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RESEARCH ON KEY TECHNOLOGIES OF LUNAR PATROL 

PERCEPTION IN SPARSE SCENES 

Luyuan WANG1,2, Jiyang YU2*, Miaomiao TIAN2 

Research on key technologies of lunar patrol perception in sparse scenes is 

proposed, including the fusion of vision and laser of real-time modeling and 

autonomous navigation during lunar patrols. Object detection and scene 

segmentation are used to enhance the scene awareness of astronauts during high-

speed movement. First, surround view stitching is designed to integrate 360-degree 

scene information around the lunar rover, which greatly improves the rover's 

perception ability. Then, the multi-sensor Simultaneous Localization and Mapping 

(SLAM) technology (vision and laser) is implemented to reconstruct experimental 

scenes. The global map built before is used to plan the original path, while the safe 

arrival of the driving task is ensured through the optimization of the local map and 

dynamic obstacle avoidance. Last but not least, real-time object detection and scene 

segmentation based on the rover's deep learning algorithm can guide autonomous 

navigation. All of the various technologies above are applied to the laboratory's 

prototype of the lunar rover principle. 

Keywords: multi-sensor SLAM; autonomous navigation; scene awareness 

1. Introduction 

The manned lunar rover’s main role is to assist astronauts to carry out a 

large range of lunar surface exploration and use their scientific instruments to help 

complete the scientific investigation of the lunar surface. To ensure the personal 

safety of the astronauts, ensure the smooth completion of the patrol work, and 

assist the efficient development of scientific exploration missions, the lunar rover 

needs to have an intelligent perception of obstacles, autonomous positioning, and 

navigation functions, which can improve the perceptual sensitivity of the 

astronauts. Meanwhile, it also needs to have the safety guarantee functions such as 

autonomous driving and one-click navigation back. 

The existing positioning and navigation schemes for lunar rovers usually 

use positioning architecture based on information such as astronomical, visual, 

and radio ranging [1]. After walking autonomously for a certain distance away 

from the lander, the rover can determine its distance coordinates through two-way 
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radio communication with the lander, and can also take sequence images with its 

camera, and determine its position coordinates [2] through feature matching. Due 

to the camera resolution and field of view, the scheme is only suitable for the 

rover to explore in a small range around the lander. In addition, because the target 

location has been selected, most of the rover's navigation process has been preset, 

with low autonomy and adaptability to different mission scenarios. 

When the manned rover moves at a speed of 10 km/h, its single 

exploration mission can reach tens of kilometers. During the mission, ensuring 

astronauts' safety and improving scientific exploration efficiency are the main 

goals to develop the intelligent perception and control system for the manned 

lunar rover. Considering the functional requirements of autonomous exploration 

and one-click driving for future lunar rovers, real-time positioning, scene 

interpretation, and autonomous navigation are the optimal choices for manned 

patrol missions. 

In recent years, with the rapid development of visual information 

processing technology, the positioning results of vision-based Simultaneous 

Localization and Mapping (SLAM) have been significantly improved [3]. 

Existing visual SLAM methods mainly include the direct method based on pixel 

gradient and the indirect method based on feature point matching. Due to the 

small variation of gray values and single texture features of sandy soil in the lunar 

surface environment, the neighborhood pixel gradient-based methods cannot 

extract effective features [6] in the lunar image, while the indirect method based 

on feature point detection operator has strong stability and robustness to the 

brightness change and geometric transformation of the image, and is suitable for 

the lunar surface scene. 

Different from the objects with significant features such as trees, flowers, 

and roads in the ground environment, the lunar surface terrain is unstructured 

terrain, with sparse features and few effective features. Therefore, it is difficult to 

obtain accurate image-matching information by using vision as the only input 

information to the system. Currently, the widely adopted way combines the 

information of vision and lidar in the SLAM system, which is assisted by an 

Inertial Measurement Unit (IMU) as the error correction of positioning results to 

further improve the positioning accuracy. In the existing work, Li et al. [7] 

proposed to use the matching method of 2D laser scanning lines (similar to the 

contour line) and 3D elevation maps. This method makes full use of the advantage 

of lidar to collect dense point cloud data, which improves the ability of real-time 

positioning and mapping for the lunar rover and achieves a good convergence 

effect. Shang et al.[8] realized the incremental high-precision pose optimization 

method under limited resources by extracting salient features in point clouds and 

adjusting moderate matching parameters according to the accuracy of different 

pose estimations. 
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Deep learning-based scene interpretation methods [9] detect non-flat road 

conditions such as lunar rocks, lunar craters, and lunar surface slope in the lunar 

environment, and then segment various types of semantic information in the scene 

to assist astronauts in road condition discrimination and path selection during the 

high-speed progress of the manned lunar rover. In the process of real-time 

positioning and autonomous navigation, scene interpretation can also take the 

interpretation results as the prior information to optimize the modeling results of 

the 3D environment. Pang et al. [12] proposed C-Moon-Net, a network for the 

detection of multi-scale lunar craters, which improved the detection accuracy and 

was suitable for craters of various scales. Li et al. [13] proposed a segmentation 

method for lunar rocks and lunar craters and achieved satisfactory results by using 

the two-dimensional maximum inter-class variance method based on particle 

groups. 

Based on the above contents, this paper carries out research on key 

technologies of lunar surface patrol perception under sparse scenes. By integrating 

the environment perception information with the SLAM system, stereo scene 

modeling and autonomous navigation are realized. At the same time, object 

detection and semantic segmentation network were used to enhance the scene 

perception ability of manned lunar rovers. Specifically, the 360-degree scene 

information around the lunar rover is first integrated by the surround view 

stitching technology, which greatly improves the perception ability of the lunar 

rover and expands the perception range of scene interpretation. Then, the deep 

neural networks of object detection and semantic segmentation are used to realize 

real-time detection and scene segmentation of the experimental scene. And the 

detection and segmentation results can guide real-time obstacle avoidance in the 

autonomous navigation process of the lunar rover. Finally, multi-sensor SLAM 

technology of vision sensor (RGB-D camera) and LIDAR is used to construct the 

global map of the experimental scene, and the data collected by lidar is used to 

optimize the local map and avoid obstacles dynamically in the process of path 

planning. In summary, the contributions of this paper are as follows: (1) 

Surround-view stitching can integrate 360-degree scene information around the 

lunar rover, which greatly improves the rover’s perception ability. (2) The multi-

sensor SLAM technology (vision and laser) can effectively improve positioning 

accuracy, and object detection and scene segmentation can guide autonomous 

navigation, which is important for safe arrival.  (3) The experimental results with 

the lunar prototype vehicle show that the multi-sensor fusion SLAM system has 

accurate modeling results, and timely dynamic obstacle avoidance response, 

which can provide real-time driving path guidance for astronauts. 

The remaining paper is structured as follows. Section 2 is to introduce the 

principle of the algorithm, which describes the implementation process of key 

technologies in the lunar surface patrol perception task, including visual/laser 
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SLAM technology, surround view stitching technology, object detection 

technology, and scene segmentation technology. Section 3 verifies the 

effectiveness of lunar patrol perception technology on existing experimental 

scenarios and lunar prototype vehicles and gives the experimental results in 

autonomous navigation obstacle avoidance tasks, object detection tasks, and scene 

segmentation tasks. Finally, section 4 concludes the whole paper. 

2. Key technologies of lunar patrol perception 

This section mainly introduces key technologies involved in lunar patrol 

perception, including visual/lidar SLAM, surround view stitching, object 

detection, and scene segmentation. 

2.1 Visual/Lidar SLAM 

In this paper, we use a visual SLAM scheme to generate a global map and 

use LIDAR to build a local map and achieve localization, navigation, and 

dynamic obstacle avoidance. Vision sensors have the advantages of small size, 

low cost, and strong ability to collect environmental information, which are the 

main sensors used in SLAM systems. However, limited by the narrow field of the 

visual sensor (RGB-D camera, binocular camera), the car cannot perceive the 

scene in all directions with the local map, so we introduce lidar as an auxiliary 

sensor to obtain a wider detection range and detection angle, which enables 

dynamic obstacle avoidance. 

 
Fig. 1. Visual SLAM based on RGB-D and stereo images 

 

Visual SLAM based on RGB-D and binocular cameras. We use the 

binocular camera and RGB-D camera for simultaneous appearance-based 

localization and mapping. The overview of the framework is shown in Fig.1. 

Visual SLAM technology is mainly composed of front-end (visual odometry), 

back-end optimization, loop detection, and map construction. The specific 

descriptions are as follows: 1) Visual odometry. The front-end part based on the 

vision sensor is mainly to match image features and then complete the pose and 
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depth map point estimation based on geometric cues. 2) Backend graph 

optimization. The back-end optimization aims to optimize the output of the visual 

odometry and use the filtering algorithm or nonlinear optimization method to 

obtain the optimal pose estimation and global consistency map. 3) Loop closure. 

Loop closure detection uses the bag-of-words method [14], which is to detect 

whether the system passes through the same position repeatedly. If it is found that 

the trajectory of the robot system has a closed loop, the information will be sent to 

the backend for rectification to eliminate the trajectory drift caused by the 

cumulative error of continuous estimation. 4) Map generation. After obtaining the 

back-end optimized pose and estimated map point, the mapping module calculates 

the 3D coordinates of the map point by combining the robot system's pose and 

map points' depth and then finishes map construction. 

Lidar-based dynamic obstacle avoidance. This paper uses LIDAR for 

localization and local map generation to achieve dynamic obstacle avoidance. 

This method uses the Gmapping algorithm based on RBPF filtering [15]. The 

basic principle of this particle filtering algorithm is that the robot continuously 

obtains the surrounding environment information through motion and observation, 

and gradually reduces the uncertainty of its position to obtain accurate positioning 

results. For localization, we use the AMCL (Adaptive Monte-Carlo Localization) 

algorithm. The input of the AMCL algorithm is lidar data and odometry data, and 

the output is the pose of the robot on the map. At the same time, the algorithm 

realizes the kinematics conversion between the map, odometer, and the base point 

of the car, as shown in Fig.2. 

 
Fig. 2. AMCL algorithm in kinematic transformation 

 

For the generated local map and imported global map, as shown in Fig.3, 

this paper uses the Movebase motion control module to control the motion of the 

car. To achieve dynamic obstacle avoidance, this paper adopts the TEB local 

planner [16] to generate local paths. The initial path is generated by the global 

path planner, since the environment may be dynamic and may change due to 

local, incomplete maps or moving obstacles, the TEB local planner takes into 

account the dynamic constraint correction of the car motion in time Robot 

trajectory for dynamic obstacle avoidance. 
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Fig. 3. Movebase control module 

2.2 Surround-view stitching 

The overall flow of the surround view stitching algorithm is shown in 

Fig.4. Firstly, robust feature points are extracted from the input image, and the 

feature points are matched according to the feature descriptor. Then, the positional 

relationship between adjacent images is obtained according to the matched feature 

point pairs to perform image registration. Since direct image registration will 

destroy the consistency of the field of view, the image is first projected on a 

spherical or cylindrical surface. Finally, the seams of adjacent images are 

calculated and the fusion of overlapping areas is completed to obtain the final 

panoramic image. 

 
Fig. 4. Surround-view stitching process 

 

Feature points extraction and matching. The feature keypoint extraction 

algorithm has the following characteristics: a large number of feature points can 

be extracted in different scenarios; uniqueness is good, to facilitate the matching 

of feature points; anti-rotation, anti-brightness change, anti-scale scaling, etc. 

Commonly used feature point extraction algorithms include SIFT [17], SURF 

[18], and so on. Then, feature descriptors are obtained for the extracted feature 

points, and matching is performed. Feature matching is obtained by comparing the 

Euclidean distance of feature descriptors between feature points. 

Image registration. Image registration is to calculate the homography 

matrix of two images according to the matching pairs obtained in the feature 

matching step, and then fuse multiple images into one image. Considering that the 
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feature point pair obtained by feature vector matching may have mismatches, the 

RANSAC [19] algorithm is used to solve it. In addition, considering that the 

above algorithm solves the position between two images in isolation if the 

stitching of multiple images is performed directly, errors will accumulate. 

Therefore, the beam adjustment method is used for joint optimization, and 

multiple camera parameters are optimized at the same time to obtain a more 

accurate image location. 

Image projection. All images are projected onto a cylindrical or spherical 

surface through projection transformation to maintain the consistency of the field 

of view and make the stitched panorama coherent. The choice of the projection 

plane is related to the way the camera shoots. Generally speaking, spherical 

projection and cylindrical projection are the most commonly used projection 

methods. The cylindrical projection is used in this paper, and the schematic 

diagram can be seen in Fig.5. 

 
Fig. 5. Schematic diagram of the cylindrical projection 

 

Exposure compensation. The above steps are the basic steps of image 

stitching, but the results obtained by stitching still have obvious bright and dark 

changes, some dislocations, and obvious transition marks in the overlapping area 

between images. To solve these problems, exposure compensation needs to be set 

so that the overall brightness of different photos is consistent. In this paper, we 

adopt two commonly used exposure compensation methods: gain compensation 

[20] and block compensation [21], which can effectively improve the overall 

brightness of the image. 

Seam calculation and image fusion. As shown in Fig.6, the seam refers 

to the most similar line in the overlapping area of the images. Using a fusion 

algorithm for several pixels near the seam can effectively remove the 

misalignment and artifacts between the images. In this paper, the dynamic 

programming method [22] is used to find seams, and the feathering method [23] is 

used for image fusion to obtain the final stitching result. 
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Fig. 6. Seam calculation and image fusion 

2.3 Multi-scale feature learning-based object detection 

Object detection can detect objects of interest in the scene, that is, obtain 

the category and position information of the target simultaneously. We adopt a 

multi-scale feature learning-based object detection algorithm, which is a single-

stage object detection model. We have added some new improvement ideas based 

on the previous object detection algorithm so that its speed and accuracy have 

been greatly improved. The method mainly consists of three modules: (1) feature 

extraction module; (2) multi-scale feature fusion enhancement module; (3) object 

detection head module. The overall technical route is shown in Fig.7, and the 

detailed introduction of each module is as follows: 

 
Fig. 7. Object detection based on multi-scale feature 

 

Feature extraction module. We use Darknet53 for feature extraction. In 

addition, we use a module Focus [11] for initial feature aggregation. To put it 

simply, the pixels of each channel of an input image are divided into 4 parts and 

then spliced in the channel dimension. After that, the number of channels is 

adjusted by a 3×3 convolution. Finally, the size of the feature map is not changed 

by filling. The structure is shown in Fig.8. The biggest benefit is that it can 

downsample with minimal information loss. 

 
Fig. 8. Focus structure 
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Multi-scale feature fusion enhancement module. The spatial pyramid 

structure is derived from SPP-Net [24], which uses kernels of different sizes to 

implement pooling operations and perform feature fusion. This structure can 

aggregate the information of multiple receptive fields and enrich the information 

of the deepest feature map. Relevant experiments show that the spatial pyramid 

structure has little effect on the running speed of the entire model, but the effect is 

significantly improved. Whereas, multi-scale information fusion utilizes an 

improved version of the feature pyramid structure. By performing multi-scale 

feature fusion, the circulation of feature information at different scales can be 

accelerated, and the features of small targets can be effectively fused. 

Object detection head module. The object detection head module 

consists of three detection output heads, and the down-sampling ratios are 8, 16, 

and 32 respectively. The output feature maps sampled at small magnifications 

detect small objects, and the output feature maps sampled at large magnifications 

detect large objects. Finally, automatic detection and identification of objects of 

interest can be achieved. 

2.4. Adaptive Prototype for Scene Segmentation 

Our proposed framework for scene segmentation based on adaptive 

prototypes is shown in Fig.9. In this framework, the method first inputs the scene 

images to the feature extractor to extract corresponding features, and these 

features are fed into the pixel relation-based encoder to aggregate scene pixels 

with similar appearances. Then the enhanced features are fed into an adaptive 

prototype-based decoder, where each prototype identifies one specific scene. And 

the identified different parts are fused into the more accurate scene segmentation. 

The specific procedure is as follows: 

Pixel Relation-based Encoder. For the scene image, we adopt the feature 

extractor to extract corresponding features and utilize a convolution layer to 

reduce the channel dimension of the feature map to a smaller dimension. And then 

the corresponding query, key, and value can be obtained, which are expressed as 

, ,n n nQ K V
 

, ,Q K V

n n n n n nQ FW K FW V FW= = =                                       (1) 

Where 1,2,...,n N= denotes the head in the multi-head attention 

mechanism and nW  is linear projection. Then, we calculate the attention weight 

nS , 

max( )
/ 8

T

n n
n

Q K
S soft

L
=                                                  (2) 

Where is a / 8L scaling factor, we can get the output of the head nH by 

adaptively blending values, 
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=n n nH S V                                                                    (3) 

We concatenate all single head outputs along the channel dimension and 

obtain the final output through a projection matrix,  

1= oncat( ,..., ) O

nH C H H W                                              (4) 

Through the self-attention operation, the pixels of the lesion region with 

similar appearance can be gathered. 

Adaptive Prototype-based Decoder. In order to recognize different parts 

of the scene, different class-specific prototypes need to be learned. First, we 

utilize a self-attention mechanism [25] to further incorporate context information 

from other filters to increase their discrepancies. Then we propose a cross-

attention mechanism that takes the prototypes
~

P as queries and the enhanced 

feature maps
~

F as keys and values. Then we have similarities nS between the 

enhanced feature map and the enhanced prototype-aware filters. And the 

prototype-aware activation map M can be calculated as 
1

1 N

nn
M S

N =
=  . Each 

scene part activation map denotes the spatial distribution of one specific scene, 

that is to say, the activation map has high response values at the pixels belonging 

to the corresponding scene. Finally, the prototype-aware features X can be 

obtained by adaptively blending and feeding the feed-forward network. 

 Since not all prototypes have the same importance for scene segmentation, 

the importance learning mechanism is proposed to learn the importance kt of 

different prototypes. For each image obtained from the camera, we can get fused 

activation map A by 
1

K k

kk
A t M

=
= . Finally, the activation map A  is gradually 

upsampled through the segmentation head to obtain the final segmentation result. 

 
Fig. 9. Scene segmentation framework 
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3 Experimental validation 

3.1 Lunar Rover Simulation Platform 

According to the characteristics of the lunar rover performing scientific 

exploration tasks on the lunar surface, a set of lunar rover prototype vehicles was 

built for technical verification. Its simulation model is shown in Fig.10. The 

chassis of the prototype vehicle adopts four-wheel differential drive, and 

independent motors are used to adjust the torque of the four wheels respectively, 

so that the prototype vehicle has a good obstacle-surmounting ability in the face 

of complex terrain, and can be used on slopes, pits, sand, and other complex 

terrains. 

The prototype vehicle is equipped with a variety of sensors to meet the 

needs of tasks such as autonomous map navigation and scientific detection. 

Among them, the vision sensors include a binocular vision sensor, RGBD vision 

sensor (Kinect DK camera), and 360 surround view system, containing a set of 

binocular vision sensors from two coaxial monocular cameras on the front and 

another three monocular fisheye cameras on the left, right and rear. In addition to 

the visual sensor, it is also equipped with lidar and inertial sensors as an aid, of 

which the lidar is the Ouster series 64-line lidar, whose detection distance can 

reach 120m and the vertical field of view angle is 45 degrees. The inertia sensor 

can provide speed, acceleration, and other information in the direction of the XYZ 

axis. The lunar rover prototype computing platform adopts the Nvidia AGX 

Xavier industrial module, including an ARM-based 8-core Nvidia Carmel CPU, 

an Nvidia Volta-based GPU with 512 Nvidia CUDA cores and 64 Tensor cores, 

reaching 20TOPS hash rate, which better supports end-side calculations. On the 

Nvidia AGX Xavier platform, the prototype uses Ubuntu18.04 as the operating 

system with ROS Melodic as the robot system, the data transmission follows the 

ROS data standards, and the algorithm is written in C++ and Python languages. 

 
Fig. 10. Lunar rover prototype 

3.2 Scene reconstruction and path planning 

This paper adopts the scheme of lidar and vision camera fusion to achieve 

the map construction. As shown in Fig.11, we show the results of estimating the 

depth using a binocular camera and achieving a local 3D reconstruction using the 

estimated depth. In this paper, the depth estimation method based on stereo 

images can meet the time and performance requirements of the lunar rover 
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prototype, and finally realize the visual SLAM map construction, and the 3D map 

construction results are shown in Figure 12. As shown in Figure 13, we combine 

the reconstructed global map and local obstacle maps obtained by lidar to do the 

path planning and dynamic obstacle avoidance. As shown in Figure 14, we have 

repeated the above experiments in the lunar surface simulation test site, and the 

experimental results show that the autonomous navigation and positioning 

algorithm proposed in this paper can also efficiently build maps and 

independently plan the path of scientific exploration in large-scale sites. As shown 

in Table 1, our method generally surpasses other methods with prominent margins 

on average translational error, which proves that the high precision of the 

predicted odemetry. 

Table 1 Average translational error (%) results for the KITTI sequences. 

Methods 
KITTI sequences 

00 01 02 03 04 05 06 07 08 09 10 

F2F 0.85 2.38 1.01 0.90 0.35 0.49 1.25 0.62 1.56 1.24 1.71 

F2M 0.68 2.04 0.97 0.77 0.45 0.38 0.57 0.56 1.17 1.38 0.49 

Fovis 9.09 - - 1.79 2.22 4.26 6.95 3.65 5.39 14.8 10.6 

Viso2 2.38 5.92 4.19 1.94 0.66 1.85 4.60 1.04 2.82 1.68 1.93 

Ours 0.67 0.96 0.75 0.62 0.50 0.35 0.48 0.53 1.06 0.87 0.54 

 

 
Fig. 11. Stereo Image (left), depth estimation (middle), 3D reconstruction result (right) 

 

 
Fig. 12. Slam map construction of lunar rover prototype 

 

 
Fig. 13. Path planning of lunar rover prototype (Indoor) 
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Fig. 14 Path planning of lunar rover prototype (Simulated lunar surface) 

3.3 Scene interpretation 

Surround-view stitching. As shown in Fig.15, we input images taken 

from four (front, back, left, and right) views at the same time. The resulting 

stitching image as shown in Fig.15 can be obtained by the surround view stitching 

algorithm. From the stitching results, it can be seen that the fusion degree of 

seams, the integrity of the panorama, and the consistency of brightness can meet 

the requirements. 

 
Fig. 15 Input images for surround view 

 

 
Fig. 16 Surround-view stitching result 

 

Object detection. After the image taken by the camera is input, the object 

detection result shown in Fig.17 can be obtained through the object detection 

network. It can be seen from the detection results that the designed algorithm can 

achieve good detection results both for targets with very small imaging sizes and 

for those with extremely weak texture information. In addition, the proposed 

algorithm can realize real-time detection on embedded devices. As shown in 

Table 1, our methods significantly outperform other object detection algorithms, 

with surprising findings presented on the real-time performance. 
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Table 2 

Comparison of Object detection performance. 

Networks 
VOC 2007 Picasso People-Art 

AP AP Best F1 AP 

R-CNN 54.2 10.4 0.226 26 

DPM 43.2 37.8 0.458 32 

Poselets 36.5 17.8 0.271 - 

D&T - 1.9 0.051 - 

Ours 59.2 53.3 0.590 45 

 

  
Fig. 17 Object detection result 

 

Scene segmentation. Input the image taken by the camera, and the 

segmentation result shown in Fig.18 can be obtained through the scene 

segmentation network. It can be seen from the segmentation results that the 

integrity of large-area object segmentation, the local details of small-area object 

segmentation, and the continuity of regional boundary segmentation can all meet 

the requirements.  

 
Fig. 18 Scene segmentation result 

 

Table 3  

Segmentation performance comparison on SceneParse150  

Networks Pixel Acc. Mean IoU 

FCN-8s 71.32% 0.2939 

SegNet 71.00% 0.2164 

DilatedVGG 73.55% 0.3231 

DilatedResNet-34 76.47% 0.3277 

DilatedResNet-50 76.40% 0.3385 

Cascade-SegNet 71.83% 0.2751 

Cascade-DilatedVGG 74.52% 0.3490 
DilatedResNet-101 + PPM 80.91% 0.4253 

Ours 81.01% 0.4266 
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As shown in Table 2, the proposed method outperforms previous methods 

by a large margin on the pixel accuracy and mean IoU, which provides important 

support for semantic-level lunar surface environment perception. 

4. Conclusions 

In this paper, a compact point cloud model of a 3D scene is established by 

a SLAM system that integrates visual images and lidar data, and the autonomous 

navigation and dynamic obstacle avoidance functions of the manned lunar rover 

are realized on this basis. The application of surround view stitching, lunar surface 

object detection, and semantic segmentation technology has greatly improved the 

perception ability of astronauts in the process of lunar rover driving, which plays 

an important role in ensuring the safety of astronauts and assisting astronauts in 

carrying out lunar operations. The experimental results with the lunar rover 

prototype show that the multi-sensor fusion system has accurate modeling results 

for the experimental scene, effective autonomous path planning, and timely 

dynamic obstacle avoidance response, which can provide real-time driving path 

guidance for astronauts. In addition, the algorithms in scene interpretation are all 

lightweight, which are easy to be directly transplanted into embedded devices. 

Under the premise of satisfying the astronaut experience, the proposed method has 

significant advantages in the lunar surface application scenarios with harsh 

environmental conditions and limited hardware resources. 
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