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AUXILIARY PRINCIPLE TECHNIQUE FOR STRONGLY MIXED
VARIATIONAL-LIKE INEQUALITIES

M. A. Noor!, K. I. Noor?, M. I. Baloch?®

In this paper, we introduce a mew class of variational-like inequalities,
which is called strongly mized variational-like inequality. It is shown that the optimality
conditions for the sum of differentiable preinvex functions and nondifferentiable strongly
preinvex functions can be characterized by strongly mized variational-like inequalities.
We use the auziliary principle technique to study the existence of a solution of the
strongly mized variational-like inequalities. Some iterative methods for solving strongly
mized variational-like inequalities are suggested. Convergence analysis of these proposed
methods is considered under mild conditions. Some special cases are also discussed which
can be obtained from our results.
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1. Introduction

Variational inequalities were introduced and studied by Stampacchia[17] in the poten-
tial theory. Variational inequalities can be regarded as natural extensions of the variational
principles, the origin of which can be traced back to Euler, Lagrange and Bernoulli’s broth-
ers. The optimality conditions of the differentiable convex functions can be characterized by
variational inequalities. However, it is amazing that a wide class of unrelated problems can
be studied in the general and unified framework of variational inequalities, see, for example,
1,2,3,4,6,7,7,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

In recent years, the concepts of convex functions and convex sets have been generalized
in various directions. Hanson[5] considered the invex functions in mathematical program-
ming, which turned out to very interesting from practical point of view. Ben-Israiland Mond
[2] introduced the concept of invex and preinvex functions. Preinvex functions may not be
convex functions. They proved that the differentiable preinvex functions are invex functions,
but the converse is not true. These developments were instrumental in the introduction of
variational-like inequalities in 1980’s. Noor [10] proved that the optimal conditions of the
differentiable preinvex functions can be characterized by variational-like inequalities. Using
this idea, we show that the optimality conditions of the sum of differentiable preinconvex
functions and nondifferentiable strongly preinvex functions can be characterized by a class
of variational-like inequalities, which is Lemma 2.1. This result motivated us to introduce
strongly mixed variational-like inequalities. To the best of our knowledge, such type of
strongly mixed variational-like inequalities have been not considered in the literature. It is
known that the projection methods and resolvent methods can not be used to study the ex-
istence of the solution of strongly mixed variational-like inequalities involving the bifunction
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n(.,.) and nonlinear terms. This difficulty can be overcome to use the auxiliary principle
technique, which is mainly due to Lions and Stampachhia[8] as developed by Glowinski et
al [4] and Noor [13, 14, 15]. We use the auxiliary principle technique to study the existence
of a solution of the strongly mixed variational-like inequalities. Some iterative methods are
suggested. Convergence analysis of these methods is proved under some mild conditions.
Several special cases are considered, which can be obtained from main results. We expect
that the ideas and techniques of this paper may stimulate further research. The comparison
of these new suggested methods with other methods is an interesting problem for future
research.

2. Formulations and basic facts

Let H be a real Hilbert space, whose norm and inner product are denoted by || - ||
and (-, -) respectively. We assume that the bifunctionn(.,.) : K, x K,, — H satisfies the
condition that

77(% ’l)) = 777(”7“)3 VU,U € Kna
unless otherwise specified.

We now recall some basic definitions and results.

Definition 2.1. Let K, be any set in H. The set K, is said to be an invex set, if there
exists a bifunction n(.,.) such that

u+tn(v,u) € K,, Yu,ve K,,tel0,1].
Definition 2.2. The function F' : K,y — H 1is said to be a strongly preinvex function, if
there exist a constant p > 0 and a bifunction n(.,.), such that
F((u+tn(v,u)) < (1 —t)F(u) +tF(u+n(v,u)) — pt(l —t)||v —ul|?, Yu,v € K,,t€[0,1].
If 4 = 0, then definition 2.2 reduces to a classical preinvex function, which was

introduced by Ben-Israil and Mond [2].
If the function F' is differentiable, then

Theorem 2.1. Let K, be an invex set set and the function F' be differentiable. Then
(1) F is strongly convex function, that is

F((u+n(v,u)) < (1 —t)F(u) +tF(v) — pt(l —t)||lv — u|)®,Vu,v € K,,t € [0,1],

(2) F(v) = F(u) > (F'(u),n(v,u)) + pllv = ul?,  Vu,v € Ky,

(3) (F'(u) = F'(v),n(v,w)) > 2pflv —ul?, Vu,ve K,

where F'(u) is derwative of F' at u € K,,. Condition (3) says that the derivative F'(-) is
strongly monotone with constant o = 2 > 0.

We now consider the functional I[v], defined as
I[v] = F(v) + ¢(v),Yv € H, (2.1)

where F is differentiable preinvex function and ¢ is a nondifferentiable preinvex function.

We now show that the minimum of the functional I[v], defined by (2.1) can be char-
acterized by a class of variational-like inequalities.

Theorem 2.2. Let K, be an invex convex set in H. Let F' be a differentiable peinvex function
and ¢ be a nondifferentiable strongly preinvex function. Then u € K, is the minimum of
the functional I[v], if and only if, u € K,, satisfies

(F'(w),n(v, ) + o(v) = p(u) > pllo —ul?, Yo e K, (2.2)
where F' is the Frechet deriwative of F' at u € K,,.
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Proof. Let u € K, be a minimum of I[v] on K,. Then
Iu] < Iv], Yve K,. (2.3)
Since K, is an invex set, so, Vu,v € K,,, t€[0,1], v, =u+tn(v,u) € K,,.
Replacing v by v in (2.3), we have
Iu] < Iv) = Tu + tn(v, u)],
which implies, using(2.1)
Flu)+ ) < Flu+tn(,u)) +e(u+tn(v,u))
< Flu+tn(v,u) + o(u) + Hew) — p(u)} — pullv - ul]*.
Dividing the resultant inequality by ¢ and taking the limit as t — 0, we have ,
(F'(u),n(v,w) +¢(v) = p(u) > plv—ul®, ve K,

the required result ().

Conversely, let u € K, satisfy (2.2). We have to show that u € K, is the minimum of I[v]
on the convex set K.

Consider

Iu) = Iv] —{F(v)) + ¢(v) = F(u) — p(u)}
—{(F'(w),n(v,u)) + ¢(v) — ()}

—pullv —uf? <0, (2.4)

INIA

where we have used the fact that F' is differentiable preinvex function and (2.2). This shows
that v € K, is the minimum of the functional I[v], defined by (2.1). O

The inequality (2.2) is called the strongly mixed variational-like inequality. This shows
that the variational-like inequalities arise naturally in connection with the minimization of
the differentiable preinvex functions subject to certain constraints.

First of all, we recall the following concepts. To obtain the main results, we recall
some well-known concepts and results.

Definition 2.3. An operator T : H — H 1is said to be:
(1) Strongly monotone, if there exist a constant o > 0, such that

(Tu — Tv,u—v) > allu—|?, Vu,ve H.

ipschitz continuous, if there exist a constant 8 > 0, such tha

2) Lipschit ti if th 5t tant § >0 h that
|Tu —Tv|| < Bllu—v|, Vu,veH.

(3) Monotone, if
(Tu —Tv,u—v) >0, Vu,veH.

Definition 2.4. The bifunction n(.,.) : H x H — H is said to be:

(1) Strongly monotone, if there exist a constant o > 0, such that
(n(u,v),u —v) >ollu—|?* Vu,veH.
(2) Lipschitz continuous, if there exist a constant 60, such that

[n(w, v)[| < 8lu—vl,  Vu,0 € H.
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We would like to mention that if n(v,u) = Tu—Tw, for T : H — H, then Definition
2.4 reduces to Definition 2.3.

In many important applications, the variational-like inequalities do not arise as a
result of minimization problems. The main motivation of this paper is to consider a more
general variational-like inequality, which includes (2.2) as a special case.

To be more precise, let T : H — H be a continuous monotone nonlinear operator and
let ¢ : H— RU{+o00} be a function. We consider the problem of finding u € K, such that

(Tu,n(v,u)) + ¢(v) = p(u) > pllv —ul]?, Vv e Ky, (2.5)

which is called the strongly mixed variational-like inequalities. A wide class of problems
arising in pure and applied sciences can be studied via strongly mixed variational-like in-
equalities (2.5).

We would like to point out that if (v, u) = v —u, then the strongly preinvex functions
become convex functions. Consequently, the strongly mixed variational-like inequalities (2.5)
reduce to the strongly mixed variational inequalities, that is, find u € K, a convex set in H,
such that

(Tu,v —u) + p(v) — p(u) > pllv—ul|?, YveK, (2.6)
which is known as the strongly mixed variational inequality. For the applications, motiva-
tion and other aspects of strongly mixed variational inequalities, see [1, 2, 3, 4, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16] and the references therein.

Due to the presence of the bifunction 7(.,.) and nonlinear form, the projection and
resolvent operator methods can not be used to discuss the existence of a solution and pro-
pose iterative methods for solving the strongly mixed variational-like inequalities. To over-
come this difficulty, we use auxiliary principle technique, which is mainly due to Lions and
Stamapcchia [8] and Glowinski et al [4].

Theorem 2.3. Let T be strongly monotone with constant o > 0 and Lipschitz continuous
with constant 8 > 0, respectively. If the bifunction is strongly monotone with constant o > 0
and Lipschitz continuous with constant § > 0, respectively, then, for constant p > 0, such
that

2(a+2u — Pr) 1
VP B u—p P B-w 27
v=1-20+/0 (2:8)

then there exists a solution u € K, satisfying the variational-like inequality (2.1).

Proof. We use the auxiliary principle technique to prove the existence of a solution of (2.5).
To be more precise, for a given u € K, satisfying (2.5), consider the problem of finding
w € K, such that

(pTu, (v, w)) + (w —u,v — w) + pp(v) — pp(w) — pullv —w|* > 0,Vv € K. (2.9)

which is called the auxiliary strongly mixed variational inequality. This technique enables us
to define the mapping connecting the solution of both the problems. In this case, one has to
show that the mapping connecting the solutions is a contraction mapping and consequently,
it has a fixed point satisfying the original problem. For wq # ws € K, ( corresponding to
uy # ug,), we have

(PTur, m(v, w1) + (w1 — ur,v —wi) + pe(v) — pp(wr) — pullo — wn|? > 0,% € K. (2.10)
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and
(pTuz,n(v, w2)) + (w2 — uz,v — wa2) + pp(v) — pp(wz2) — pullv — wa||* > 0,¥v € K. (2.11)
Taking v = wa in (2.10) and v = w; in (2.11) and adding the resultant, we have
(p(Tur — Tuz), (w2, w1)) 4 (w1 — w2 — (w1 — ugz), w2 —w1) — 2ppllwz —w1|* >0, (2.12)
from which, it follows that
(w1 —wo, w1 —wae) < (ug —ug — p(Tug — Tug), w; — ws)
—(p(Tuy — Tug, w1 — we — n(wy, ws))
~2pupllwy — ws . (2.13)
Thus, we have

[ —wa|* < Jlur = uz — p(Tur — Tus)[[lwi — w2||

+lp(Tur = Tusl|[|wy — w2 — n(wy, w2)||

—2pp|lw — wol?. (2.14)
Since the operator T is a strongly monotone with constant a > 0 and Lipschitz continuous
with constant 8 > 0, respectively, so

||ug —ug — p(Tuy — TU2H2 = (u; —ug — p(Tuy — Tug,us —uz — p(Tug — Tug)
< (1 —2pa+ p*B%)||ur — uz|?. (2.15)

Similarly, using the strongly monotonicity and Lipschitz continuity of the bifunction 7(.,.)
with constants ¢ > 0 and & > 0, respectively, we have

wi — wy — n(wr,ws)[|* < {1 =20+ 6 }wy — ws?
= vl|lwy —wal, (2.16)

where v is defined by (2.8).
From (2.14),(2.15) and (2.16), we have

w1 — w2l < {V/1—=2pa+ p?B% + pBrHur — uz|| — 2ppllwr — wa, (2.17)

which implies that

V1= 2pa+ p?B% + pPv
< [lur
1+ 2pp
Ollur — uzl|, (2.18)

w1 — wal — ug|

where
p_ Y1=2pa+p?F? + pBy
1+ 2pp
From (2.7), it follows that # < 1. This implies that the mapping w defined by (2.9) is a

contraction and consequently has a fixed point w = u € K, satisfying the variational-like
inequality (2.5).

O

Remark 2.1. We note that the auziliary problem (2.9) is equivalent to finding the minimum
of the functional Ifw] on the convex set K, where

] = 5w — ww — u) — (T, w0 — ) ~ pp(w),

The function I[u] is known as the gap (merit) function associated with the variational-
like inequality (2.5). This equivalence can be used to suggest and analyze a number of
iterative methods for solving variational-like inequalities and nonlinear programming, see,
for example, Patriksson [16].
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Remark 2.2. [t is clear that if n(v,u) = v — u, then the problem (2.9) is is equivalent to
finding v € K such that

(w,v—w)) = (0 — w) — p(Tu, v —w) — pd(v) + p(u) — ppllo — w2, Yo € K, (2.19)

which is the auziliary mixed variational inequality problem associated with strongly mized
variational inequality. Using the technique of Theorem 2.3, one can easily discuss the exis-
tence of the solution of the problem (2.6).

It is clear that, if w = w, then w is the solution of the strongly mixed variational-
like inequality (2.5). This simple observation enables us to suggest the following iterative
method.

Algorithm 2.1. For a given ug, compute the approximate solution u,y1 by the iterative
scheme

<pT’LLn, 77(1]7 un+1)> + <un+1 — Up, UV — 'I.Ln+1>
+pd(v) — pp(Unt1) = ppullv — unsa ||*, Vo € Ky,

which is known as the explicit method.

We again use the auxiliary principle technique to suggest an implicit method for solv-
ing the strongly mixed variational-like inequalities.

For a given u € K, satisfying (2.5), consider the problem of finding w € K, such that
(pTw, (v, w)) + (W — w0 — w) + pp(v) — pp(w) — pull — wl? = 0,Y0 € Ky, (2.20)

which is called the auxiliary strongly mixed variational-like inequality. We would like to re-
mark that the auxiliary principle (2.9) is quite different than the auxiliary principle (2.20).

It is clear that, if w = w, then w is a solution of (2.5). This fact allows to suggest the
following iterative method.

Algorithm 2.2. For a given ug, compute the approzimate solution w,41 by the iterative
scheme
(pTun41,m(V, Unt1))  +  (Un+1 = Un, ¥ = Uny1)
+0(0) = po(ttns1) = pptllv — w1 % V0 € Ky (2.21)

Algorithm 3.2 is called the implicit method. We use the technique of Noor [13] to
prove the convergence of Algorithm 3.2.

Theorem 2.4. Let the operator T' be monotone. If u € Ky be solution of (2.5) and w, 1
is the approzimate solution obtained from(2.20), then

(1 +4p)llu = unia [I* < Jlu = unll? = lJun — upsa |1 (2.22)
Proof. Let u € K,, be solution of (2.5). Then, using the monotonicity of T, we have
(Tv,n(v,u)) + ¢(v) — p(u) > pllv —ul|?, Vv € K,. (2.23)
Taking v = up41 in (2.23), we have
(Tups1,N(Ung1, 1)) + G(unt1) = d(u) > pllupsr —ul’, Vo€ K, (2.24)

Letting v = u in (2.24), we have
(PTuns1,n(u,unt1))  +  (Unt1 — Up, U — Uny1)

+pp(u) = pd(uni1) > ppllu = wppa |?,
Yo e K. (2.25)
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From (2.24) and (2.25), we obtain
(U1 = Upy = Ung1) > 2ppllu —upia | (2.26)
Using Va,b € H,2{(a,b) = |la + b||* — ||a]|? — ||b]|?, we obtain
(1 + 4pp)u — s [P < = e = i — a1,

the required result (2.20). O

Theorem 2.5. Let H be a finite dimensional space. If u,y1 is the approzimate solution
obtained from (2.20) and @ € K, is solution of (2.1), then lim, o u, = .

Proof. Let @ € K, be a solution of (2.1). From (2.22), it follows that the sequence {|lu, —a|/}
is nonincreasing and consequently {u,} is bounded. Also from (2.22), we have

e}

S s — ual < Jluo — a2

n=0

which implies that

nliﬂmoo |tnt1 — unll = 0. (2.27)

Let % be a cluster point of {u,} and the subsequence {u,, of the sequence {u,,} converge
to w € K.ta. Replacing u, by u,; in (2.21) and taking the limit as n,; — oo and using
(2.27), we have

(T, n(v,2)) + ¢(v) — o) > ulv —al®, Vv e Ky,
which shows that @ is a solution of (2.1) and
(1 +4pp)|Juns1 — un||2 < Jun — aHZ

Thus it follows from the above inequality that sequence {u,} has exactly one cluster point
w and ltmy,— ooy = U. O

Conclusion

In this paper, we have introduced and considered a strongly mixed variational-like
inequalities. It has been shown that a minimum of a sum of differentiable preinvex functions
and nondifferentiable strongly preinvex can be characterized by a class of mixed variational-
like inequalities. Using the auxiliary principle technique, we have discussed the existence of
a solution of strongly mixed variational-like inequalities. Some iterative methods have been
proposed and their convergence is investigated. Some special cases which can be obtained
from our results are considered. The ideas and techniques of this paper may inspired further
research in this field.

Acknowledgements

The authors would like to thank the Rector, COMSATS Institute of Information
Technology, Pakistan, for providing excellent research and academic environments. The
authors are pleased to acknowledge the support of the Distinguished Scientist Fellowship
Program (DSFP), from King Saud University, Riyadh, Saudi Arabia. Authors are grateful
to the referees for their constructive comments and suggestions.



100 M. A. Noor, K. I. Noor, M. I. Baloch
REFERENCES
[1] Baocchi, C. and Cappelo, A., Variational and Quas-Variational Inequalities, John Wiley and Sons, New

9
(10]
(11]

(12]

(13]
(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

York, 1984.

Ben-Israel, A. and Mond, B., What is invesity? J. Austral. Math. Soc, Vol 28B(1966), 1-9.

Daniele, P., Giannessi, F. and Maugeri, A., Equilibrium Problems and Variational Models. Kluwer
Acadamic, London, (2003).

Glowinski, R., Lions, J. L. and Tremolieres, R., Numerical analysis of variational inequalities. North-
Holland, Amsterdam.(1981).

Hanson, M. A., On the sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80(1981),
545-550.

Kikuchi, N. and Oden, J. T., Compact Problems in Elasticity, SAIM Publishing Co., Philadelphia,
(1988).

Korpelevich, G. M., The extragradient method for finding saddle points and other problems, Metekon,,
12(1976), 747-756.

Lions, J. L. and Stampacchia, G., Variational inequalities, Commun. Pure Appl. Math. 20(1967), 493-
518.

Noor, M. A., On variational inequalities, PhD Thesis, Brunel University, London, 1975.

Noor, M. A., Variational-like inequalities, Optimization, 30(1994), 323-330.

Noor, M. A., Nonconvex functions and variational inequalities, J. Optim. Theory Appl. 87(3)(1995),615-
630.

Noor, M. A., Some developments in general variational inequalities, Appl. math. Comput. 251(2004),
199-277.

Noor, M. A., Fundamental of equlibirum problems, Math. Inequal. Appl. 9(3)(2006), 529-566.

Noor, M. A., Fundamentals of mixed quasi variational inequalities. Inter. J. Pure Appl. Math.
15(2)(2004), 137-250.

Noor, M. A.; Noor, K. I. and Rassias, Th. M. Some aspects of variational inequalities. J. Comput. Appl.
Math. 47(1993), 285-312.

Patriksson, M., Nonlinear Programming and Variational Inequalities: A Unified Approach, Kluwer
Acadamic publishers, Drodrecht.(1998).

Stampacchia, G., Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris
258(1964), 4413-4416.

B.S. Thakur and M. Postolache, Existence and approximation of solutions for generalized extended
nonlinear variational inequalities, J. Inequal. Appl. 2013 (2013):590.

Y. Yao, M. Postolache, Y.C. Liou and Z. Yao, Construction algorithms for a class of monotone varia-
tional inequalities, Optim. Lett. 10(7) (2016), 1519-1528.

Y. Yao, M. Postolache and Y.C. Liou, Variant extragradient-type method for monotone variational
inequalities, Fixed Point Theory Appl. 2013 (2013): 185.

Y. Yao and M. Postolache, Iterative methods for pseudomonotone variational inequalities and fixed
point problems, J. Optim. Theory Appl. 155(1) (2012), 273-287.



