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COMPUTING THE RADIO LABELING ASSOCIATED WITH
ZERO DIVISOR GRAPH OF A COMMUTATIVE RING
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Let a,b be any positive integers and I'(Zq X Zy) be the zero divisor graph of the
commutative ring Zq X Zy,. In this paper, we investigate the radio number of zero divisor

graphs T'(Z,2 X Zq) for p,q prime numbers.
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1. Introduction

The antennas propagate electromagnetic waves which have different frequencies. These
waves are known as Radio waves. A specific signal can be accessed by tuning the radio re-
ceiver to a particular frequency. Every radio station must be assigned distinct channels,
located within certain proximity of one another. The two radio stations are closer to each
other, and then their assigned channels must have the greater difference. The task of effi-
ciently allocating channels to transmitters is called the Channel Assignment (CA) problem.

In 1980 William Hale [12] introduced a model of the CA problem. Mostly the CA
problem has been modeled as a graph coloring and labeling problem, where the transmitters
are represented as the vertices of a graph. If the transmitters are significantly close to each
other then two vertices are adjacent. The channels assigned to the transmitters are the labels
to the vertices. For every pair of labels there is a minimum acceptable distance between two
distinct vertices with assigned labels. The final aim is to locate a valid labeling such that
the span (range) of the channels used is minimized.

Let G be a simple and connected graph. Two vertices are adjacent in a graph if there
is an edge between them. The degree of a vertex u in G is the number of edges incident with
u and it is denoted as dg(u). Let d(u,v) denote the distance between two distinct vertices
of a connected graph G and the maximum distance between any two vertices of G is known
as diameter of G, it is denoted as diam(G). A radio labeling or multi-level distance labeling
[15, 14] of G is a function £ : V(G) — N for which the following condition holds for any two
distinct vertices u and v:

d(u,v) + [§(u) — £(0)] 2 1 + diam(G) (1)

This condition is referred to as radio condition.
We denote by S(G, &) the set of consecutive integers {m, m + 1,..., M}, where m =
min, ey () §(u) and M = max,cv () {(u) is the span of £, denoted span(§).
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The minimum span of a radio labeling for G is called radio number of G, denoted by
rn(G). A radio labeling & of G with span(§) = rn(G) will be called optimal radio labeling
for G.

Other than its inspiration by the channel task, radio labeling itself is an attractive
graph labeling problem and has been considered by numerous authors. It is computationally
very hard to determine the radio number on general graph. The problem is known to be
NP-hard for graphs with diameter 2, yet the complication as a rule isn’t known [13]. In this
manner, the researcher concentrate their study in this area on special family of graphs, even
for some basic classes of graphs the problem proving to be complex [14]. The radio numbers
for paths and cycles were determined in [10, 9, 21], and were totally explained by Liu and
Zhu [14]. Sooryanarayana and Raghunath [19] investigated the radio number for the cube
of C), for all n <20 and forn=0o0r 2 or 4 (mod 6). They additionally proved the values
of n for which this graph is radio graceful. Ahmad and Marinescu-Ghemeci [5] determined
the radio numbers for some ladder related graphs. For further detail, see [8, 11, 16, 17].

Let R be a commutative ring with identity and Z(R) is the set of all zero divisors of
R. G(R) is said to be a zero divisor graph if z,y € V(G(R)) = Z(R) and (z,y) € E(G(R))
if and only if z.y = 0. Beck [7] introduced the notion of zero divisor graph. Anderson and
Livingston [4] proved that G(R) is always connected if R is commutative. Anderson and
Badawi [3] introduced the total graph of R as: there is an edge between any two distinct
vertices u,v € R if and only if u 4+ v € Z(R). For a graph G, the concept of graph
parameters have always a high interest. Numerous authors briefly studied the zero-divisor
and total graphs from commutative rings [2, 5, 6, 18, 20].

Let p, g be two prime numbers and I'(Z,2 x Zq) be zero divisor graph of the commu-
tative rings Zy2 X Z4. In this paper, we investigate the radio number of zero divisor graphs
I'(Zy2 x Zq) for p,q prime numbers.

2. Results and Discussions

Let I'(Zy> x Zq) denotes the zero divisor graph of the commutative ring Z,> x Z, is
defined as: For x € Zy2 &y € Zy, (x,y) & V(I'(Zy2 xZy)) if and only if z # p,2p,3p, ..., (p—
Dp &y #0. Let I = {(z,y) € V(I'(Zp2 x Zq)) : © # p,2p,3p,...,(p — 1)p &y # 0}, then
|I] = (p?> — p)(¢ — 1). The vertices of the set I are the non zero divisors of the commutative
ring Zy2 x Zq. Also (0,0) € Zy,2 X Zq is a non zero divisor. Therefore, the total number of non
zero divisors are: |I|+1 = (p>—p)(q—1)+1 = p?q—p*—pq+p+1. There are p?q total vertices
of the commutative ring Z,2 x Z,. Hence, there are p*q—(p*q—p*—pg+p+1) = p*+pg—p—1
total number of zero divisors. This implies that the order of the zero divisor graph I'(Z,2 xZ,)
is p° +pg—p—1ie|V(I(Zy2 x Zy))| =p* +pg —p— 1.

In order to discuss the degree of each vertex (z,y) € V(I'(Z,y2 x Zq)), we have to see
four different cases.

Case 1: If t =0 and y € Z; \ {0}, then each such vertex (0,y) is only adjacent to the
vertices (z’,0) for every z' € Z,2 \ {0}. Hence the degree of each vertex (0,y) is p* — 1.

Case 2: If z € {p,2p,...,(p—1)p} and y € Z, \ {0}, then each such vertex (x,y) is
only adjacent to the vertices (z’,0) for every 2’ € {p,2p, ..., (p — 1)p}. Hence the degree of
each vertex (z,y) is p — 1.

Case 3: Ifx € {p,2p, ..., (p—1)p} and y = 0, then each such vertex (z, 0) is adjacent to
the vertices (0,y’), (2/,0) & (2/,y’) for every y' € Z;\ {0} and = # 2’ € {p,2p,...,(p—1)p}.
Hence the degree of each vertex (z,0)is (¢ — 1)+ (p—2)+ (pg—p—q+1) =pg — 2.
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Case 4: If x € Zy2 \ {0,p,2p, ..., (p — 1)p} and y = 0, then each such vertex (z,0) is
only adjacent to the vertices (0,y’) for every y' € Z, \ {0}. Hence the degree of each vertex
(z,0)is ¢ — 1.

The zero divisor graph I'(Z,2 x Zg) of the ring Z,» x Z, contains ¢ — 1 number
of vertices of degree p?> — 1; pg — p — ¢ + 1 number of vertices of degree p — 1; p — 1
number of vertices of degree pg — 2 and p? — p number of vertices of degree ¢ — 1. By
using the hand shaking lemma the number of edges of I'(Z,2 x Zq) are |E(I'(Zy2 X Zg))| =

He?=p)a=1)+ -1+ @-1)a-1)p-1)+ - 1)(pg-2) } = 210=0=2,
In the following theorem, we determine the lower bound for zero divisor graph I'(Z,2 x Z).

Theorem 2.1. Let p,q be two prime numbers with p > q > 2 and I'(Zy,2 x Zq) be the
zero divisor graph of the commutative ring Zy> X Zq. The lower bound of I'(Zy2 x Zg) is
2p* +4q — T i.e rn(D(Zy2 x Zg)) > 2p* +4q — 7.

Proof. From above discussion and our convenience, suppose that

A={(2,0): 2 € Z2 \ {0,p,2p,.... (p — 1)p}}

B={(2,0): 0 =p.2p,....(p~ Up}

¢ ={(0,9):y €2, \ {0}}

D:{(x y):x:p,2p,...,(p—1)pandyEZq\{O}}
This shows that |A| = p?—p, |B| = p—1, |C| = ¢—1 and |D| = pg—p—q+1. Let da(u) denotes
the degree of a vertex u in A and d(A, B) denotes the distance between the vertices of two sets
Aand B. Forany a,a’ € A, b,/ € B, ¢, € C& d,d € Dthendy(a) =q—1,dp(b) = pqg—2,
dc(c) = p?> — 1, dp(d) = p— 1 and d(a,a’) = d(a,b) = d(d,d") = d(c,c) = d(c,d) = 2,
d(a,c) = d(e,b) = d(b,d) = d(b,b') = 1, d(a,d) = 3. This implies that the diameter of

I'(Zy2 x Zyg) is 3 i.e diam(T'(Zy2 x Zg) = 3.
For any radio labeling ¢ of a I'(Z,2 x Z,) must satisfy the following the radio condition

d(u,v) + |p(u) — ¢(v)| > diam(I'(Zy2 x Zg) +1 =4 (2)

for any distinct vertices u,v € V(I'(Zp2 x Zg)). Let ¢ be an optimal radio labeling for
I'(Zy2 x Zq). We count the number of values need for label and add the minimum number
of forbidden values for ¢. As p > g > 2, therefore

|A| > |D| and [A| = [D|=p* —p—pg+p+q—1=p* —pg+q—1.

Since d(a,d) = 3, for a € A,d € D, it is possible to use consecutive labels between
the vertices of sets A & D. Its mean there is no forbidden values associative with the
vertices of set D. For any two distinct vertices b,b" € B, such that d(b,0') =1 & d(B, D) =
d(B,C) =1 and d(B, A) = 2. Therefore, |p(b) — ¢(b')| > 3, hence there are 2p — 2 forbidden
values associative with the vertices of the set B. For any two distinct vertices c,c’ € C,
d(e,d) = 2 & d(C,B) = d(C,A) = 1 and d(C,D) = 2. Therefore, |¢(c) — ¢()| > 2,
there are ¢ — 1 forbidden values associative with the vertices of set C' and 3¢ — 3 forbidden
values associative for ¢ — 1 vertices of set A or vice versa. Since For any two distinct vertices
a,a’ € A,d(a,a’) = 2, now p>—pq—p vertices are left in the set A, therefore |p(a)—¢(a’)| > 2,
so there are p?> — pqg — p forbidden values. Thus the total number of minimum forbidden
values are: 2p —2+q—1+4+3¢—3+p?> —pg—p=p> —pg+p+4q— 6.

Adding the forbidden values to the number of vertices to label provide a total of
2p* + 4q — 7 labels, hence rn(I(Zy2 x Zq)) > 2p* +4q — 7, for p > ¢ > 2.

This completes the proof.
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O

Theorem 2.2. Let p,q be two prime numbers with p > q > 2 and I'(Z,2 x Zq) be the zero
divisor graph of the commutative ring Zy> x Zq. Then rn(D(Zy2 x Zq)) < 2p* +4q — 7.

Proof. We shall provide a radio labeling of I'(Z,2 x Z,) with span 2p? +4q — 7, which implies
rn([(Zy2: X Zg)) < 2p* + 4g — 7. From Theorem 2.1 and our convenience we define the
following:

(2,0) 2 € Zya \ {0,p,2p,..., (0~ Dp} } = {ai: 1 < i <p? —p}
(z,0) : x=p72p,...,(p—1)p}:{bi:1§¢§p_1}

(0,9) :y € 2\ {0}} = {ei 1

(z,y) : 33:17,217,...7(}9—1)pandy€Zq\{0}}
Z{diiléiﬁpq—p—ﬁl}

The radio labeling ¢ : V(T'(

A
B
C
D

I
—~ N

Zy2 X Lq)) — Z7 is defined the following:

2i — 1; 1<i<pg—p—q+2
4i—=2pq+2p+2¢—-5 pg—p—q+3<i<pg—q+1
61 —4dpg+2p+49 -7, pg—q+2=<1i<pq
204 2p +4q — T; pg+1<i<p?—p.
o(b;) = 4i+2pg—2p—2q+1,for 1 <i<p—1; ¢(¢;) = 6i+2pg+2p—2g—4,for 1 <i<qg—1
and ¢(d;) = 2i, for 1 <i < pg—p—q+ 1. It is easy to see that the span of ¢ is equal to
2p% +4q— 1.
Claim: The labeling ¢ is a valid radio labeling.

We must show that the radio condition

d(u,v) + |6(u) — 6(v)]| > diam(T(Zye x Zy) +1 = 4 (3)

¢(a;) =

holds for all pairs of vertices u,v € V(I'(Z,2 x Zq), where u # v.

1: Consider the pairs (a;,a;) with ¢ # j, note that d(a;,a;) = 2 for ¢ # j and
|¢(ai) — ¢(aj)| > 2 for all a; # a;. Hence, the radio condition (3) is satisfied.

2: Consider the pairs (b;,b;) with ¢ # j, 1 < 4,5 < p—1, we have d(b;,b;) = 1 and
the label difference for these pairs are |¢(b;) — ¢(b;)| = 4]i — j| > 4, so the condition (3) is
satisfied.

3: Consider the pairs (¢;,¢;) with ¢ # 4, 1 < 4,5 < ¢ — 1, we have d(c;,¢;) = 2 and
|¢(ci) — @(cj)| = 6]i — j| > 6, so the radio condition (3) is satisfied.

4: As |¢o(d;) — ¢(d;)| = 2]i — j| > 2 for pairs (d;,d;) with ¢ # j and d(d;,d;) =
This shows that radio condition (3) is satisfied.

5: Consider the pairs (b;,¢;) with1 <i<p—-1,1<j<¢g—1and d(b;,c;) =1, also
|p(b;) — @(cj)| = |65 — 4 + 4p — 5] > 5. This satisfied the radio condition (3).

6: Consider the pairs (b;,d;) with 1 < i <p—-1,1<j < pg—p—q+1and
d(b;,dj) = 1, |¢(bi) — ¢(d;)| = |4i — 25 + 2pg — 2p — 2¢ + 1| > 3, so the condition (3) is
satisfied.

7: Consider the pairs (¢;,d;) with 1 <i < ¢—1,1<j < pg—p—q+1and d(c;,d;) = 2,
the difference between any pair is |¢(c;) — ¢(d;)| = |62 2§+ 2pq +2p — 2q¢ — 4] > 4, hence
the condition (3) is satisfied.
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8: Finally, consider the pairs (u,v), where u € A = {ai 1 <i < p?— p} and
veB:{bizlgiSp—l}orvEC:{cizlgigq—l}orveD:{dizlgig
pqg—p—q+ 1}. This implies that ¢(u) € {1,3,5, .o 2pg — 2p — 2q + 3} U {2pq —2p —
2q+7,2pq—2p—2q+11,...,2pq+2p—2q—I}U{2pq+2p—2q+5,2pq+2p—2q+
11,.. .,2pq—|—2p+4q—7}U{2pq—|—2p—|—4q—5,2pq—|—2p—|—4q—3, . .,2p2+4q—7} and ¢(v) €
{2, 4,6,... ,2p2—2p—2q+2} or p(v) € {2pq—2p—2q—|—5, 2g—2p—2q+9, . .., 2pq+2p—2q—3}
or ¢(v) € {2pq+2p72q+272pq+2p72q+8,...,2pq+2p+4q710}.

e If d(u,v) =1, then ¢(v) € {2pq+2p72q+2,2pq+2p72q+8, . .,2pq+2p+4q710}
and [¢(u) — ¢(v)| > 3.

o If d(u,v) = 2, then ¢(v) € {zpq—2p—2q+5,2pq—2p—2q+9,...,2pq+2p—2q—3}
and [$(u) — H(v)] > 2

o If d(u,v) = 3, then ¢(v) € {2, 4,6,...,2p% — 2p—2q + 2} and |¢(u) — p(v)| > 1.

It follows that the radio condition (3) is satisfied for these pairs. These eight cases establish
the claim that ¢ is a radio labeling of I'(Zy2 x Z,). Thus rn(I'(Z,2 x Zq)) < span(¢) <
2p% 4 4q — 7. This completes the proof.

|

Theorem 2.3. Let p,q be two prime numbers with p > q > 2 and I'(Zy2 x Zg) be the zero
divisor graph of the commutative ring Zy> x Zq. Then rn(D(Z,y2 X Zq)) = 2p* +4q — 7.

Proof. Theorem 2.1 shows rn(I'(Zy2 x Zq)) > 2p* +4q — 7 for p > ¢ > 2 and Theorem 2.2
shows rn(I(Zyz2 X Zq)) < 2p*+4q—T for p > q > 2. Therefore, rn(I'(Zy2 X Zq)) = 2p*+4q—T7
for p > q > 2. O

Theorem 2.4. Let p > 2 be a prime number. Then rn(D(Zy2 x Zy)) > 2p + 2p — 4.

Proof. Let I'(Zy2 x Z,) be the zero divisor graph of the commutative ring Z,> x Z,. The
graph I'(Z,2> x Z,,) contains p— 1 number of vertices of degree p? —1; p—1 number of vertices
of degree p? — 2 and (p? — p) + (p® — 2p + 1) number of vertices of degree p — 1 among of
p? — p number of vertices are adjacent with vertices of degree p?> — 1 & p? — 2p + 1 number
of vertices are adjacent with vertices of degree p? — 2. For our convenience, we partition the
set of vertices of I'(Z,2 x Z,) into disjoint subsets as: V(I'(Zy2 x Zp)) = AUBUC U D,
where

{( 0): @ € Zpe &m#O,pﬂp,m,(p—I)p}={a¢:1§z’§p2—p}
{ x:p,2p,...7(p—1)p}:{bizlgigp—l}

{ yEZp\{O}}:{ci:lgiSp—l}

{ xzp,Zp,...7(p—1)pandyGZp\{O}}

={di:1§z‘Sp2—2p+1}

A=
B
C
D

This shows that |[A] = p> —p, |B| = |C| = p—1, |D| = p?> — 2p + 1 and the number
of vertices of I'(Zy2 x Z,) are 2p* — p — 1. Let d(A, B) denotes the distance between the
vertices of two sets A and B. For any a,a’ € A, b,b' € B, ¢,c/ € C & d,d € D then
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d(a,c) = d(c,b) = d(b,d) = d(b,v') =1, d(a,a’) = d(a,b) = d(d,d") = d(e,') = d(e,d) = 2
and d(a,d) = 3. The maximum distance between among the vertices of I'(Zy2 x Zj) is 3.
Therefore the diameter of I'(Zy2 x Z,) is 3 i.e diam(I'(Zy2 x Z,) = 3.

For any radio labeling 9 of a I'(Z,2 x Z,) must satisfy the following the radio condition

d(u, ) + () — ()| > diam(T(Zye x Z,) + 1 = 4 (4)

for any distinct vertices u,v € V(I'(Zy2 x Zp)). Let 1 be an optimal radio labeling for
I'(Zy2 x Zy). To obtain the radio number for v, we count the minimum number of forbidden
values and add these into the number of values need for label. For p > 2,

|A| > [D| and |A| = [D| =p* —p— (p* = 2p+1) =p— 1.

Since the distance between the vertices of two sets A & D is 3 and among the vertices
of sets is 2. Therefore, it is possible to use consecutive labels between the vertices of sets A &
D. This means that there is no forbidden values associative with the vertices of set D. The
distance between the vertices of the set B with the vertices of the sets C, D and A is 1,1 and
2, respectively and the distance among different vertices of set B is also 1. For any b,b’ € B
must satisfy [¢)(b) — ¥ (b')| > 3, hence there are 2p — 2 forbidden values corresponding to the
the vertices of the set A & D. Finally, the distance among two distinct vertices of the set
C is 2 and the distance between the vertices of set C' with the vertices of the sets A, B &
D is 1,1 & 2, respectively. For any ¢, € C, must satisfy |1)(c) — 1(c’)| > 2 therefore there
are p — 1 forbidden values. Hence there are total number of minimum forbidden values are:
2p—2+p—1=3p—3.

By adding the forbidden values and the number of vertices to label provide a total of
2p% + 2p — 4 labels, hence rn(I(Zy2 x Z,)) > 2p? + 2p — 4, for p > 2.

This completes the proof.

Theorem 2.5. Let p > 2 be a prime number. Then rn(I(Zy2 x Z,)) < 2p* +2p — 4.

Proof. Consider the sets A, B,C and D defined in Theorem 2.4. We define a radio labeling
Y of I'(Zy,2 x Z,,) with span 2p® + 2p — 4, which implies rn(I'(Z,2 x Z,)) < 2p* + 2p — 4. The
radio labeling ¢ : V(I'(Zy2 x Zy,)) — Z7 is defined in the following way:

la) 2 —1; 1<i<p?’—2p+2
a; ) =
4i—2p* +4p—5; p*—2p+3<i<p’—p.

Y(by) = 4i +2p> —dp+1,for 1 <i<p—1;p(c;) =2p> +2i —2,for 1 <i<p-—1and
P(d;) = 2i, for 1 <i < p?—2p+1. It is easy to see that the span of 1 is equal to 2p* +2p—4.
Claim: The labeling v is a valid radio labeling.

We must show that the radio condition

d(u,v) + [p(u) — ¢(v)| > diam(I'(Zy2 x Zyp) +1 =4 (5)

holds for all pairs of vertices u,v € V(I'(Z,2 x Zj), where u # v.

1: For i # j, d(ai,a;) = 2 and |¢(a;) — ¥(a;)| > 2, similarly |¢(b;) — (b;)| > 4,
[(ci) — ()| > 2, |9(d;) —(d;)| > 2, here b;,bj € B, ¢;,¢; € C, d;,dj € D with i # j and
d(ci,c;) =2, d(b;,b;) =1, d(d;,d;) = 2. Hence, the radio condition (5) is satisfied.

2: Consider the pairs (b;,¢;) for 1 < i,j < p—1 and [¢(b;) — ¥(¢;)| > 3 with
d(b;, c;) = 1. This satisfied the radio condition (5).

3: Consider the pairs (b;,d;) for 1 <i < p—1,1 < j < p*—2p+1and [¢(b;)—(d;)| >
3 with d(b;,d;) = 1, so the condition (5) is satisfied.

4: Consider the pairs (¢;,d;) for 1 <i <p—1,1<j < p*—2p+1and [¢(c;)—(d;)| =
12p? — 2+ 2(i — j)| > 4p — 2 with d(c;,d;) = 2, so the radio condition (5) is satisfied.
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5: Finally, consider the pairs (u,v), where u € A = {ai 1< < p2—p} andv € B =
{bizlgigp—l} orvEC:{cizlgigp—l}orveD:{di:1§i§p2—2p+l}.
This implies that ¢(u) € {1,3,5, . .,2p2—4p+3}U{2p2—4p+7, 2p2—4p+11,...,2p2—5}
and ¢(v) € {2,4,6,...,2;)2 —4p—|—2} or ¢(v) € {2p2,2p2+2,...,2p2+2p—4} or ¢(v) €
{2])2—4p—|—5,2p2—4p+9,...,2p2—3}.

o If d(u,v) = 1, then ¥ (v) € {2p2,2p2 +2,. 2P+ 2 — 4} and () — ¥(v)] > 3.
o Ifd(u,v) = 2, then ¢(v) € {2p274p+5, 2p%—4p+9, ..., 2p273} and |[¢p(u)—(v)| > 2.
o If d(u,v) = 3, then ¥(v) € {2,4,6, o207 —dp+ 2} and |¢(u) — P (v)] > 1.

Tt follows that the radio condition (5) is satisfied for these pairs. These five cases establish the
claim that ¢ is a radio labeling of I'(Z,2 X Z,). Thus rn(T(Z,2 xZ,)) < span(¢) < 2p*+2p—4.
This completes the proof.

O

Theorem 2.6. Let p > 2 be a prime number and I'(Z,2 x Zy) be the zero divisor graph of
the commutative ring Zyz x Zy,. Then rn(T(Zy2 x Zy)) = 2p* + 2p — 4.

Proof. Theorem 2.4 shows rn(I'(Z,2 X Z,)) > 2p* +2p—4 for p > 2 and Theorem 2.5 shows
rn(D(Zy2 x Zy)) < 2p® 4+ 2p — 4 for p > 2. Therefore, rn(I'(Zy2 x Zy)) = 2p® + 2p — 4 for
p>2. 0
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