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FRACTAL VECTOR MEASURES

Ton CHITESCU', Lucian NITA?

In this paper we extend the concept of the fractal measure (the Hutchinson
measure, which is the unique fixed point of a contraction on the set of normalized
Borel measures on a compact metric space) associated to an iterated function
system. An important property of this measure is that its support is the atractor of
the iterated function system. Here, an extension of this result is given for the case of
vector measures taking their values in a finite dimensional space or in an arbitrary
Banach space. .
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1. Introduction

The concept of fractal set is, nowadays, extremely important not only in
mathematics, but also to help the understanding of a lot of phenomena from
physics, biology, economy etc.

Many fractals appear as fixed points of some contractions on the complete
metric space (K(7),0), where K(7) is the set of the compact and not empty
subsets of a complete metric space (7, d) and ¢ is the Hausdorff-Pompeiu
distance. We can associate to such a "fixed point" set (called atractor) a measure,
called the Hutchinson measure, that is also a fixed point of an operator (called the
Markov operator) which is a contraction on the complete metric space of the
Borel normalized measures on 7, with respect to a certain distance (see the
section 2.1). The important property of this measure is that its support is just the
atractor (the fractal). For more details and proofs of the results from section 2.1,
see, for example, [1].

In this paper, we give two extensions of the Hutchinson measure : one for
the case of vector measures with values in a finite dimensional vector space, and
the other one for the case when the vector measures take values in an arbitrary
Banach space. One of the interesting results is that, even in the case of vector
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measures, we can obtain the "fixed point" measure (the analogue of the
Hutchinson measure) having as support the fractal. The general framework is
given in section 2.2. For more details and proofs of the results from the section
2.2, one can consult [2], [3], [4]. For additional facts, see [5], [6], [7].

2. Preliminary facts

2.1. Hutchinson metric and measure

Let (7, d) be a compact metric space.
Definition 2.1.1. A positive measure x defined on the Borel subsets of T

is called normalized measure it p(T)=1.
We will denote by B the set of all the normalized measures.We will also

denote Lip, (T)={f:T - R:[f(x)- f(y)|<d(x,y),Vx,y e T}.
Let d,, :BxBoR, d, (u,v)=sup{[ fdu- [ fdv: f e Lip,(T)}.
Proposition 2.1.2. d,, is a metric on B, called the Hutchinson metric (or
the Kantorovich-Rubinshtein metric). Besides, (B,d,,;) is a compact metric space.
Definition 2.1.3. Let N be a natural number. A set of functions ()", is
called iterated function system if, for any i € {1,2,..., N}, the function @, :T > T
is a contraction of ratio 7, <1.

Let us consider the numbers p,, p,,.... py,p; > 0,Vi e {l,..,N}, such that

Definition 2.1.4. The pair ((@,)Y,,(p,)Y,)is called iterated function

system with probabilities.

N
Definition 2.1.5. The function m: B—B, m(v) =Zpl.a)i(v), generated

i=1

N
via m(v)(A4) = Z p.v(@ ' )(A) for any Borel set AT , is called Markov
i=l
operator.
Theorem 2.1.6. The Markov operator is a contraction on the metric space
(B,d,,). Consequently, there is an unique measure u € B, such that m(u) = u.
Definition 2.1.7. The measure g from theorem 2.1.6 is called the

Hutchinson measure.
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Theorem 2.1.8. The support of the Hutchinson measure is the atractor of

N
i=1

the iterated function system (o)

F:LNJa)l.(F).

2.2 Vector measures associated with an iterated funtion system

that is, the unique set F 7T such that

We will use the following notations :
(T, d) is a compact metric space, as before; X is a Banach space;
B(X) is the set of liniar and continuous operators on X ;

If H e B(X), we will denote by ||H || , the operatorial norm;

Definition 2.2.1. Let x4 be a vector measure, defined on the Borel subsets

of T, taking values in X . For any Borel set 4 c T we define the variation
of A (denoted by | y|(A) ) via:

}, the supremmum being computed with respect to

(4 =sup (3" a4,

all the partitions of 4 built with finite families of Borel sets. If | ,u|(T) <o, we

say that g has bounded variation.
We denote by cabv(X) the set of vector measures with bounded variation.

Definition 2.2.2. Let 4 € cabv(X) and |ythe variation of £ .The support
of | ,u| is called the support of the vector measure p and is denoted by supp( & ).
Proposition 2.2.3. The application | | : cabv(X) —[0,00), || x| = |¢|(T)is a

norm on cabv(X), called the variational norm. The space (cabv(X),

||) is a
Banach space.
Let now M be a natural number, (®,)", be an iterated function system and

M
(R)Y, = B(X). For any u e cabv(X), we denote : H(u)= ZRl.oa)l. (u) , which

i=1

M
means that, for any Borel subset 4 < 7', H(u)(4) = ZRi (' (A))).
i=1
In the sequel, we shall briefly present the integral introduced and studied
in Sesquilinear Uniform Vector Integral by Ion Chitescu, Radu Miculescu,
Lucian Nita and Loredana loana, to appear in Proc. Indian Acad. Sci. (Math. Sci.).
We shall work with an arbitrary Hilbert space X over the scalar field K
(real or complex). In particular, X = K". We will use the following function
spaces :
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S(X)={f:T - X, f simple function};
TM(X)={f:T — X, f totally measurable i.e. uniform limit of simple
functions } ; C(X)={f :T — X, f continuous function}.
Forany A c T, we denote by ¢, the characteristic function of A.
Definition 2.2.4. Let feS(K"),f =) ¢,x, with4, < T being Borel
i=1

m

sets. Also, let x € cabv(K"). The number Z(xl.,,u(A,)> is called the integral of f

i=1
with respect tou and is denoted by J fdu (it is easy to see that the integral
doesn't depend on the representation of f).
If feTM(X),let (f,), < S(X)be a sequence that converges uniformly
to f. We define de,u = limprdy.
p—>®©

Now, we shall briefly present the Monge-Kantorovich norm which has
been introduced by Ion Chitescu, Radu Miculescu, Lucian Nitd and Loredana

Ioana in a forthcoming paper. Let a >0 and B, (X) = {u € cabv(X), ,u|| <a};
BL(X)={f:T — X, f Lipschitz function}; on BL(X)we have the norm :
|| f ||BL = || f ||Oo + || Al | ||L being the Lipschitz constant of f.

BL,(K") ={f € BL(K"),

Jedl e = supd|[ fdud 1 € BL (K"}
Lemma 2.2.5. i)The application || || k18 amnormon cabv(X), called the

f ||BL <1}; for any uecabv(X), we denote :

M|,V € cabv(K"); ii) For any a > 0, the

topology generated by | |, . on B,(K")is the same as the weak-* topology on

Monge-Kantorovich norm and ||y|| e S |

B,(K"). iii)The space B, (K")with the metric generated by || || w18 @ compact

(hence complete) metric space.
Lemma 2.2.6. (change of variable formula) For any f € C(K"), we have :

fde(,u) = J.gd,u , where g = f:Ri*ofoa)i.
i=1

3. Results

We shall use two general schemes.
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Scheme 3.1. Let (Y,
H € B(Y)with |H| <1,y" €Y .Define P:Y —Y,P(y)= H(y)+y°’. We have :

[P - P <|H], |y -2
@ # A c Ysuchthat:i) P(A) c 4; ii) Ais a complete metric space for the

|) be a normed space (not necessarily Banach),

, hence Pis a contraction. Let

metric d inducedon A by | ||, i.e. d(x,y)=|jx—y|. We obtain the contraction
m:A— A given via z(y)= P(y). Using the contraction principle we deduce that
there exists an unique fixed point y* € 4 for r:
7(y)=Hy)+y =y o U-H)(y")=)" (1
We will use this scheme as follows.

M
We take Yzcabv(K”," ||MK),H:Y—> Y, H(V)=ZRia)i(v) and

i=1
A=B,(K")forsome a>0.
M
Lemma3.2. Let f e L,(X). We define, as before, g = D R ofow,.
i=l1
Then, g is a Lipschitz function and |g||, < |R,], ;- )

Lemma 3.3. For any mneN,n>2, let us consider the space

(cabv(K"),

M
| ). Then  # e Beabv(k ™)) and [, < LIR [, 0+ )

M
Proof. Let f € BL,(K") arbitrarily and g = ZRi*ofoa)i. Forany t e T, we

i=1

M M M
have : ||g(t)|| < Z”Ri*”()"f(a)i(t))” < Z||Ri , » hence ||g||o0 < Z”Ri ||0 . We now use
i=1 i=1 i=1

M
lemma 32, and get |, =a] +el, < SR ],a+7) ®
i=1
Using the change of variable formula, we can write :

M
[ fatr (a0 = [ eded < el Jee o < R, 0+ 7] and, from this, we
i=1

M M
deduce : [(u0),, < R, (1+ )], - Henee, [17], < Y[R, (1+7) QED.
i=1 i=1

M
Let p,,p,,...p, €(0,1)such Z p, =1. For the iterated function system

i=l1
with  probabilities  ((@,)Y,,(p,)Y,) we have the Markov operator
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M
m(v) = Z p,®;(v). We denote by u the Hutchinson measure associated with m .
i=1

We have m(u) = . Besides, it is known (see [1]) that supp () = F (the atractor
of the iterated function system). Let now x € X,x # 0 and /_1 = /X.

i); € cabv(K"). Indeed, if (4,).,., is a partition of T with Borel sets,
then : 7 ()] = 2 w4, = [l =
j=1 j=1

this , we deduce that |/_1|(T )=|

, because u is normalized. From

X

, hence u e cabv(X) and ”/_1" =|lx].

#|(B) = x| (B) . So,

|;|(B) =0< u(B)=0. We conclude that supp (;) =supp (u) =F.

i) Similar to i), we get that for any Borel set B,

Theorem 3.4. Let us consider the space (cabv(K"),

) - We denote by
u® =(I—H)(u) and, for any v ecabv(K"), P(v)=H(v)+y'. Suppose that
1+]H],
1=l
1) /_1 €eB,(K"); 2) P(B,(K"))c B,(K"); 3) There is an unique measure
u"€B,(K") suchthat P(u")=pu";4)supp(u’) =F.

f:"Ri”O (1+r)<1. We choose a real number a such that a > ”;” . Then :
i=1

Proof.1)  |H|, < i”Ri |1+7) (see Lemma 3.2), so I ”H”"
i ],
Conse i Y » "
e > [ hence e B, (k™).
0

2)Forany ve B, (K")), we have :
[Po <l + | = [+ = ] < |+ del, + )] =
= ] + e O + [ < ] + Ve + e = e+ 2] ) + e 1], <
< | =
I
Hence, P(v) e B,(K"). Denote 7:B,(K")—> B, (K"),n(v) = P(v)
3) Forany y,,7, € B,(K"), we have :
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M
||7Z.(71)_7Z-(72)||:||H(71_}/2)||§Z||Ri||0(1+ri)"}/l_7/27 so 7 is a
im1

contraction. The set B, (K") is weak-* compact. But, the weak-* topology
coincides with the topology generated by the Monge-Kantorovich norm on
B,(K"). We deduce that B,(K") is compact in the topology generated by | |, . -
Hence, B,(K")is complete in this topology. We conclude that there is an unique
measure " such that P(u") = u".

4) We have : (/-H)u )=(I-H )(;) . But, considering the space
(cabv(K"), ||) and H e B(cabv(K")), we have ||H || , <1, hence I-His

invertible. We obtain that #* = u and supp (") =supp(u)=F  QED.
Let us pass to the second scheme.
Scheme 3.5. Let (Y, ||) a Banach space, H € B(Y),"H"o <1.Let, also

y'eY and P:Y =Y, P(y)=H(y)+»"; we deduce that P is a contraction.
Let ¢ AcY such that : i) P(4)c A ;ii)) A is a closed (and, consequently,

complete) set for the metric d(x,y) :||x— y|| We obtain 7:4—> A given via

7(y) = P(y) and 7 is, also, a contraction. Using the contraction principle, we get
z"eAd, the unique fixed point of x. We deduce that
H:zY)+y' =z (I -H)z")=y". But ||H||O <1 , hence I —H is invertible.
We conclude that z* = (7 - H)™'(3°).

We will use this scheme taking Y = (cabv(X),
space)and 4 =Y.

||) (X being a Banach
Lemma 3.6. Let (cabv(X).] |). Then [H], <SR, - 3)
i=1

Theorem 3.7. Let us consider the Banach space (cabv(X),

||). Let
1° € cabv(X) and P :cabv(X) — cabv(X), P(u) = H(u)+ 1°. Suppose that

M
D |R.|l, <1. Then:
i=1
a) there is an unique measure u" € cabv(X), such that P(u") = u".

b) the measure x° can be chosen such that supp (1) =F, where F is the
atractor of the iterated function system (@,)" .
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Proof a) For any J78 vecabv(X), we  have

[P = P = [ () = HON| = [H =) < ] e = v < QIR e =] < e =]

Hence, P is a contraction on the Banach space cabv(X). Taking 7 =P in
scheme 3.5., we deduce that P has only one fixed point : there is an unique
measure u#° € cabv(X) such that P(u*) = u".

b) Let p,,p,,...p,, €(0,1) such i p; =1. For the iterated function system
i=1
with  probabilities  ((@,)},,(p,)¥;) we have the Markov operator
m(v) = i p,®,(v). We denote, as before, by x the Hutchinson measure
i=l1
associated with m . Hence, m(u) =u. Letnow xe X,x#0 and ; =x. As in

the proof of theorem 3.4. we get that supp (/_1) =supp (u) =F.
Let us denote by [/ the identity operator on cabv(X). We have :

Pu )=y o Hu)+u' =u" < I-H)u)=p". Using the inequalities:
M

||H || 0 S ZHRl” , <1, we deduce that the operator / — H is invertible in cabw(X).
i=1

Therefore, 1" = (I —H)™'(1°).Choosing ° = (I — H)(u), we get " = u, hence

supp (") =supp (1) = F. QED.
Example 3.8. i) We denote by A the Lebesgue measure on [0,1] and let
G :[0,1]x[0,1]— K be a continuous function. Let M= sup{|G(x, ), x,y €[0,1]}.

1
Forany feL’(1) and xe[0,1], we define g(x)= J.G(x,y)f(y)d/l(y), for any
0

fe 7 . It is easy to prove that:
a) g is a continuous function on [0,1] ; b) ||g||2 < ||f||2M

i) Let us consider now V:L*(1) - L* (/1),V(7) = § , Where z § are
the classes of f and g. From (3) we get :

P, =lel., <7

) hence V' is continuous and ||V|| s SM.
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ii)We take " ecabv(L’(A1)) and G,,G,;[0,1]x[0,1]— K, continuous

functions, such that M,=sup{G,(x,y),x, ye[O,l]}S%. Let us denote

g, (x)= J.F,. (x, ) f(dA(»),Vx €[01],Vf € [N f € [*(1). We get the operators

R e B MNR()=g.f</.g g,
For i € {1,2}, we have : |R,| <M, < % hence [, |+ R, < % <1

Let  T=[01,M=2,0,:T —>T,ie{l2),m = %,a)z - % (Cantor

contractions). For any Borel subset A4 of 7', we have :
o' (A)=34N[0,1],0,' (4) = (34-2)N[0.1].

2
Finally, letH(u)= Z:R,.o,uoa);1 , P(u)=H(u)+ u’ ,Yuecabv(L*(1).

i=l
According to Theorem 3.7., there is an unique measure x° € cabv(L*(1) such
that P(u")= ", thatis :
R (1" BAN[OI]) + R, (4" BA-2)N[01]) + 4" (4) = p" (A). 4)
2.2
For example, we can take F,(x,y) = al ; JF,(x,p) = %, hence

M, =M, =1 Let
3

BT, R (4 (B)(x) = % [ £, (A, Ry (" (B)() = [ 30, (1) dA(Y),

W | =

Vx e[01], £y € f5
(we denoted by f_B = 1" (B) ). So, the relation (4) becomes :

%( [ 29 £aea DAY + [ 50 421 (DVAAD)) + 1 (A)(X) = p1” (A)().

i) Let now p =p, =% and the Markov  operator:
m(v) = p,o,(v)+ p,0,(v). If we denote by x the Hutchinson measure,
m(u) =pu < u=po (u)+ p,o,(u),that is, for any Borel set 4 < T, we have :

uBANT)+u((3A=2)NT) = 2u(4) )
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Let us take 7 e I’(A)\{0}and define ; = ,u?. Let u°=(- H)(;).
According to Theorem 3.7., we get u" =pu=uf and supp(u’)=F, the
>, that is the Cantor set.

i=1>

atractor of the iterated function system ()
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