă se poate rezolva sub 
presupuneri mai puţin restrictive dacă sistemul este scris în forma normală 
obtinută prin algoritmul structurii zerourilor la infinit (forma recenta).  Această 
abordare permite de asemenea discutarea problemei de reglare şi în cazul 
sistemelor MIMO nepătrate.  

 
In this paper the general problem of output regulation when dealing with 

nonlinear MIMO systems is presented. In this context, normal forms for nonlinear 
systems are of great importance. Two normal forms for MIMO nonlinear systems 
are presented. The first one reveals the relative degrees vector and can be applied 
for square invertible systems (classic normal form), while the second can be used 
for non square systems and gives details on the system invertibility properties 
(recent normal form). The necessary conditions for solving the output regulation 
problem for the classical normal form and, respectively, the recent normal form 
are presented. From this discussion it results that the problem can be solved under 
weaker assumptions if considering the later form (obtained by using the infinite 
zero structure algorithm). This approach also permits discussing the regulation 
problem for non square MIMO systems. 
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1. Introduction  

A defining problem in control theory is the design of feedback 
controllers so as to have certain outputs of a plant to track particular reference 
trajectories. An appealing idea is dynamic inversion, but this can rarely be 
carried on in an exact manner through open loop control. In fact, closed-loop 
control (which achieves an approximate dynamical inversion) is almost always 
the solution of choice, since, in any realistic scenario, the control goal has to be 
achieved in spite of a good number of phenomena which would cause 
unexpected system behavior (for instance: parameter variations, additional 
undesired inputs).  

One particular (deterministic) form of this problem is to consider that the 
dynamics of the system that generates the references and the disturbances  (the 
exosystem) are known and consequently design a controller that steers to zero 
certain outputs of the augmented system plant-plus-exosystem, thus achieving 
what is called the property of output regulation. Problems of this kind have been 
extensively studied in the 1970s for linear MIMO systems; the works of Francis 
and Wonham for instance, provide an exhaustive presentation of the theory [1, 
2]. The results culminated with the Internal Model Principle (IMP), which states 
that a structurally stable solution (i.e. robust to plant parameter variations) 
necessarily has to use feedback of the regulated variables and incorporate in the 
feedback path a (possibly redundant) model of the exosystem. 

A nonlinear enhancement of this theory was initiated at the beginning of 
the 1990s [3, 4]. The seminal paper of Isidori and Byrnes [3], although limited in 
scope (it only secured local, nonrobust, regulation about an equilibrium point), 
highlighted fundamental ideas which shaped all subsequent developments in this 
area of research. For instance, it points out the basic challenges in solving the 
output regulation problem in a nonlinear setting, namely to create an invariant 
set on which the desired regulated variable vanishes, and to render this set 
asymptotically attractive. It also highlights the fundamental link between the 
problem in question and the notion of “zero dynamics” (a concept introduced 
and studied earlier by the same authors).  

In the past 20 years, the design philosophy introduced in the paper above 
was extended in several directions. One goal was to move from “local” to 
“nonlocal” convergence, for which several approaches at increasing level of 
generality have been proposed [5, 6, 7]. An important advance of [7] was to give 
a general (nonequlibirum) definition of the problem, through a convenient 
definition of the notion of “steady state” for nonlinear systems. Another concern 
was to obtain design methods which are insensitive, or even robust, with respect 
to model uncertainties (either in the plant or in the exosystem) [8, 9]. 
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A general framework in which the output regulation problem is solved 
finally emerged. The basic ideas were captured within two fundamental 
properties, the internal model property and the stabilizability property. Once the 
first propriety is achieved, the output regulation problem can be simply solved 
through high-gain stabilization techniques [10]. 

A crucial observation was that the problem of achieving the asymptotic 
IMP is closely related to, and actually can be cast as, the problem of designing a 
nonlinear observer. By using available observer designs [11, 12, 13], this 
approach has lead to effective design methods that fall in two classes: based on 
immersion (they imply rather strong assumptions) [14, 15] and newest results 
dropping the immersion/observability condition [16, 17]. The results referred to 
above are by no means general; they can be applied to particular classes of 
systems, under specific hypotheses. 

These ideas were pursued mainly for SISO nonlinear systems, leading to 
some effective designs. The fact that so far there have been limited attempts to 
solve the problem in the MIMO case (e.g.[18]) is not entirely surprising, and for 
various reasons. First, seeing how the design of observers is instrumental in the 
design of controllers that solve the output regulation problem, the design of 
observers in the multiple-output case is known to pose serious technical 
difficulties, especially in obtaining the right canonical forms that allow a 
meaningful (constructive) characterization of the observability properties [19]. 
Second, MIMO normal forms are not simple extensions of SISO normal forms. 
For instance, while SISO normal forms lend themselves naturally to the 
definition of nonlinear equivalents for the linear finite and infinite zero 
structures and invertibility properties, the extension of these notions to MIMO 
systems is nowhere near as straightforward. On the other hand, a normal form of 
some kind represents the only tool to (robustly) handle nonlinear dynamics for 
control purposes, while normal forms that seem to be adequate for the MIMO 
nonlinear output regulation problem have been introduced just recently. Last, but 
not the least, while there is a wealth of stabilization tools for SISO nonlinear 
systems, there are not so many available for MIMO systems. 

In this paper we are going to present the assumptions under which the 
problem of output regulation can be solved in the case of nonlinear MIMO 
systems. This problem is strongly linked to the normal forms of nonlinear 
MIMO systems. The normal forms evolved in close relationship with the control 
techniques. The paper is structured as follows:  in chapter 2 the classic and 
recent results on normal forms used for MIMO nonlinear control problems are 
introduced and the zeros dynamics of the system is discussed, in chapter 3 the 
general problem of output regulation for nonlinear MIMO systems is presented, 
in chapter 4 the necessary conditions under which the output regulation problem 
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can be solved are discussed and  the assumptions considered in [18] are relaxed 
and chapter 5 deals with conclusions and further developments. 

 
2. Normal forms and zero dynamics for MIMO nonlinear systems 

Normal forms for nonlinear MIMO systems are meant to reveal key 
structural properties of the analyzed/considered system: relative degrees, zero 
dynamics and invertibility properties. The relative degrees expose the infinite 
zero structure, while the zero dynamics characterize the finite zero structure of 
the system. These notions are important (as in the case of linear systems) when 
control problems are of interest. Considering the following MIMO system: 

.
( , )
( )

x f x u
y h x
=
=

               (1) 

with: nx R∈ the state, mu R∈  the input, py R∈  the output, if the system is input 
affine it can be represented as: 

        
.

( ) ( )
( )

x f x g x u
y h x
= +
=

                                    (2)  

where:   1( ,..., ),mu col u u=  1( ,..., ),  py col y y=  1( ) [ ( ),..., ( )],  mg x g x g x=  

1( ) ( ( ),..., ( ))ph x h x h x=  and g(x) is a n m×  matrix and u(x), y(x), h(x) are vectors 
and system (2) can be rewritten as (3): 

   

.

1

1 1

( ) ( )

( )
...

( )

m

j i
j

p p

x f x g x u

y h x

y h x

=

= +

=

=

∑
    (3)  

In the case of square systems, m=p>1 the system can be written in the normal 
form introduced by Isidori in [20]. This is based on the existence of some vector 
relative degrees {r1,...,rm} at a point x0 : 
1. ( ) 0

j

k
g f iL L h x = ;   j=1,m;   i=1,m;   k<ri-1;  in a neighborhood of  x0. 

2.  

1 1

1

1

1 1
g 1 g 1

1 1
g g

( )  ( )

                   
( )  ( )

m

m m

m

r r
f f

r r
f m f m

L L h x L L h x

M
L L h x L L h x

− −

− −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

…

# %
…

 nonsingular in  x0. 
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Each relative degree ri is associated to the ith system output. The sum of the 
relative degrees is at most n. By applying the following transform 

: ( , )x z eΘ − > : 
1 1

1 1

1

[ ( )  ( )]

( )                    
[ ( )  ( )]m

r
f

r
m f m

h x L h x

x
h x L h x

−

−

⎡ ⎤
⎢ ⎥

Θ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

…
#

…
, 

(considering that ( )j
f idL h x , j=0,ri-1, i=1,m are linearly independent) the system 

in (2) can be written in normal form as: 
0

.

,1 ,2

.

, 1 ,

.

,
1

,1

( , ) ( , )

...

( , ) ( , )

i i

i

i i

i r i r

m

i r ij j
j

i i

z f z e P z e u

e e

e e

e q z e m z e u

y e

−

=

= +

=

=

= +

=

∑

�

  , i=1,m  (4) 

where 1( , ) ( , )
jij g iP e z L z e z−= ΘD , and the function  : ( , )x e zΘ − >  is a 

diffeomorphism from x to (e,z). 
  
Observation 1: In the case of SISO systems there is always possible to find a set 

of functions such that  ( ) 0,
jg iL z x ≡ j=1,p; i=1,n-

1

m

i
i

r
=
∑ . For the MIMO case, this 

is possible only if the distribution spanned by the column vectors  1 2{ , ,... }mg g g  
is involutive in a neighborhood of x0. 
 
Observation 2: If the matrix M(e,z) is singular and rankM<m is constant (the 
system can not be written in the normal form with m relative degrees), a 
dynamic extension algorithm proposed in  [20] can be used in order to extend 
the system by adding integrators on the input channels such that the system 
might be written in normal form.  
 
The zero dynamics of (4) 
Considering the system (4), the zero dynamics is given by the following 
expression: 

    0 ( ,0)iz f z=�      (5) 
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A generalization of the above algorithm was made in [99]. The normal form of 
system (2) is: 

 

0 0
1

, , 1 , , ,
1

,

,1

( ) ( )

( ) ( ) , 1, 1

; 1,
i

i

i j i j i j l l i j i
l

i n i

i i

z f x g x u

e e x v x u j n

e v

y e i m

δ σ
−

+
=

= +

= + + = −

=

= =

∑

�

�

�
 (6) 

with     1 2 ... mn n n≤ ≤  

 ,

,

( ) ( ) ;  1,
( ) ( )

( ) ( )
i

i

i i i

i g i n

i f i n

v a x b x u i m
a x L e x

b x L e x

= + =
=

=

 

and the matrix 1 2{ ( ), ( ),..., ( )}mb x b x b x  is smooth and nonsingular. 
Considering , ,i j lδ (x)=0 the vector 1 2{ , ,..., }mn n n  of system (6) represents exactly 
the relative degrees vector (which, in the case of  linear system gives the infinite 
zero structure). If , , ( ) 0i j l xδ ≠  the vector 1 2{ , ,..., }mn n n  is not linked to the 
infinite zero structure of a linear system [22]. 
Under the stronger assumptions that some matrix ranks are constant and the 
distribution spanned by the column vectors  1 2{ , ,... }mg g g  is involutive, system 
(6) takes the form: 

         

0
1

, , 1 , ,
1

,

,1

( )

( ) , 1, 1

; 1,
i

i

i j i j i j l l i
l

i r i

i i

z f x

e e x v j r

e v

y e i m

δ
−

+
=

=

= + = −

=

= =

∑

�

�

�

    

(7) 

 
The zero dynamics of (6) 
Using these generalizations of the normal form - (6) and (7), the zero dynamics 
is given by: 
     0 ( )z f x=�           (8) 
The assumptions needed for the elaboration of the presented normal forms are 
rather strong. In a recent publication [22] these assumptions are substantially 
weakened. Moreover, the infinite zero dynamics algorithm [22], [23] allows the 
representation of MIMO nonlinear systems that are not necessary square and 
invertible under the following form: 
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i
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d
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v
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ϕ
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ξ

ξ
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+
=

Δ Δ
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= + = −

=

=
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∑

∑

�
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with    1 2 ...
dmq q q≤ ≤ ≤ , 

,1 ,1 ,

,

{ , ,... }, 1,

( ) ( )
ii i i i q d

d i i i

i m

v a x b x u

ξ ξ ξ ξ= =

= +
   

1,1 2,1 ,1( , ,... )
dd my col ξ ξ ξ=  

and 1 2{ ( ), ( ),..., ( )}
dmcol b x b x b x is nonsingular. 

From the infinite zero structure algorithm, the dynamics ,i jξ�  does not depend on 
vl, l>j and it follows that : 

   , ,i j lδ (x)=0, j<ql, i=1,md   (10) 
The relations (9), (10) hold under Assumption B[22]. 
In (9) md  represents the largest number for which the system can be transformed 
in the normal form (this value results by applying the infinite zero structure 
algorithm). The algorithm also identifies a vector of integer values 1 2{ , ,..., }mq q q  
that represents the infinite zero structure.  
In addition, if Assumption C [22] holds there exist a coordinate transform that 
puts the system in the form : 

  

1

, , 1 , , ,
1

, ,

, ,1

( ) ( )

( ) , 1, 1

( )
; 1,

i

e e e
i

i j i j i j l d l i
l

i q d i

e e

d i i d

z f x g x u

x v j q

v

y h x
y i m

ξ ξ δ

ξ

ξ

−

+
=

= +

= + = −

=

=
= =

∑

�

�

�   (11) 

and , ,i j lδ (x)=0, j<ql, i=1,md.  

Moreover, the form (9) gives an insight on the system invertibility properties. If 
the term eu  is absent, the system is left invertible; if the term ey  is absent, the 
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system is right invertible;  if the terms eu and ey are both absent, the system is 
invertible and if the terms eu and  ey  exist, the system is degenerate [23]. 
In the case of square invertible systems with m=p= md , the terms eu and ey do 
not exist and the system takes the following normal form [22]: 

1

, , 1 , ,
1

,

,1

( , )

( , ) , 1, 1

; 1,
i

e
i

i j i j i j l l i
l

i q i

i i d

z f z

z v j q

v

y i m

ξ

ξ ξ δ ξ

ξ

ξ

−

+
=

=

= + = −

=

= =

∑

�

�

�
 (12) 

with    1 2 ... mq q q≤ ≤ ≤    and  

, ,i j lδ (x)=0, j<ql, i=1,m                (13) 
It can be observed that the system in (12) form has a triangular structure [22] 
between ,i jξ�  and the inputs. Relation (13) reveals the fact that there is also a 
triangular dependency of , ,i j lδ  on the state variables [23].  
 
The zero dynamics of (12) 

The system’s (12) zero dynamics is given by: 
( ,0)ez f z=�      

This type of normal form with a structure in which the inputs are entering 
the system in a triangular fashion and the , ,i j lδ  functions have triangular 
dependencies on the systems state presents valuable properties (aside weaker 
assumptions and the fact that it shows the invertibility properties of the system) 
from the control point of view [23]. Using it to solve the output regulation 
problem hasn’t been yet pursuit.  

In what follows we are going to give the general context of output 
regulation problem in the case of MIMO systems and to compare the conditions 
for the problem solvability in case of using the two normal forms presented 
above in terms of assumptions restrictivity. 
 

3. The general output regulation problem for MIMO nonlinear 
systems 

The problem of output regulation considers that the models for the 
process to be control and the exosystem are known. The latter is supposed to 
contain the reference and/or the perturbations. A regulator solving the problem 
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in closed loop must assure: the boundedness of the state trajectory and uniform 
convergence to 0 of the error.  
We consider a multivariable system given by the following expression: 

.
( , , )
( , )
( , )

x f w x u
y k w x
e h w x

=
=
=

   (14) 

with: nx R∈  the state, mu R∈  the control input, pe R∈  the regulated output, 
py R∈  the measured output, rw R∈ the exosystem’s state. 

The exosystem is an autonomous system: 
.

( )w s w=    (15) 
The functions f(w,x,u), h(w,x), k(w,x) and s(w) are considered to be of class Ck 
(sufficiently large) in their arguments. The initial conditions for the system vary 
on a fixed closed set 0(0)x X∈  and   for the exosystem - vary on a invariant 
compact set (0)w W∈ .  
We further consider that the system is of finite dimension, time invariant, and 
can be put in a normal form:  
1. such that it has a well defined relative degrees vector and the zero dynamics is 
stable (the system is of minimum phase) – Isidori approach in [18] or 
2. as described in (9). 
The regulator is supposed to be of the form: 

.
( , )

( , )
y

u y
ψ ϕ ψ

γ ψ
=
=

     (16) 

with: vRψ ∈  the regulator state and the functions ( , )yϕ ψ  and ( , )yγ ψ  of class 
Ck. 
The initial conditions for the regulator can vary on a compact set (0)ψ ∈Ξ . 
The system  (14), (15) and (16) in closed loop form  is: 

.

.

.

( )

( , , ( , ( , )))

( , ( , ))
( , )

w s w

x f w x k w x

k w x
e h w x

γ ψ

ψ ϕ ψ

=

=

=
=

  (17) 

Consider that X is a compact subset of X0, the regulator (16) solves the output 
regulation problem if the positive trajectory on W X× ×Ξ  is bounded 
and lim ( ) 0

t
e t

→∞
= , uniformly on W X× ×Ξ  (when the system is in steady state).  
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The form of the regulator, its initial conditions set and its proprieties are to be 
determined. In the context of the output regulation problem as presented in [7], 
[14] with the notations and lemmas of [7] the trajectories of the system in closed 
loop are supposed to be bounded. 
This leads to the conclusion that the ω  limit set ( )W Xω × ×Ξ  is not empty, 
compact and invariant, and uniformly attracts the trajectories of the system in 
closed loop and the steady state error is 0 if and only if: 

{ }( ) ( , , ) : ( , ) 0W X w x h w xω ψ× ×Ξ ⊂ =  

 
4. Necessary conditions for solving the output regulation problem 

MIMO nonlinear systems  
 
4. 1. The system can be written in the normal form (4)  
In this case the system with the exosystem (15) has the form: 

0 1
.

( , ) ( , , )

( , , ) ( , )

z f z w f z e w e

e q z e w M z w u

= +

= +

�
  , i=1,m   (18) 

with: initial conditions in the set Z E W× ×  where Z is fixed and compact and  E 
is bounded and the functions f0, f1, g, s, M are smooth enough. 
The coupling matrix M(z,w) is considered invertible (in the SISO systems case 
the condition is that 1( , , , , ) 0rb w z e e ≠… ). This means that system (18) has a 
vector of relative degrees: {1,1,...1} between the control input u and the 
regulated output e. A system with the relative degrees vector  {r1,…rm} can 
always be transformed into the form (18). 
Considering that a controller of the form (16) solves the problem of output 
regulation and applying lemma 2 [7] the steady state locus of the system in 
closed loop (17) must be a subset of the set for which the error is zero (e=0). 
If system (8) is in steady state the following conditions are fulfilled: 

- the steady state locus of the system in closed loop ( )W Z Eω × × ×Ξ  is a 
subset of: {0}s n m vR R R−× × ×  

- the restriction of the system in closed loop to the steady state locus 
( )W Z Eω × × ×Ξ  is (with the zero dynamics given by the first two relations) 

.

.

0

.

( )

( , )

( ,0)

w s w

z f w z

ψ ϕ ψ

=

=

=

;  cu e=0 

- ∀ ( , ,0, ,0, ) ( )w z W Z Eψ ω∈ × × ×Ξ…  
0 ( ,0, ) ( , ) ( ,0)q z w M z w γ ψ= + <=> 0 ( ,0, ) ( , )q z w M z w u= +  
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It was considered that the positive trajectory of the exosystem (15) on W  is 
bounded if the trajectories asymptotically approach ( )Wω . This assumption 
does not diminish the generality of the problem because it can be considered that 
W= ( )Wω  which means that the exosystem is in steady state.  
 
Assumption 1 MIMO  
The set nW R⊂  is compact and invariant under (15). 
If the positive orbit of the set W Z E× × ×Ξ  under (14), (15) and (16), then the 
system dynamics in closed loop is the graph of a function defined on the whole 
of W parts.  
Noting 

{( , ) | ( , ,0, ,0, ) ( ), }v
ssA w z w z W Z E Rψ ω ψ= ∈ × × ×Ξ ∈…              (19) 

and considering the function  

                                           
1

:

( , ) ( , ) ( , ,0)

m
ss ssu A R

w z M w z q w z−

→

→ −
 

by construction the set described by (19) is the codomain of a function defined 
on the whole of W, which is invariant under the zero dynamics of the system in 
the normal form (4) and the exosystem: 

.

.

0

( )

( , )

w s w

z f w z

=

=
    (20) 

The function uss is the control law that forces the system to evolve on Ass.  
In conclusion, if the controller (16) solves the output regulation problem for the 
system in normal form with the exosystem, then there is a function defined on 
the whole of W which has the codomaine Ass  and Ass  is invariant under (20). 
Moreover, for each 0 0 0( , ) , v

ssw z A Rψ∈ ∃ ∈ such that the integral curve of (20) is 
exactly the integral curve of  

.
( ,0)ψ ϕ ψ=  

starting in 0ψ  and satisfying 
( ( ), ( )) ( ( ),0), .ssu w t z t t t Rγ ψ= ∀ ∈  

In other words, one can build a controller that reproduces the input for steady 
stare such that the regulated error is 0 (internal model for nonlinear system).  
Considering this approach it can be observed that Assumption I MIMO can be 
considered only if the coupling matrix M is invertible. The invertibility implies 
two aspects: 

1. the system is square 
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2. the inverse of M must be formally computed – which represents a major 
drawback for real implementation cases. This is probably why no 
publication follows the article giving this solution in [18]. 

 
4.2 Recent normal form  
Following the above reasoning, we consider that the system is written in the  
normal form (12) with the exosystem (15): 

 

1

, , 1 , ,
1

,

,1

( )
( , )

( , , ) , 1, 1

; 1,
i

e
i

i j i j i j l l i
l

i q i

i i d

w s w
z f z w

z w v j q

v

y i m

ξ ξ δ ξ
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Assumption I MIMO takes the following form: 
 
Assumption 1 MIMO N 
The set nW R⊂  is compact and invariant under (5). 
If the positive orbit of the set W Z E× × ×Ξ  under (12), (15) and (16), the system 
dynamics in closed loop is the graph of a function defined on the whole of W 
parts.  
If we note: 

' {( , ) | ( , ,0, ,0, ) ( ), }v
ssA w z w z W Z E Rψ ω ψ= ∈ × × ×Ξ ∈…       (21) 

and if in relation (13) 1lq ≤  we can consider the function:  

1 1

1 1 1

1 1 1

' : '

( , ,0) / ( , ,0)
( , ) ( ' ,.., ' , ( , ,0),...,

( , ,0), ( , ,0),..., ( , ,0))

m
ss ss

p p

p p

u A R

a w z b w z
w z f u u a w z

a w z b w z b w z
−

− −

→

⎡ ⎤−
⎢ ⎥

→ ⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

By construction, the set described by (21) is the codomain of a function defined 
on the whole of W, which is invariant under the zero dynamics of the system in 
the normal form (12) and the exosystem (15): 
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z f z
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=
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The function u’ss is the control law that forces the system to evolve on A’ss.  
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The “triangular” properties of the new normal form (12) lead to a feasible 
solution for writing the necessary conditions for the output regulation problem in 
a real case, without formally inverting the coupling matrix.  
 

5. Conclusions  
 

In the light of recent advancements on normal forms we consider that a 
more suitable approach for solving the nonlinear output regulation problem in 
the case of square MIMO systems is to use the normal form proposed in [22]. In 
this case the conditions under which the problem of output regulation is solvable 
are more relaxed from the following points of view:  the relative degrees vector 
is not required; there is no assumption that implies the fact that the coupling  M 
matrix is to be inverted explicitly, which means that nonsquare  MIMO systems 
could be considered for control too; the assumptions needed for the normal form 
of [22]  are less restrictive than the ones for the normal form of [21]. 
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