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DYNAMIC PATH PLANNING FOR INSPECTION ROBOTS 

INCORPORATING IMPROVED A* AND DYNAMIC 

WINDOW APPROACH 

Zhiguo ZHAO1, Dong XIE2, Shanzhen XU3,*, Jianhui ZHU4, Zhen XU5 

With the rapid advancement of industrial automation and intelligent 

inspection, patrol robots have become indispensable tools for equipment monitoring 

and safety assurance. To enhance the performance of traditional A* algorithms – 

including path discontinuity, redundant nodes, and poor adaptability to dynamic 

environments – this study proposes a hybrid navigation framework integrating the 

improved A* algorithm with the optimized Dynamic Window Approach (DWA). 

Simulation experiments demonstrate significant performance improvements: Node 

count, cumulative turning angle, and path length decreased by 11.11%, 40.93%, and 

3.45% respectively in 20×20 grid maps. Corresponding reductions reached 41.67%, 

69.02%, and 17.97% in 40×40 grid maps. 

Keywords: Inspection robots; path planning; A* algorithm; dynamic window 

approach; fusion algorithm 

1. Introduction 

As artificial intelligence and robotic technologies continue to advance at an 

unprecedented pace, mobile robots are being increasingly integrated into diverse 

industries, with path planning algorithms emerging as critical enablers for their safe 

and efficient navigation in complex operational scenarios [1,2]. Especially the 

inspection robot [3], as an intelligent mobile device, has become an indispensable 

and important tool in industry, logistics, security and other fields. Path planning 

serves as a critical enabler for autonomous navigation in robotic inspection systems, 

forming a cornerstone of their operational capability [4,5]. Global path planning 

focuses on the optimality and efficiency of the overall path, such as A* algorithm 

[6], rapidly-exploring random trees (RRT) algorithm[7], Dijkstra's algorithm [8], 

and ant colony algorithm [9], etc., while local path planning pays more attention to 

 
1 Prof., Faculty of Transportation Engineering, Huaiyin Institute of Technology, Huai’an, China,  

e-mail: zhaozg@hyit.edu.cn  
2 PG., Faculty of Transportation Engineering, Huaiyin Institute of Technology, Huai’an, China,   

e-mail: 1410101122@qq.com  
3 A/Prof., Faculty of Transportation Engineering, Huaiyin Institute of Technology, Huai’an, China, 

e-mail: xushzh@hyit.edu.cn 
4 Lect., Faculty of Transportation Engineering, Huaiyin Institute of Technology,Huai’an, China, e-

mail: zhujianhui@hyit.edu.cn  
5 PG., Faculty of Transportation Engineering, Huaiyin Institute of Technology, Huai’an, China, e-

mail: 1558463117@qq.com 

mailto:zhaozg@hyit.edu.cn
mailto:1410101122@qq.com
mailto:zhujianhui@hyit.edu.cn


172                        Zhiguo Zhao, Dong Xie, Shanzhen Xu, Jianhui Zhu, Zhen Xu 

real-time and dynamic obstacle avoidance capability, such as dynamic window 

approach(DWA) [10], timed elastic band(TEB) algorithm [11], and artificial 

potential field(APF) approach [12], etc. 

The A* algorithm excels in fast computation and minimal path length but 

suffers from redundant nodes, frequent turns, and proximity to obstacles in large 

environments. To address these, researchers have proposed solutions: Wang et al. 

[13] enhanced A* by adding time cost to the evaluation function, pruning obstacle-

adjacent child nodes, and replacing zigzags with arcs to shorten paths. Lian et al. 

[14] introduced 24-neighbor heuristics and collision threat costs in the heuristic 

function, improving obstacle avoidance. Dang et al. [15] integrated collision risk 

and movement costs into the cost function and used Reeds-Shepp (RS) curves 

during path expansion to reduce directional changes and collision risks, achieving 

smoother paths. These approaches address A*’s limitations by optimizing node 

selection, refining path geometry, and incorporating safety constraints. 

While existing A* improvements show moderate gains, unmanned vehicles 

still face unknown obstacles during travel, necessitating real-time dynamic 

avoidance. Researchers have enhanced the DWA algorithm: Wang et al. [16] 

proposed a pre-trajectory selection mechanism using differential manifolds, 

integrating obstacle density and angular change into the cost function to improve 

path smoothness and obstacle avoidance efficiency. Zhang et al. [17] developed a 

distributed collision avoidance framework combining trajectory prediction, 

weighted risk metrics, and maneuver constraints in the cost function, enhancing 

both obstacle negotiation and system safety. These modifications address real-time 

dynamic challenges while optimizing DWA’s performance. 

Despite improvements to A* and DWA algorithms, challenges remain: A* 

struggles with redundant nodes and excessive turns, while DWA falters in high-

density obstacle environments due to local optimization. To address this, this paper 

proposes a synergistic framework combining enhanced A* and DWA. The A* 

algorithm integrates obstacle weights into its heuristic function to reduce 

redundancy and improve trajectory quality. The DWA algorithm is modified to 

include a combined speed metric, enabling dynamic tracking of A*-generated path 

nodes. This fusion minimizes disruptions from dynamic obstacles during inspection 

robot navigation. 

2. Research Foundation 

2.1. Environmental modeling 

The environment model includes map data, obstacle/target/start positions, 

providing essential environmental data. Raster-based mapping was selected for its 

simplicity and compatibility with the experiment. A Cartesian coordinate system is 

established using the raster’s orthogonal edges as x-y axes, enabling precise point 

localization via Map(x,y) coordinates. 
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2.2. Traditional A* algorithm 

As a milestone in search algorithms, the A* algorithm [18] establishes itself 

as the gold-standard heuristic search technique for optimal pathfinding in discrete 

topological networks. It combines Dijkstra’s completeness with best-first efficiency 

via a cost framework that merges verified path costs and admissible heuristics. This 

dual-cost design ensures optimality and polynomial-time performance in grid-based 

navigation, with trajectory generation driven by its objective cost model: 

 , (1) 

where the evaluation function f(n) comprises two fundamental components: 

g(n) denoting the accumulated traversal cost from the origin node to current 

position n, h(n) representing the heuristic estimate from n to the destination. The 

heuristic computation uses metrics like Manhattan distance (Eq. (2)) for orthogonal 

movement constraints:  

 , (2) 

where dist is the function distance, (xcurr, ycurr) is the position of the current 

node in the raster map, and (xnext, ynext) is the position of the next node in the raster 

map. 

2.3. Improvement of A* algorithm 

The A* algorithm finds the shortest path by prioritizing paths with the 

lowest cumulative cost via a heuristic function. However, traditional A* often 

produces zigzag, non-smooth paths in path search. Moreover, heuristic 

underestimation can cause suboptimal paths or higher computational costs. To 

address this, this paper introduces environmental obstacle information 𝜇, as shown 

in Eq. (5), representing obstacle information between the current node and the target 

node, and uses an atan function to adaptively adjust the heuristic weight, achieving 

efficient global path planning with dynamic cost estimation. 

 , (3) 

 , (4) 

 , (5) 

where (xstar, ystar) is the start node of path planning, (xgoal, ygoal) is the goal 

node of path planning, (xcurr, ycurr) is the currently active node in the path planning 

process. 
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where Cobs identifies the presence/absence of an obstacle at the node, Cfree 

is the absence of an obstacle at the node, obstacle(i, j) is the binary state of obstacle 

presence or absence at the node and the value is recorded. 

2.4. Route optimization 

The improved A* algorithm still produces non-smooth nodes and redundant 

segments in its global path, as shown in Fig.1 and 2. Here, the red node G denotes 

the goal, the green node S is the start, and the solid black line represents the initial 

global path. Green dashed lines indicate connections between nodes where the 

occupied grid cells contain no obstacles, while red dashed lines indicate 

connections where obstacles exist within the grid cells. To address this, after 

obtaining the initial global path, we start from the goal node G. If the connection 

between nodes occupies grid cells with no obstacles, we replace the parent node of 

the current node with its grandparent node, continuing this process until obstacles 

are encountered or the start node S is reached. 

 , (7) 

                 
Fig.1. Optimization path map                     Fig.2. Optimized path result map 

2.5. Traditional DWA algorithm 

The DWA algorithm [19], a short-term motion planner, selects optimal 

velocity and direction to avoid obstacles and reach the target by predicting future 

trajectories based on the robot’s motion model and state. It dynamically evaluates 

multiple candidate paths within a time window, choosing the best one for real-time 

navigation. The core of DWA lies in three factors [20]: (1) environmental 

constraints and robot capabilities; (2) velocity-based trajectory simulation; and (3) 

a scoring function to evaluate and select the optimal velocity. The transformation 

equation from position-based control to velocity control for the inspection robot is 

formulated as follows: 

 , (8) 
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The kinematic relationship governing the inspection robot’s motion can be 

formulated as follows: 

 , (9) 

where ∆xy is the amount of change in x-coordinate in the forward direction, 

∆yy is the amount of change in y-coordinate in the forward direction, vy is the 

forward speed, ∆t is the sample time step for motion control, θt is the amount of 

change in the angle, and ω denotes the yaw angle of the mobile inspection robot. 

 , (10) 

where Vs represents the robot’s kinematic constraint equation, Va is the 

acceleration constraint formula of the robot and Vd is the dynamic window formula 

of the robot. The final velocity window of the robot is Vr, which is the intersection 

of the three velocities, as shown in Eq.(11) 

 , (11) 

The rating function for the inspection robot is: 

 , (12) 

Normalization of the rating function is: 

 , (13) 

 , (14) 

 , (15) 

where velocity(v,ω) measures forward velocity, dist(v,ω) assesses obstacle 

proximity, and heading(v,ω) evaluates angular alignment with the target. 

2.6. Improvement of DWA algorithm 

The main improvement in dynamic path planning for inspection robots is 

the addition of dynamic obstacle prediction, specifically by incorporating a 

resultant velocity (barr(vc, vb)) into the DWA's evaluation function. This function 

assesses the angle of velocity between the inspection robot's movement velocity 

and the obstacle's movement velocity. 
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The rating function for the inspection robot is: 

 , (16) 

Normalization of the rating function gives: 

 , (17) 

where K is barr(vc,vb); barr(vc,vb) function evaluates the combined velocity 

between the inspection robot (vc1) and a moving obstacle (vb1), including the angle 

between their resultant velocity vh1=vc1+vb1 and the obstacle’s velocity vb1. This is 

achieved via continuous LiDAR scanning to track the obstacle’s velocity. When the 

angle is acute, a normal vector vh2 is derived from vh1. By setting the robot’s 

adjusted velocity vc2 such that vc2−vb1=vh2, the optimized vc2 is calculated. The target 

velocity then determines the robot’s wheel speeds. 

3. Method 

Global planners often struggle with real-time moving obstacle avoidance, 

while local planners may get stuck in local minima or dead-ends near U-shaped 

obstacles. This paper proposes a hybrid framework combining enhanced A* for 

global path optimization and modified DWA for local obstacle avoidance (Fig. 3).  

 
Fig.3. Flowchart of the fusion algorithm 
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The global layer generates an optimal path with key waypoints to avoid U-

shaped obstacle traps, while the local layer enables real-time obstacle avoidance 

and trajectory adjustments between waypoints, ensuring dynamic evasion and quick 

target convergence. 

3.1. Simulation Verification of Improved A* Algorithm 

The framework was validated via MATLAB 2022b simulations on an 

Intel® Core™ i5-12400H CPU@2.50GHz, using 20×20 and 40×40 grid maps 

(black lines: obstacles; white areas: passable space; S=start at bottom-left; G=target 

at top-right). Performance comparisons were conducted between the proposed 

hybrid algorithm, conventional A*, and Dijkstra’s algorithm. Results are shown in 

Fig. 4. To assess the robustness of the enhanced A* algorithm, this paper conducted 

a comparative analysis on a 40×40 grid map, evaluating performance against the 

conventional A* pathfinding algorithm, Dijkstra’s algorithm, and the proposed 

method. Experimental outcomes are depicted in Fig. 5. 

   
(a) Traditional A* algorithm (b) The Dijkstra algorithm (c) Improved algorithms 

Fig.4. Comparison of three route planning methods in 20×20 grid-based maps 

 

   
(a) Traditional A* algorithm (b) The Dijkstra algorithm (c) Improved algorithms 

Fig.5. Comparison of three path planning algorithms in 40×40 raster map 

Table 1 presents the comparative performance metrics of the three algorithms. 

Table 1 demonstrates the comparative performance of the improved fusion 

algorithm against the traditional A* algorithm across two grid map scenarios. On a 

20×20 grid, the proposed method achieved reductions of 11.11% in node count, 

40.93% in cumulative angular deviation, and 3.45% in path length.  
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Table 1 

Computational outcomes of the algorithm's numerical experiments 

Map 

size 
Algorithm 

Number of 

nodes 

Total degrees of 

corners 

Length of path to the target 

node 

20×20 

Traditional A* 

algorithm 
9 405° 26.38 

The Dijkstra algorithm 10 495° 26.37 

Improved fusion 

algorithms 
8 239.25° 25.46 

40×40 

Traditional A* 

algorithm 
12 540° 57.60 

The Dijkstra algorithm 12 495° 55.25 

Improved fusion 

algorithms 
7 167.30° 47.25 

 

When scaled to a 40×40 grid, these improvements were amplified to 

41.67%, 69.02%, and 17.97%, respectively. These results indicate that the 

algorithm effectively minimizes computational complexity (via reduced nodes), 

motion energy consumption (via fewer turns), and path redundancy in complex 

environments, thereby providing inspection robots with an optimized navigation 

strategy. 

3.2. Fusion Algorithm Experimental Validation 

To evaluate the capability of the enhanced fusion algorithm to determine 

optimal path trajectories and enhance obstacle avoidance for inspection robots in 

cluttered environments, the enhanced fusion algorithm was evaluated on grid maps 

of varying sizes (20×20 and 40×40) to demonstrate its scalability and path 

optimization performance in complex environments. The algorithmic parameters 

for the fusion method are summarized in the subsequent tables (Tables 2–4). 
Table 2. 

Robot kinematic parameters 

Parameters Value 

Minimum Linear Velocity /(m/s) 0.00 

Maximum Linear Velocity /(m/s) 2.00 

Minimum angular velocity /(rad/s) -20.00 

Maximum angular velocity /(rad/s) 20.00 

linear acceleration /(m/s2) 1.00 

angular acceleration /(rad/s2) 50.00 

Robot initial angle /(rad) 45.00 

Table 3. 

Operational Parameters for the DWA algorithm 

Parameters Value 

Linear velocity resolution /(m/s) 0.02 

Angular velocity resolution /(rad/s) 1.00 

time resolution /(s) 0.10 

Trajectory prediction time /(s) 3.00 

Obstacle Distance Threshold /(m) 0.50 
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Table 4. 

Parameters of the evaluation function 

Parameters Value 

combined velocity weight 0.40 

azimuthal weight 0.07 

distance weight 0.20 

velocity weight 0.30 

The enhanced fusion algorithm is depicted in Fig. 6 and 7, showcasing its 

performance advantages in complex navigation tasks. 

  
(a) Simulation of improved algorithm                (b) Improved Algorithm Sim with Obstacles 

Fig.6. Comparison of accessibility improvement algorithms in 20×20 raster maps 

 

Fig. 6 compares the proposed algorithm’s performance in a 20×20 grid map 

(15% obstacles). The method generated 8 critical nodes to guide DWA toward the 

target. In Fig. 6(a), the hybrid algorithm navigated a U-shaped obstacle cluster near 

the start via node-based path optimization. In Fig. 6(b), newly added obstacles along 

the global path triggered local trajectory recalculation between nodes, ensuring 

collision-free navigation to the target. 

                  
(a) Simulation of improved algorithm     (b) Improved Algorithm Sim with Obstacles  

Fig.7. Comparison of accessibility improvement algorithms in 40×40 raster maps 

 

Fig. 7 compares the proposed algorithm’s performance in a 40×40 grid map 

with 15% static obstacles. The method generated 14 critical nodes to guide DWA, 
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avoiding obstacles in Figs. 7(a) and 7(b). The enhanced fusion approach, validated 

in 20×20/40×40 grids, avoids U-shaped dead-ends and improves inspection robot 

safety. Three static obstacles (red circles in Fig. 7b) were added; the path was 

reoptimized at the nearest critical nodes, demonstrating adaptive trajectory 

adjustments for safe navigation. 

3.3. Inspection Robot Experimental Validation 

The inspection robot runs on ROS-Melodic. Within the Navigation 

framework, its global and local path planners are replaced to the improved A* 

algorithm and the improved DWA algorithm, respectively. To validate the 

algorithm's feasibility, the inspection robot was outfitted with a suite of sensors. 

Fig. 8 illustrates the robotic system and its experimental setup, while Table 5 details 

the technical specifications of the inspection robot. 

 
Fig.8. Inspection robot and experimental environment 

Table 5 

Specification Parameters of Inspection robot 

Parameters Value Parameters Value 

host computer Jetson Nano B01 speed 0~1.0m/s 

ROM 32GB Lower Computer STM32F407 

RAM 4GB IMU ICM20948 

RGB-D camera Astra Pro size 21*20*18cm 

lidar rplidar A1 weight 2.1KG 

 

Using the remote PC, we launch the LiDAR node, Cartographer node and 

RViz interface, enabling real-time control of the inspection robot to map the 

experimental site. the map building effect is shown in Fig. 9. To enable normal 

operation, a large environment is required for the inspection robot’s dynamic 

obstacle avoidance experiment. The improved algorithm uses pedestrians as 

obstacles and activates the robot’s path planning. Fig.10 marks the green arrow’s 

start as the target and its direction as the robot’s pose. Fig.11 shows the algorithm 

proactively replanning paths based on obstacle motion trends, enabling adaptive 

trajectory adjustments for enhanced safety. 
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Fig.9. Map created by inspection robot 

 

  
Fig.10. Inspection robot path planning diagram    Fig.11. Dynamic obstacle avoidance diagram 

 

As demonstrated by Figs. 10 and 11, the enhanced path planning algorithm 

prevents the inspection robot from halting in response to dynamic obstacles by 

proactively adjusting its trajectory. In addition, its total running time was much less; 

its overall running time was reduced by 15%. Table 6 compares the performance 

metrics of the baseline method and the enhanced path-planning algorithm. 
 

Table 6. 

Route Planning Methodology Comparison 

 Path length /m Number of turns /pc runtime /s average speed /m/s 

original algorithm 4.03 1 26 0.15 

improved algorithm 4.15 2 22 0.19 

4. Conclusion 

This paper addresses the A* algorithm’s issues of node redundancy, low 

path smoothness, and safety, as well as DWA’s tendency to fall into local optima. 

The algorithms were improved and fused to enable integrated obstacle avoidance 

for inspection robots in dynamic environments. Obstacle information was 

incorporated into A*’s cost function, and an atan function adaptively adjusted the 

heuristic weight for efficient global optimization. Node pruning enhanced path 

smoothness and safety. For DWA, path nodes were integrated into local planning, 

and velocity evaluation improved computational efficiency. Experiments showed 

reduced redundancy, smoother paths, and stronger obstacle avoidance while 

ensuring safety. 
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