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DYNAMIC PATH PLANNING FOR INSPECTION ROBOTS
INCORPORATING IMPROVED A* AND DYNAMIC
WINDOW APPROACH

Zhiguo ZHAO', Dong XIE?, Shanzhen XU*", Jianhui ZHU*, Zhen XU?

With the rapid advancement of industrial automation and intelligent
inspection, patrol robots have become indispensable tools for equipment monitoring
and safety assurance. To enhance the performance of traditional A* algorithms —
including path discontinuity, redundant nodes, and poor adaptability to dynamic
environments — this study proposes a hybrid navigation framework integrating the
improved A* algorithm with the optimized Dynamic Window Approach (DWA).
Simulation experiments demonstrate significant performance improvements: Node
count, cumulative turning angle, and path length decreased by 11.11%, 40.93%, and
3.45% respectively in 20%20 grid maps. Corresponding reductions reached 41.67%,
69.02%, and 17.97% in 40%40 grid maps.

Keywords: Inspection robots; path planning; A* algorithm; dynamic window
approach; fusion algorithm

1. Introduction

As artificial intelligence and robotic technologies continue to advance at an
unprecedented pace, mobile robots are being increasingly integrated into diverse
industries, with path planning algorithms emerging as critical enablers for their safe
and efficient navigation in complex operational scenarios [1,2]. Especially the
inspection robot [3], as an intelligent mobile device, has become an indispensable
and important tool in industry, logistics, security and other fields. Path planning
serves as a critical enabler for autonomous navigation in robotic inspection systems,
forming a cornerstone of their operational capability [4,5]. Global path planning
focuses on the optimality and efficiency of the overall path, such as A* algorithm
[6], rapidly-exploring random trees (RRT) algorithm[7], Dijkstra's algorithm [8],
and ant colony algorithm [9], etc., while local path planning pays more attention to
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real-time and dynamic obstacle avoidance capability, such as dynamic window
approach(DWA) [10], timed elastic band(TEB) algorithm [11], and artificial
potential field(APF) approach [12], etc.

The A* algorithm excels in fast computation and minimal path length but
suffers from redundant nodes, frequent turns, and proximity to obstacles in large
environments. To address these, researchers have proposed solutions: Wang et al.
[13] enhanced A* by adding time cost to the evaluation function, pruning obstacle-
adjacent child nodes, and replacing zigzags with arcs to shorten paths. Lian et al.
[14] introduced 24-neighbor heuristics and collision threat costs in the heuristic
function, improving obstacle avoidance. Dang et al. [15] integrated collision risk
and movement costs into the cost function and used Reeds-Shepp (RS) curves
during path expansion to reduce directional changes and collision risks, achieving
smoother paths. These approaches address A*’s limitations by optimizing node
selection, refining path geometry, and incorporating safety constraints.

While existing A* improvements show moderate gains, unmanned vehicles
still face unknown obstacles during travel, necessitating real-time dynamic
avoidance. Researchers have enhanced the DWA algorithm: Wang et al. [16]
proposed a pre-trajectory selection mechanism using differential manifolds,
integrating obstacle density and angular change into the cost function to improve
path smoothness and obstacle avoidance efficiency. Zhang et al. [17] developed a
distributed collision avoidance framework combining trajectory prediction,
weighted risk metrics, and maneuver constraints in the cost function, enhancing
both obstacle negotiation and system safety. These modifications address real-time
dynamic challenges while optimizing DWA’s performance.

Despite improvements to A* and DWA algorithms, challenges remain: A*
struggles with redundant nodes and excessive turns, while DWA falters in high-
density obstacle environments due to local optimization. To address this, this paper
proposes a synergistic framework combining enhanced A* and DWA. The A*
algorithm integrates obstacle weights into its heuristic function to reduce
redundancy and improve trajectory quality. The DWA algorithm is modified to
include a combined speed metric, enabling dynamic tracking of A*-generated path
nodes. This fusion minimizes disruptions from dynamic obstacles during inspection
robot navigation.

2. Research Foundation

2.1. Environmental modeling

The environment model includes map data, obstacle/target/start positions,
providing essential environmental data. Raster-based mapping was selected for its
simplicity and compatibility with the experiment. A Cartesian coordinate system is
established using the raster’s orthogonal edges as x-y axes, enabling precise point
localization via Map(x,y) coordinates.
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2.2. Traditional A* algorithm
As a milestone in search algorithms, the A* algorithm [18] establishes itself
as the gold-standard heuristic search technique for optimal pathfinding in discrete
topological networks. It combines Dijkstra’s completeness with best-first efficiency
via a cost framework that merges verified path costs and admissible heuristics. This
dual-cost design ensures optimality and polynomial-time performance in grid-based
navigation, with trajectory generation driven by its objective cost model:
f(n)=g(n)+h(n), (1)
where the evaluation function f{n) comprises two fundamental components:
g(n) denoting the accumulated traversal cost from the origin node to current
position n, h(n) representing the heuristic estimate from » to the destination. The
heuristic computation uses metrics like Manhattan distance (Eq. (2)) for orthogonal
movement constraints:
dist =

— Xpet| | Vwr = Vo] )

where dist is the function distance, (Xcu-r, Vewr) 1S the position of the current
node in the raster map, and (Xnexs, Vnex) 1S the position of the next node in the raster
map.

xcurr

2.3. Improvement of A* algorithm

The A* algorithm finds the shortest path by prioritizing paths with the
lowest cumulative cost via a heuristic function. However, traditional A* often
produces zigzag, non-smooth paths in path search. Moreover, heuristic
underestimation can cause suboptimal paths or higher computational costs. To
address this, this paper introduces environmental obstacle information p, as shown
in Eq. (5), representing obstacle information between the current node and the target
node, and uses an atan function to adaptively adjust the heuristic weight, achieving
efficient global path planning with dynamic cost estimation.

f(n)=g(n)+ah(n). (3)
a=tan" u, 4)

Xgoal Ygoa PR
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where (Xsar, Vsiar) 18 the start node of path planning, (Xgoar, Yeoar) is the goal
node of path planning, (Xcurr, yeurr) 1 the currently active node in the path planning
process.
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where Cops 1dentifies the presence/absence of an obstacle at the node, Cee
is the absence of an obstacle at the node, obstacle(i, j) is the binary state of obstacle
presence or absence at the node and the value is recorded.

2.4. Route optimization

The improved A* algorithm still produces non-smooth nodes and redundant
segments in its global path, as shown in Fig.1 and 2. Here, the red node G denotes
the goal, the green node S is the start, and the solid black line represents the initial
global path. Green dashed lines indicate connections between nodes where the
occupied grid cells contain no obstacles, while red dashed lines indicate
connections where obstacles exist within the grid cells. To address this, after
obtaining the initial global path, we start from the goal node G. If the connection
between nodes occupies grid cells with no obstacles, we replace the parent node of
the current node with its grandparent node, continuing this process until obstacles
are encountered or the start node S is reached.

path(G,S)=G >N, >N, >N, >N, > S, (7)

o
1

Fig.1. Optimization path map Fig.2. Optimized path result map

2.5. Traditional DWA algorithm

The DWA algorithm [19], a short-term motion planner, selects optimal
velocity and direction to avoid obstacles and reach the target by predicting future
trajectories based on the robot’s motion model and state. It dynamically evaluates
multiple candidate paths within a time window, choosing the best one for real-time
navigation. The core of DWA lies in three factors [20]: (1) environmental
constraints and robot capabilities; (2) velocity-based trajectory simulation; and (3)
a scoring function to evaluate and select the optimal velocity. The transformation
equation from position-based control to velocity control for the inspection robot is
formulated as follows:

(8)

Ax, =-v At-sin(6,)
Ay, =—v At-cos(6,)’
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The kinematic relationship governing the inspection robot’s motion can be
formulated as follows:

x=x+v,At-cos(6,)—v At-sin(6))
y=y+vAt-sin(6,)—v At-cos(d,), 9)
6 =06 +wAt
where Ax, is the amount of change in x-coordinate in the forward direction,
Ay, is the amount of change in y-coordinate in the forward direction, v, is the

forward speed, At is the sample time step for motion control, ; is the amount of
change in the angle, and w denotes the yaw angle of the mobile inspection robot.

V.={(v,0) | vy, SVv<v_ .0 <o<a, }

V., ={(v,0)|v < 2dist(v,0)v, o < 2dist(v, 0) @ , (10)
V,={(v,o)|velv, —vAt,v, +VAt],0 € [@, — ©AL, ®, + ©AL]}

where V; represents the robot’s kinematic constraint equation, V, is the

acceleration constraint formula of the robot and V7 is the dynamic window formula

of the robot. The final velocity window of the robot is V., which is the intersection
of the three velocities, as shown in Eq.(11)

v.=v.NOv,Nv,, (11)
The rating function for the inspection robot is:
G(v,0) = o (a - heading(v,®) + B dist(v,w)+y - velocity(v, w)), (12)

Normalization of the rating function is:

normal _head (i) = izeadlng(l) , (13)
21:1 heading (i)
normal _dist(i) = w , (14)
D" dist(i)
normal _velo(i) = velocity(i) (15)

Zizl velocity(i)
where velocity(v,w) measures forward velocity, dist(v,w) assesses obstacle
proximity, and heading(v,w) evaluates angular alignment with the target.

2.6. Improvement of DWA algorithm

The main improvement in dynamic path planning for inspection robots is
the addition of dynamic obstacle prediction, specifically by incorporating a
resultant velocity (barr(ve, vp)) into the DWA's evaluation function. This function
assesses the angle of velocity between the inspection robot's movement velocity
and the obstacle's movement velocity.
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The rating function for the inspection robot is:
Gv,w)=K (a -heading (v, o)+ - dist(v, w)+ y - velocity(v, a))) , (16)
Normalization of the rating function gives:
barr(i)
ZH barr(i)
where K is barr(ve,v»); barr(ve,vy) function evaluates the combined velocity
between the inspection robot (v¢1) and a moving obstacle (v»1), including the angle
between their resultant velocity vii=v.i+vp1 and the obstacle’s velocity vpi1. This is
achieved via continuous LiDAR scanning to track the obstacle’s velocity. When the
angle is acute, a normal vector vp2 is derived from vsi. By setting the robot’s
adjusted velocity ve2 such that veo—vp1=vi2, the optimized v, is calculated. The target
velocity then determines the robot’s wheel speeds.

normal _barr(i) =

(17)

3. Method

Global planners often struggle with real-time moving obstacle avoidance,
while local planners may get stuck in local minima or dead-ends near U-shaped
obstacles. This paper proposes a hybrid framework combining enhanced A* for
global path optimization and modified DWA for local obstacle avoidance (Fig. 3).

Initialize the DWA parameters

Initialize parameters and add starting T
node to the Open list Y

+ The velocities of the robot and
the obstacles are sampled

Expand the Open list based on
neighborhood search. |
Y

Optimize robot
5 the angle between No P
movement
v, and vy, acute? L.
direction.

Yes
Y
Expand the node with the lowest cost Evaluate the path based on key
in the Open list and add it to the nodes and select the optimal
v Closed list. trajectory.

Move the robot along the
optimal trajectory.

Backtrack the Closed list to obtain the
initial path.

Y

Optimize the initial path, extract key
nodes.

Fig.3. Flowchart of the fusion algorithm
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The global layer generates an optimal path with key waypoints to avoid U-
shaped obstacle traps, while the local layer enables real-time obstacle avoidance
and trajectory adjustments between waypoints, ensuring dynamic evasion and quick
target convergence.

3.1. Simulation Verification of Improved A* Algorithm

The framework was validated via MATLAB 2022b simulations on an
Intel® Core™ 15-12400H CPU@2.50GHz, using 20%20 and 40%40 grid maps
(black lines: obstacles; white areas: passable space; S=start at bottom-left; G=target
at top-right). Performance comparisons were conducted between the proposed
hybrid algorithm, conventional A*, and Dijkstra’s algorithm. Results are shown in
Fig. 4. To assess the robustness of the enhanced A* algorithm, this paper conducted
a comparative analysis on a 40x40 grid map, evaluating performance against the
conventional A* pathfinding algorithm, Dijkstra’s algorithm, and the proposed
method. Experimental outcomes are depicted in Fig. 5.

[

(a) Traditional A* algorithm  (b) The Dijkstra algorithm (c) Improved algorithms
Fig.4. Comparison of three route planning methods in 20x20 grid-based maps
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(a) Traditional A* algorithm  (b) The Dijkstra algorithm (c) Improved algorithms
Fig.5. Comparison of three path planning algorithms in 40x40 raster map
Table 1 presents the comparative performance metrics of the three algorithms.

Table 1 demonstrates the comparative performance of the improved fusion
algorithm against the traditional A* algorithm across two grid map scenarios. On a
20%20 grid, the proposed method achieved reductions of 11.11% in node count,
40.93% in cumulative angular deviation, and 3.45% in path length.
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Table 1
Computational outcomes of the algorithm's numerical experiments
Map Algorithm Number of Total degrees of |Length of path to the target
size nodes corners node
— "
Trad1t1qnal A 9 405° 2638
algorithm
20%20 | The Dijkstra algorithm 10 495° 26.37
Improved fusion 8 239.25° 25.46
algorithms
o "
Tradltlopal A 12 5400 57 60
algorithm
40x%40 | The Dijkstra algorithm 12 495° 55.25
Improved fusion 7 167.30° 4725
algorithms

When scaled to a 40x40 grid, these improvements were amplified to
41.67%, 69.02%, and 17.97%, respectively. These results indicate that the
algorithm effectively minimizes computational complexity (via reduced nodes),
motion energy consumption (via fewer turns), and path redundancy in complex
environments, thereby providing inspection robots with an optimized navigation
strategy.

3.2. Fusion Algorithm Experimental Validation

To evaluate the capability of the enhanced fusion algorithm to determine
optimal path trajectories and enhance obstacle avoidance for inspection robots in
cluttered environments, the enhanced fusion algorithm was evaluated on grid maps
of varying sizes (20x20 and 40x40) to demonstrate its scalability and path
optimization performance in complex environments. The algorithmic parameters
for the fusion method are summarized in the subsequent tables (Tables 2—4).

Table 2.
Robot kinematic parameters
Parameters Value
Minimum Linear Velocity /(m/s) 0.00
Maximum Linear Velocity /(m/s) 2.00
Minimum angular velocity /(rad/s) -20.00
Maximum angular velocity /(rad/s) 20.00
linear acceleration /(m/s?) 1.00
angular acceleration /(rad/s?) 50.00
Robot initial angle /(rad) 45.00
Table 3.
Operational Parameters for the DWA algorithm
Parameters Value
Linear velocity resolution /(m/s) 0.02
Angular velocity resolution /(rad/s) 1.00
time resolution /(s) 0.10
Trajectory prediction time /(s) 3.00

Obstacle Distance Threshold /(m) 0.50
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Table 4.
Parameters of the evaluation function
Parameters Value
combined velocity weight 0.40
azimuthal weight 0.07
distance weight 0.20
velocity weight 0.30

The enhanced fusion algorithm is depicted in Fig. 6 and 7, showcasing its
performance advantages in complex navigation tasks.

(a) Simulation of improved algorithm (b) Improved Algorithm Sim with Obstacles
Fig.6. Comparison of accessibility improvement algorithms in 20%20 raster maps

Fig. 6 compares the proposed algorithm’s performance in a 20x20 grid map
(15% obstacles). The method generated 8 critical nodes to guide DWA toward the
target. In Fig. 6(a), the hybrid algorithm navigated a U-shaped obstacle cluster near
the start via node-based path optimization. In Fig. 6(b), newly added obstacles along
the global path triggered local trajectory recalculation between nodes, ensuring
collision-free navigation to the target.

a) Simulation of improved algorithm  (b) Improved Algorithm Sim with Obstacles
Fig.7. Comparison of accessibility improvement algorithms in 40x40 raster maps

Fig. 7 compares the proposed algorithm’s performance in a 40x40 grid map
with 15% static obstacles. The method generated 14 critical nodes to guide DWA,
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avoiding obstacles in Figs. 7(a) and 7(b). The enhanced fusion approach, validated
in 20x20/40x40 grids, avoids U-shaped dead-ends and improves inspection robot
safety. Three static obstacles (red circles in Fig. 7b) were added; the path was
reoptimized at the nearest critical nodes, demonstrating adaptive trajectory
adjustments for safe navigation.

3.3. Inspection Robot Experimental Validation

The inspection robot runs on ROS-Melodic. Within the Navigation
framework, its global and local path planners are replaced to the improved A*
algorithm and the improved DWA algorithm, respectively. To validate the
algorithm's feasibility, the inspection robot was outfitted with a suite of sensors.
Fig. 8 illustrates the robotic system and its experimental setup, while Table 5 details
the technical specifications of the inspection robot.

Fig.8. Inspection robot and experimental environment

Table 5
Specification Parameters of Inspection robot
Parameters Value Parameters Value
host computer Jetson Nano BO1 speed 0~1.0m/s
ROM 32GB Lower Computer STM32F407
RAM 4GB MU ICM20948
RGB-D camera Astra Pro size 21*20*18cm
lidar rplidar Al weight 2.1KG

Using the remote PC, we launch the LiDAR node, Cartographer node and
RViz interface, enabling real-time control of the inspection robot to map the
experimental site. the map building effect is shown in Fig. 9. To enable normal
operation, a large environment is required for the inspection robot’s dynamic
obstacle avoidance experiment. The improved algorithm uses pedestrians as
obstacles and activates the robot’s path planning. Fig.10 marks the green arrow’s
start as the target and its direction as the robot’s pose. Fig.11 shows the algorithm
proactively replanning paths based on obstacle motion trends, enabling adaptive
trajectory adjustments for enhanced safety.
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Fig.9. Map created by inspection robot

Fig.10. Inspection robot path planning diagram Fig.11. Dynamic obstacle avoidance diagram

As demonstrated by Figs. 10 and 11, the enhanced path planning algorithm
prevents the inspection robot from halting in response to dynamic obstacles by
proactively adjusting its trajectory. In addition, its total running time was much less;
its overall running time was reduced by 15%. Table 6 compares the performance
metrics of the baseline method and the enhanced path-planning algorithm.

Table 6.
Route Planning Methodology Comparison

Path length /m | Number of turns /pc | runtime /s | average speed /m/s
original algorithm 4.03 1 26 0.15
improved algorithm 4.15 2 22 0.19

4. Conclusion

This paper addresses the A* algorithm’s issues of node redundancy, low
path smoothness, and safety, as well as DWA’s tendency to fall into local optima.
The algorithms were improved and fused to enable integrated obstacle avoidance
for inspection robots in dynamic environments. Obstacle information was
incorporated into A*’s cost function, and an atan function adaptively adjusted the
heuristic weight for efficient global optimization. Node pruning enhanced path
smoothness and safety. For DWA, path nodes were integrated into local planning,
and velocity evaluation improved computational efficiency. Experiments showed
reduced redundancy, smoother paths, and stronger obstacle avoidance while
ensuring safety.
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