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Let a, b be any positive integers and Γ(Za ×Zb) be the zero divisor graph of the

commutative ring Za×Zb. In this paper, we investigate the radio number of zero divisor

graphs Γ(Zp2 × Zq) for p, q prime numbers.
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1. Introduction

The antennas propagate electromagnetic waves which have different frequencies. These

waves are known as Radio waves. A specific signal can be accessed by tuning the radio re-

ceiver to a particular frequency. Every radio station must be assigned distinct channels,

located within certain proximity of one another. The two radio stations are closer to each

other, and then their assigned channels must have the greater difference. The task of effi-

ciently allocating channels to transmitters is called the Channel Assignment (CA) problem.

In 1980 William Hale [12] introduced a model of the CA problem. Mostly the CA

problem has been modeled as a graph coloring and labeling problem, where the transmitters

are represented as the vertices of a graph. If the transmitters are significantly close to each

other then two vertices are adjacent. The channels assigned to the transmitters are the labels

to the vertices. For every pair of labels there is a minimum acceptable distance between two

distinct vertices with assigned labels. The final aim is to locate a valid labeling such that

the span (range) of the channels used is minimized.

Let G be a simple and connected graph. Two vertices are adjacent in a graph if there

is an edge between them. The degree of a vertex u in G is the number of edges incident with

u and it is denoted as dG(u). Let d(u, v) denote the distance between two distinct vertices

of a connected graph G and the maximum distance between any two vertices of G is known

as diameter of G, it is denoted as diam(G). A radio labeling or multi-level distance labeling

[15, 14] of G is a function ξ : V (G) → N for which the following condition holds for any two

distinct vertices u and v:

d(u, v) + |ξ(u)− ξ(v)| ≥ 1 + diam(G) (1)

This condition is referred to as radio condition.

We denote by S(G, ξ) the set of consecutive integers {m,m + 1, ...,M}, where m =

minu∈V (G) ξ(u) and M = maxu∈V (G) ξ(u) is the span of ξ, denoted span(ξ).
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The minimum span of a radio labeling for G is called radio number of G, denoted by

rn(G). A radio labeling ξ of G with span(ξ) = rn(G) will be called optimal radio labeling

for G.

Other than its inspiration by the channel task, radio labeling itself is an attractive

graph labeling problem and has been considered by numerous authors. It is computationally

very hard to determine the radio number on general graph. The problem is known to be

NP-hard for graphs with diameter 2, yet the complication as a rule isn’t known [13]. In this

manner, the researcher concentrate their study in this area on special family of graphs, even

for some basic classes of graphs the problem proving to be complex [14]. The radio numbers

for paths and cycles were determined in [10, 9, 21], and were totally explained by Liu and

Zhu [14]. Sooryanarayana and Raghunath [19] investigated the radio number for the cube

of Cn for all n ≤ 20 and for n ≡ 0 or 2 or 4 (mod 6). They additionally proved the values

of n for which this graph is radio graceful. Ahmad and Marinescu-Ghemeci [5] determined

the radio numbers for some ladder related graphs. For further detail, see [8, 11, 16, 17].

Let R be a commutative ring with identity and Z(R) is the set of all zero divisors of

R. G(R) is said to be a zero divisor graph if x, y ∈ V (G(R)) = Z(R) and (x, y) ∈ E(G(R))

if and only if x.y = 0. Beck [7] introduced the notion of zero divisor graph. Anderson and

Livingston [4] proved that G(R) is always connected if R is commutative. Anderson and

Badawi [3] introduced the total graph of R as: there is an edge between any two distinct

vertices u, v ∈ R if and only if u + v ∈ Z(R). For a graph G, the concept of graph

parameters have always a high interest. Numerous authors briefly studied the zero-divisor

and total graphs from commutative rings [2, 5, 6, 18, 20].

Let p, q be two prime numbers and Γ(Zp2 × Zq) be zero divisor graph of the commu-

tative rings Zp2 × Zq. In this paper, we investigate the radio number of zero divisor graphs

Γ(Zp2 × Zq) for p, q prime numbers.

2. Results and Discussions

Let Γ(Zp2 × Zq) denotes the zero divisor graph of the commutative ring Zp2 × Zq is

defined as: For x ∈ Zp2 & y ∈ Zq, (x, y) ̸∈ V (Γ(Zp2×Zq)) if and only if x ̸= p, 2p, 3p, . . . , (p−
1)p & y ̸= 0. Let I = {(x, y) ̸∈ V (Γ(Zp2 × Zq)) : x ̸= p, 2p, 3p, . . . , (p − 1)p &y ̸= 0}, then
|I| = (p2 − p)(q− 1). The vertices of the set I are the non zero divisors of the commutative

ring Zp2×Zq. Also (0, 0) ∈ Zp2×Zq is a non zero divisor. Therefore, the total number of non

zero divisors are: |I|+1 = (p2−p)(q−1)+1 = p2q−p2−pq+p+1. There are p2q total vertices

of the commutative ring Zp2×Zq. Hence, there are p2q−(p2q−p2−pq+p+1) = p2+pq−p−1

total number of zero divisors. This implies that the order of the zero divisor graph Γ(Zp2×Zq)

is p2 + pq − p− 1 i.e |V (Γ(Zp2 × Zq))| = p2 + pq − p− 1.

In order to discuss the degree of each vertex (x, y) ∈ V (Γ(Zp2 × Zq)), we have to see

four different cases.

Case 1: If x = 0 and y ∈ Zq \ {0}, then each such vertex (0, y) is only adjacent to the

vertices (x′, 0) for every x′ ∈ Zp2 \ {0}. Hence the degree of each vertex (0, y) is p2 − 1.

Case 2: If x ∈ {p, 2p, . . . , (p − 1)p} and y ∈ Zq \ {0}, then each such vertex (x, y) is

only adjacent to the vertices (x′, 0) for every x′ ∈ {p, 2p, . . . , (p− 1)p}. Hence the degree of

each vertex (x, y) is p− 1.

Case 3: If x ∈ {p, 2p, . . . , (p−1)p} and y = 0, then each such vertex (x, 0) is adjacent to

the vertices (0, y′), (x′, 0) & (x′, y′) for every y′ ∈ Zq \{0} and x ̸= x′ ∈ {p, 2p, . . . , (p−1)p}.
Hence the degree of each vertex (x, 0) is (q − 1) + (p− 2) + (pq − p− q + 1) = pq − 2.



Computing the radio labeling associated with zero divisor graph of a commutative ring 67

Case 4: If x ∈ Zp2 \ {0, p, 2p, . . . , (p− 1)p} and y = 0, then each such vertex (x, 0) is

only adjacent to the vertices (0, y′) for every y′ ∈ Zq \ {0}. Hence the degree of each vertex

(x, 0) is q − 1.

The zero divisor graph Γ(Zp2 × Zq) of the ring Zp2 × Zq contains q − 1 number

of vertices of degree p2 − 1; pq − p − q + 1 number of vertices of degree p − 1; p − 1

number of vertices of degree pq − 2 and p2 − p number of vertices of degree q − 1. By

using the hand shaking lemma the number of edges of Γ(Zp2 × Zq) are |E(Γ(Zp2 × Zq))| =
1
2

{
(p2−p)(q−1)+(q−1)(p2−1)+(p−1)(q−1)(p−1)+(p−1)(pq−2)

}
= (p−1)(4pq−3p−2)

2 .

In the following theorem, we determine the lower bound for zero divisor graph Γ(Zp2 ×Zq).

Theorem 2.1. Let p, q be two prime numbers with p > q ≥ 2 and Γ(Zp2 × Zq) be the

zero divisor graph of the commutative ring Zp2 × Zq. The lower bound of Γ(Zp2 × Zq) is

2p2 + 4q − 7 i.e rn(Γ(Zp2 × Zq)) ≥ 2p2 + 4q − 7.

Proof. From above discussion and our convenience, suppose that

A =
{
(x, 0) : x ∈ Zp2 \ {0, p, 2p, . . . , (p− 1)p}

}
B =

{
(x, 0) : x = p, 2p, . . . , (p− 1)p

}
C =

{
(0, y) : y ∈ Zq \ {0}

}
D =

{
(x, y) : x = p, 2p, . . . , (p− 1)p and y ∈ Zq \ {0}

}
This shows that |A| = p2−p, |B| = p−1, |C| = q−1 and |D| = pq−p−q+1. Let dA(u) denotes

the degree of a vertex u in A and d(A,B) denotes the distance between the vertices of two sets

A and B. For any a, a′ ∈ A, b, b′ ∈ B, c, c′ ∈ C & d, d′ ∈ D then dA(a) = q−1, dB(b) = pq−2,

dC(c) = p2 − 1, dD(d) = p − 1 and d(a, a′) = d(a, b) = d(d, d′) = d(c, c′) = d(c, d) = 2,

d(a, c) = d(c, b) = d(b, d) = d(b, b′) = 1, d(a, d) = 3. This implies that the diameter of

Γ(Zp2 × Zq) is 3 i.e diam(Γ(Zp2 × Zq) = 3.

For any radio labeling ϕ of a Γ(Zp2×Zq) must satisfy the following the radio condition

d(u, v) + |ϕ(u)− ϕ(v)| ≥ diam(Γ(Zp2 × Zq) + 1 = 4 (2)

for any distinct vertices u, v ∈ V (Γ(Zp2 × Zq)). Let ϕ be an optimal radio labeling for

Γ(Zp2 × Zq). We count the number of values need for label and add the minimum number

of forbidden values for ϕ. As p > q ≥ 2, therefore

|A| > |D| and |A| − |D| = p2 − p− pq + p+ q − 1 = p2 − pq + q − 1.

Since d(a, d) = 3, for a ∈ A, d ∈ D, it is possible to use consecutive labels between

the vertices of sets A & D. Its mean there is no forbidden values associative with the

vertices of set D. For any two distinct vertices b, b′ ∈ B, such that d(b, b′) = 1 & d(B,D) =

d(B,C) = 1 and d(B,A) = 2. Therefore, |ϕ(b)−ϕ(b′)| ≥ 3, hence there are 2p− 2 forbidden

values associative with the vertices of the set B. For any two distinct vertices c, c′ ∈ C,

d(c, c′) = 2 & d(C,B) = d(C,A) = 1 and d(C,D) = 2. Therefore, |ϕ(c) − ϕ(c′)| ≥ 2,

there are q − 1 forbidden values associative with the vertices of set C and 3q − 3 forbidden

values associative for q−1 vertices of set A or vice versa. Since For any two distinct vertices

a, a′ ∈ A, d(a, a′) = 2, now p2−pq−p vertices are left in the set A, therefore |ϕ(a)−ϕ(a′)| ≥ 2,

so there are p2 − pq − p forbidden values. Thus the total number of minimum forbidden

values are: 2p− 2 + q − 1 + 3q − 3 + p2 − pq − p = p2 − pq + p+ 4q − 6.

Adding the forbidden values to the number of vertices to label provide a total of

2p2 + 4q − 7 labels, hence rn(Γ(Zp2 × Zq)) ≥ 2p2 + 4q − 7, for p > q ≥ 2.

This completes the proof.
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�

Theorem 2.2. Let p, q be two prime numbers with p > q ≥ 2 and Γ(Zp2 × Zq) be the zero

divisor graph of the commutative ring Zp2 × Zq. Then rn(Γ(Zp2 × Zq)) ≤ 2p2 + 4q − 7.

Proof. We shall provide a radio labeling of Γ(Zp2 ×Zq) with span 2p2+4q−7, which implies

rn(Γ(Zp2 × Zq)) ≤ 2p2 + 4q − 7. From Theorem 2.1 and our convenience we define the

following:

A =
{
(x, 0) : x ∈ Zp2 \ {0, p, 2p, . . . , (p− 1)p}

}
=

{
ai : 1 ≤ i ≤ p2 − p

}
B =

{
(x, 0) : x = p, 2p, . . . , (p− 1)p

}
=

{
bi : 1 ≤ i ≤ p− 1

}
C =

{
(0, y) : y ∈ Zq \ {0}

}
=

{
ci : 1 ≤ i ≤ q − 1

}
D =

{
(x, y) : x = p, 2p, . . . , (p− 1)p and y ∈ Zq \ {0}

}
=
{
di : 1 ≤ i ≤ pq − p− q + 1

}
The radio labeling ϕ : V (Γ(Zp2 × Zq)) → Z+ is defined the following:

ϕ(ai) =


2i− 1; 1 ≤ i ≤ pq − p− q + 2

4i− 2pq + 2p+ 2q − 5; pq − p− q + 3 ≤ i ≤ pq − q + 1

6i− 4pq + 2p+ 4q − 7; pq − q + 2 ≤ i ≤ pq

2i+ 2p+ 4q − 7; pq + 1 ≤ i ≤ p2 − p.

ϕ(bi) = 4i+2pq−2p−2q+1, for 1 ≤ i ≤ p−1; ϕ(ci) = 6i+2pq+2p−2q−4, for 1 ≤ i ≤ q−1

and ϕ(di) = 2i, for 1 ≤ i ≤ pq − p − q + 1. It is easy to see that the span of ϕ is equal to

2p2 + 4q − 7.

Claim: The labeling ϕ is a valid radio labeling.

We must show that the radio condition

d(u, v) + |ϕ(u)− ϕ(v)| ≥ diam(Γ(Zp2 × Zq) + 1 = 4 (3)

holds for all pairs of vertices u, v ∈ V (Γ(Zp2 × Zq), where u ̸= v.

1: Consider the pairs (ai, aj) with i ̸= j, note that d(ai, aj) = 2 for i ̸= j and

|ϕ(ai)− ϕ(aj)| ≥ 2 for all ai ̸= aj . Hence, the radio condition (3) is satisfied.

2: Consider the pairs (bi, bj) with i ̸= j, 1 ≤ i, j ≤ p − 1, we have d(bi, bj) = 1 and

the label difference for these pairs are |ϕ(bi) − ϕ(bj)| = 4|i − j| ≥ 4, so the condition (3) is

satisfied.

3: Consider the pairs (ci, cj) with i ̸= j, 1 ≤ i, j ≤ q − 1, we have d(ci, cj) = 2 and

|ϕ(ci)− ϕ(cj)| = 6|i− j| ≥ 6, so the radio condition (3) is satisfied.

4: As |ϕ(di) − ϕ(dj)| = 2|i − j| ≥ 2 for pairs (di, dj) with i ̸= j and d(di, dj) = 2.

This shows that radio condition (3) is satisfied.

5: Consider the pairs (bi, cj) with 1 ≤ i ≤ p− 1, 1 ≤ j ≤ q − 1 and d(bi, cj) = 1, also

|ϕ(bi)− ϕ(cj)| = |6j − 4i+ 4p− 5| ≥ 5. This satisfied the radio condition (3).

6: Consider the pairs (bi, dj) with 1 ≤ i ≤ p − 1, 1 ≤ j ≤ pq − p − q + 1 and

d(bi, dj) = 1, |ϕ(bi) − ϕ(dj)| = |4i − 2j + 2pq − 2p − 2q + 1| ≥ 3, so the condition (3) is

satisfied.

7: Consider the pairs (ci, dj) with 1 ≤ i ≤ q−1, 1 ≤ j ≤ pq−p−q+1 and d(ci, dj) = 2,

the difference between any pair is |ϕ(ci)− ϕ(dj)| = |6i− 2j + 2pq + 2p− 2q − 4| ≥ 4, hence

the condition (3) is satisfied.



Computing the radio labeling associated with zero divisor graph of a commutative ring 69

8: Finally, consider the pairs (u, v), where u ∈ A =
{
ai : 1 ≤ i ≤ p2 − p

}
and

v ∈ B =
{
bi : 1 ≤ i ≤ p − 1

}
or v ∈ C =

{
ci : 1 ≤ i ≤ q − 1

}
or v ∈ D =

{
di : 1 ≤ i ≤

pq − p − q + 1
}
. This implies that ϕ(u) ∈

{
1, 3, 5, . . . , 2pq − 2p − 2q + 3

}
∪
{
2pq − 2p −

2q + 7, 2pq − 2p − 2q + 11, . . . , 2pq + 2p − 2q − 1
}
∪
{
2pq + 2p − 2q + 5, 2pq + 2p − 2q +

11, . . . , 2pq+2p+4q−7
}
∪
{
2pq+2p+4q−5, 2pq+2p+4q−3, . . . , 2p2+4q−7

}
and ϕ(v) ∈{

2, 4, 6, . . . , 2p2−2p−2q+2
}
or ϕ(v) ∈

{
2pq−2p−2q+5, 2pq−2p−2q+9, . . . , 2pq+2p−2q−3

}
or ϕ(v) ∈

{
2pq + 2p− 2q + 2, 2pq + 2p− 2q + 8, . . . , 2pq + 2p+ 4q − 10

}
.

• If d(u, v) = 1, then ϕ(v) ∈
{
2pq+2p−2q+2, 2pq+2p−2q+8, . . . , 2pq+2p+4q−10

}
and |ϕ(u)− ϕ(v)| ≥ 3.

• If d(u, v) = 2, then ϕ(v) ∈
{
2pq− 2p− 2q+5, 2pq− 2p− 2q+9, . . . , 2pq+2p− 2q− 3

}
and |ϕ(u)− ϕ(v)| ≥ 2.

• If d(u, v) = 3, then ϕ(v) ∈
{
2, 4, 6, . . . , 2p2 − 2p− 2q + 2

}
and |ϕ(u)− ϕ(v)| ≥ 1.

It follows that the radio condition (3) is satisfied for these pairs. These eight cases establish

the claim that ϕ is a radio labeling of Γ(Zp2 × Zq). Thus rn(Γ(Zp2 × Zq)) ≤ span(ϕ) ≤
2p2 + 4q − 7. This completes the proof.

�

Theorem 2.3. Let p, q be two prime numbers with p > q ≥ 2 and Γ(Zp2 × Zq) be the zero

divisor graph of the commutative ring Zp2 × Zq. Then rn(Γ(Zp2 × Zq)) = 2p2 + 4q − 7.

Proof. Theorem 2.1 shows rn(Γ(Zp2 × Zq)) ≥ 2p2 + 4q − 7 for p > q ≥ 2 and Theorem 2.2

shows rn(Γ(Zp2×Zq)) ≤ 2p2+4q−7 for p > q ≥ 2. Therefore, rn(Γ(Zp2×Zq)) = 2p2+4q−7

for p > q ≥ 2. �

Theorem 2.4. Let p ≥ 2 be a prime number. Then rn(Γ(Zp2 × Zp)) ≥ 2p2 + 2p− 4.

Proof. Let Γ(Zp2 × Zp) be the zero divisor graph of the commutative ring Zp2 × Zp. The

graph Γ(Zp2 ×Zp) contains p−1 number of vertices of degree p2−1; p−1 number of vertices

of degree p2 − 2 and (p2 − p) + (p2 − 2p + 1) number of vertices of degree p − 1 among of

p2 − p number of vertices are adjacent with vertices of degree p2 − 1 & p2 − 2p+ 1 number

of vertices are adjacent with vertices of degree p2 − 2. For our convenience, we partition the

set of vertices of Γ(Zp2 × Zp) into disjoint subsets as: V (Γ(Zp2 × Zp)) = A ∪ B ∪ C ∪ D,

where

A =
{
(x, 0) : x ∈ Zp2 & x ̸= 0, p, 2p, . . . , (p− 1)p

}
=

{
ai : 1 ≤ i ≤ p2 − p

}
B =

{
(x, 0) : x = p, 2p, . . . , (p− 1)p

}
=

{
bi : 1 ≤ i ≤ p− 1

}
C =

{
(0, y) : y ∈ Zp \ {0}

}
=

{
ci : 1 ≤ i ≤ p− 1

}
D =

{
(x, y) : x = p, 2p, . . . , (p− 1)p and y ∈ Zp \ {0}

}
=
{
di : 1 ≤ i ≤ p2 − 2p+ 1

}
This shows that |A| = p2 − p, |B| = |C| = p − 1, |D| = p2 − 2p + 1 and the number

of vertices of Γ(Zp2 × Zp) are 2p2 − p − 1. Let d(A,B) denotes the distance between the

vertices of two sets A and B. For any a, a′ ∈ A, b, b′ ∈ B, c, c′ ∈ C & d, d′ ∈ D then
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d(a, c) = d(c, b) = d(b, d) = d(b, b′) = 1, d(a, a′) = d(a, b) = d(d, d′) = d(c, c′) = d(c, d) = 2

and d(a, d) = 3. The maximum distance between among the vertices of Γ(Zp2 × Zp) is 3.

Therefore the diameter of Γ(Zp2 × Zp) is 3 i.e diam(Γ(Zp2 × Zp) = 3.

For any radio labeling ψ of a Γ(Zp2×Zp) must satisfy the following the radio condition

d(u, v) + |ψ(u)− ψ(v)| ≥ diam(Γ(Zp2 × Zp) + 1 = 4 (4)

for any distinct vertices u, v ∈ V (Γ(Zp2 × Zp)). Let ψ be an optimal radio labeling for

Γ(Zp2 ×Zp). To obtain the radio number for ψ, we count the minimum number of forbidden

values and add these into the number of values need for label. For p ≥ 2,

|A| > |D| and |A| − |D| = p2 − p− (p2 − 2p+ 1) = p− 1.

Since the distance between the vertices of two sets A & D is 3 and among the vertices

of sets is 2. Therefore, it is possible to use consecutive labels between the vertices of sets A &

D. This means that there is no forbidden values associative with the vertices of set D. The

distance between the vertices of the set B with the vertices of the sets C,D and A is 1,1 and

2, respectively and the distance among different vertices of set B is also 1. For any b, b′ ∈ B

must satisfy |ψ(b)−ψ(b′)| ≥ 3, hence there are 2p− 2 forbidden values corresponding to the

the vertices of the set A & D. Finally, the distance among two distinct vertices of the set

C is 2 and the distance between the vertices of set C with the vertices of the sets A,B &

D is 1,1 & 2, respectively. For any c, c′ ∈ C, must satisfy |ψ(c)− ψ(c′)| ≥ 2 therefore there

are p− 1 forbidden values. Hence there are total number of minimum forbidden values are:

2p− 2 + p− 1 = 3p− 3.

By adding the forbidden values and the number of vertices to label provide a total of

2p2 + 2p− 4 labels, hence rn(Γ(Zp2 × Zp)) ≥ 2p2 + 2p− 4, for p ≥ 2.

This completes the proof.

�

Theorem 2.5. Let p ≥ 2 be a prime number. Then rn(Γ(Zp2 × Zp)) ≤ 2p2 + 2p− 4.

Proof. Consider the sets A,B,C and D defined in Theorem 2.4. We define a radio labeling

ψ of Γ(Zp2 ×Zp) with span 2p2+2p− 4, which implies rn(Γ(Zp2 ×Zp)) ≤ 2p2+2p− 4. The

radio labeling ψ : V (Γ(Zp2 × Zp)) → Z+ is defined in the following way:

ψ(ai) =

{
2i− 1; 1 ≤ i ≤ p2 − 2p+ 2

4i− 2p2 + 4p− 5; p2 − 2p+ 3 ≤ i ≤ p2 − p.

ψ(bi) = 4i + 2p2 − 4p + 1, for 1 ≤ i ≤ p − 1; ψ(ci) = 2p2 + 2i − 2, for 1 ≤ i ≤ p − 1 and

ψ(di) = 2i, for 1 ≤ i ≤ p2−2p+1. It is easy to see that the span of ψ is equal to 2p2+2p−4.

Claim: The labeling ψ is a valid radio labeling.

We must show that the radio condition

d(u, v) + |ϕ(u)− ϕ(v)| ≥ diam(Γ(Zp2 × Zp) + 1 = 4 (5)

holds for all pairs of vertices u, v ∈ V (Γ(Zp2 × Zp), where u ̸= v.

1: For i ̸= j, d(ai, aj) = 2 and |ψ(ai) − ψ(aj)| ≥ 2, similarly |ψ(bi) − ψ(bj)| ≥ 4,

|ψ(ci)−ψ(cj)| ≥ 2, |ψ(di)−ψ(dj)| ≥ 2, here bi, bj ∈ B, ci, cj ∈ C, di, dj ∈ D with i ̸= j and

d(ci, cj) = 2, d(bi, bj) = 1, d(di, dj) = 2. Hence, the radio condition (5) is satisfied.

2: Consider the pairs (bi, cj) for 1 ≤ i, j ≤ p − 1 and |ψ(bi) − ψ(cj)| ≥ 3 with

d(bi, cj) = 1. This satisfied the radio condition (5).

3: Consider the pairs (bi, dj) for 1 ≤ i ≤ p−1, 1 ≤ j ≤ p2−2p+1 and |ψ(bi)−ψ(dj)| ≥
3 with d(bi, dj) = 1, so the condition (5) is satisfied.

4: Consider the pairs (ci, dj) for 1 ≤ i ≤ p−1, 1 ≤ j ≤ p2−2p+1 and |ψ(ci)−ψ(dj)| =
|2p2 − 2 + 2(i− j)| ≥ 4p− 2 with d(ci, dj) = 2, so the radio condition (5) is satisfied.
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5: Finally, consider the pairs (u, v), where u ∈ A =
{
ai : 1 ≤ i ≤ p2−p

}
and v ∈ B ={

bi : 1 ≤ i ≤ p− 1
}
or v ∈ C =

{
ci : 1 ≤ i ≤ p− 1

}
or v ∈ D =

{
di : 1 ≤ i ≤ p2 − 2p+ 1

}
.

This implies that ϕ(u) ∈
{
1, 3, 5, . . . , 2p2−4p+3

}
∪
{
2p2−4p+7, 2p2−4p+11, . . . , 2p2−5

}
and ϕ(v) ∈

{
2, 4, 6, . . . , 2p2 − 4p + 2

}
or ϕ(v) ∈

{
2p2, 2p2 + 2, . . . , 2p2 + 2p − 4

}
or ϕ(v) ∈{

2p2 − 4p+ 5, 2p2 − 4p+ 9, . . . , 2p2 − 3
}
.

• If d(u, v) = 1, then ψ(v) ∈
{
2p2, 2p2 + 2, . . . , 2p2 + 2p− 4

}
and |ψ(u)− ψ(v)| ≥ 3.

• If d(u, v) = 2, then ψ(v) ∈
{
2p2−4p+5, 2p2−4p+9, . . . , 2p2−3

}
and |ψ(u)−ψ(v)| ≥ 2.

• If d(u, v) = 3, then ψ(v) ∈
{
2, 4, 6, . . . , 2p2 − 4p+ 2

}
and |ψ(u)− ψ(v)| ≥ 1.

It follows that the radio condition (5) is satisfied for these pairs. These five cases establish the

claim that ψ is a radio labeling of Γ(Zp2×Zp). Thus rn(Γ(Zp2×Zp)) ≤ span(ϕ) ≤ 2p2+2p−4.

This completes the proof.

�

Theorem 2.6. Let p ≥ 2 be a prime number and Γ(Zp2 × Zp) be the zero divisor graph of

the commutative ring Zp2 × Zp. Then rn(Γ(Zp2 × Zp)) = 2p2 + 2p− 4.

Proof. Theorem 2.4 shows rn(Γ(Zp2 ×Zp)) ≥ 2p2+2p− 4 for p ≥ 2 and Theorem 2.5 shows

rn(Γ(Zp2 × Zp)) ≤ 2p2 + 2p − 4 for p ≥ 2. Therefore, rn(Γ(Zp2 × Zp)) = 2p2 + 2p − 4 for

p ≥ 2. �
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