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HW-SW CO-DESIGN OF MPSOC USING FGPA IP CORES

Tulian NITA', Gabriel ZDRU?

Noile tehnologii de proiectare a sistemelor cu chip multiprocesor bazate pe
FPGA-uri si blocuri IP fac posibila dezvoltarea unor dispozitive optimizate din
punct de vedere al performantelor, consumului de energie si al costului. Marea
[flexibilitate oferitd de aceste noi instrumente de proiectare permite explorarea
spatiului de proiectare pentru a cauta cele mai eficiente implementari. Astfel, in
aceasta lucrare, am realizat o cercetare in domeniul acestor tehnologii si am propus
un model de proiectare concurentd hardware/software (hw/sw co-design) pentru
dezvoltarea aplicatiilor pe sisteme cu chip multiprocesor bazate pe FPGA IP cores.
Rezultatele experimentale au fost validate pe o aplicatie de filtrare a imaginilor,
implementatd pe un sistem multiprocesor, folosind kitul de dezvoltare Xilinx XUP
Virtex 5 si pachetul software Xilinx EDK.

The new design technologies of multiprocessor systems on chip based on
FPGAs and IP blocks, make possible the development of optimized devices in terms
of performance, power consumption and cost. Flexibility offered by these new
design tools allow design space exploration to search for the most effective
implementations. Thus, in this paper, we performed a research on these technologies
and we have proposed a hardware / sofiware co-design model for developing
applications on multiprocessor systems on chip based on FPGA IP cores. The
experimental results were validated with an application for filtering images,
implemented on a multiprocessor system using the development kit Xilinx XUP
Virtex 5 and Xilinx EDK application software
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1. Introduction

In terms of hardware, designing systems on chip using FPGAs, offers a
greater flexibility, due to the large number of IP cores available on the market and
endless possibilities of configuration, customization and interconnection between
them [1].
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Fig 1. Design example for dual Microblaze core using FPGA IP cores

Among the main advantages of designing using FPGAs, we can mention:

Flexibility: the number of IP cores which can be integrated is limited only
by the FPGA's capacity. For example, the Virtex-5 FPGA from Xilinx has
330,000 logic cells[2], which allow implementing from 80 to 100 MicroBlaze
processors.

Configurability: each IP block is configurable depending on application
requirements. For example, for the MicroBlaze processor there are over 300
possible configurations, in which you can add or remove optional modules such
as: FPU (Floating Point Unit), BS (barrel shifter), MUL (Multiplier hardware),
DIV (divider hardware) [3]. Likewise you can select the operation frequencies and
set the pipeline's depth. Also, depending on the needs of the application, the cache
memory can be set at various capacities [4].

Reduced time to market: in the design process it is no longer required to
manufacture the integrated circuit, this being implemented on FPGA just in a
couple of minutes. By using the existing IP blocks and being able to reprogram
the FPGA whenever needed, the design and testing times are considerably
reduced.

Reduced cost: it is cheaper to buy an FPGA which can be reused in
multiple projects rather than buying special chips that can be used only in specific
projects (ASIC). Thus, in the FPGA's case, detecting an error in the designed
architecture does not involve buying a new module, but only reconfiguring and
reprogramming the design [4][5].
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Xilinx and Altera are the leading solution providers for designing
embedded systems using FPGAs, IP cores and specific software packages. With
these software applications, users can modify the systems on chip by integrating
and interconnecting IP cores, and finally a review of the system can be made by
generating reports that give details about power consumption, the size of the
circuit and technical performances. These programs enable architectural analysis
to optimize chip design and this way, users can reduce the chip size, the power
consumption and the cost without sacrificing the performance. [5]

Xilinx Embedded Development Kit (EDK) represents a set of tools used
for designing systems on chip with one or more processors. The main components
of EDK are[6]:

Xilinx Platform Studio (XPS) — is a developing environment used for
designing system hardware and contains a library of IP blocks which can be
configured and interconnected to fulfill the designing requirements of the
application [6][7].

Software Development Kit (SDK) — is a developing software tool used for
the designing of projects made with XPS, used for making and verifying
dedicated software applications written in C/C++. SDK is build on the Eclipse
open source platform, which is familiar to many software developers [6][7].

The MicroBlaze processor is the main component in the multiprocessor
dedicated systems made with XPS.
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Fig 2. — Architecture of Xilinx MicroBlaze processor [3]

The MicroBlaze processor — is a processor based on RISC type
architecture and it’s presented in a hardware description language(VHDL). It has
a series of basic specifications such as: 32 general purpose registers on 32 bits, 32
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bits instructions with 3 operators and 2 addressing ways, a 32 bits address bus, a
pipeline architecture based on 3 or 5 levels [3].

To obtain a more powerful processor, the optional modules must be
activated and functional frequency must be set to maximum. Of course, these
settings will lead to higher power consumption and higher cost expressed in the
number of logic cells. Therefore, in order to obtain more efficient
implementations, we must experiment every configuration option and choose the
optimum solution.

2. Hardware-Software co-design method for MPSoC

Exploring the design space offered by the FPGA logic, software tools and
existing IP blocks offer the required flexibility for the designing of multiprocessor
systems on chip. In most of the cases, system architecture can be implemented by
meeting the imposed performance constraints. In some cases, there can be more
implementing solutions, each with its advantages and disadvantages[8]. For
example, an implementation with low power consumption can have high
execution times, or an implementation with low execution times can use a high
number of logic cells [9].

Architecture is created by following a series of steps, as shown in figure 3.
The designers examine the applications requirements, apply the constraints and
make first hardware architecture as well as software architecture. Hardware wise,
the architecture is designed by interconnecting and configuring the various IP
blocks. The communication and synchronizing mechanisms are then established.
Software wise, the application is divided in tasks and the dependencies between
tasks and data are then analyzed. The communication procedures and the tasks
execution order are then defined. The space and temporal mapping of the tasks on
the available processing elements is then accomplished, by having in mind the
obtainment of the lowest execution time. An operating system is then choose, and
the memory locations for the storage of instructions and data are selected. A
prototype is created and executed on the FPGA board by making many iterations
to observe the possible problems which can appear or other ways of improvement.
If the results are not satisfactory, the hardware architecture can be adjusted and
the software application and mapping mode can be optimized or redesigned. This
process repeats itself until, after a series of tests and verifications, the initial
designing requirements are matched. Then the final implementation can begin
[10][11].
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Fig.3. Hw/Sw co-design for MPSoC using FPGA 1P cores

2.1. Hardware design

The architecture of multiprocessor systems on chip based on FPGA using
IP blocks, can be implemented using a common bus to all processors, or can be
made from a hierarchy of buses corresponding to each processor, interconnected

by linking elements[12].

Although the shared bus architecture has the advantage of lowering the
power consumption and the cost of the chip by using a single bus, it has a major
disadvantage: the arbitration protocols that allow the access of the processors to
the bus are slowing down the execution of the application. Due to the fact that at a
certain point the access to the bus is allowed to a single processor, the arbitration
protocols such as Round Robin and Priority Based, force the other processors to
wait until the bus is ready [13].
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Although the chip cost and the power consumption is higher because new
components have been added (buses) to the system, the architecture with multiple
buses allows a faster execution of the applications because the usage of protocols
is no longer needed. The intercommunication between subsystems based on
processor bus groups is made using dedicated components such as: internal or
external shared memory, Mailbox, Mutex, FSL or Bus Bridge [8][13].
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Fig.5. System architecture with two processors that can communicate with each other

Common components can have 2 or more interconnection ports. By their
nature, these multiport connection components allow the interconnecting of
multiple buses independent one to another. By isolating each subsystem, a
subsystem’s bus will be ready when the other subsystems use its own bus to send
data. These subsystems can have a set of peripherals corresponding to each
subsystem but also a set of common peripherals.

In this paper we have used a multiprocessor system on chip implemented
by 2 subsystems interconnected through the IP cores XPS Mutex, Shared
XPS Bram and XPS PLB Bus Bridge, having as common shared resource the
IP core peripheral XPS RS232. Every subsystem contains one MicroBlaze
processor, a PLB bus, an XPS timer and a private memory called XPS Bram.
Moreover, the first subsystem contains the external SRAM memory controller and
the RS232 and XPS Sysace peripherals. The role of each functional block of this
architecture is described as follows[8][13]:
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XPS RS232 is the controller used for serial communication to the
computer through HyperTerminal, required for the display of messages during the
execution.

XPS_Mutex is used to ensure the exclusive access to the shared peripheral
RS232.

Shared XPS_Bram is the memory zone shared by the two processors of the
system, that is required for synchronization and exchange of data.

XPS _PLB Bus Bridge is used to unite the two buses so that the second
processor can access the RS232 controller which is connected to the first
processor bus.

PLB is the local processor dedicated bus, through which all the functional
blocks of every subsystems are interconnected.

Private XPS BRAM is the processor’s private cache memory for data and
instruction.

TheXPS Timer is used to obtain the execution time of every stage of the
program.

The SRAM memory is used to store the image processed by the
application, because the image is too big and it doesn’t fit in the internal memory.

XPS_Sysace is a controller used for accessing the external memory card,
where the images that need to be processed are read[8][10][13][14].

2.2 Software Design

In order to test the performance of the architectures with one or two
processors we’ve implemented an image filtering algorithm. The incoming data
for this algorithm consists in an image with a salt and pepper type noise, and we
try to remove it by applying 3 filters: a medium filter, a smoothing effect filter and
a sharpening effect filter.

A black and white image, measuring 210x280 pixels has been used during
the tests. The format of the image is bmp and the information of a pixel is stored
on 8 bits, therefore a pixel can have a decimal value ranging from 0 for black to
255 for white[15].

After the image is extracted from the memory card and converted in the
pixel values matrix, the following steps must be followed for each filtering
process: a 3x3 size window containing the current pixel and his 8 neighbors are
extracted from the image a convolution is performed between the window and the
filter matrix, the value of the output pixel is stored and the window sweeps over
the entire image resulting the filtered image [16].Each filter has its own method of
calculating the output pixel, thus the median filter performs an ascending sorting
and chooses the average value, the smoothing filter performs a convolution of
those matrices and then the result is divided by 9 and the sharpen filter makes
only their convolution[17]. These steps are illustrated in figure 6.
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Fig. 6. Image filtering for reducing the noise

Given the fact that three filters have been applied (in a cascading way) for
the removal of image noise, one processor can apply a new filter to another
previously filtered image (by another processor).In this way we obtain a pipeline
type image filtering which is useful when we have a large number of images that
need to be filtered or when the processed image is divided into several blocks.
Using this type of parallelization we have proposed two algorithms:

1. An algorithm where the first processor applies a median filter then the
second processor waits for the completion of the previous filtering and then
applies a smoothing filter, and after that, both processors apply(one line/ each
processor) a sharpen filter.

2. An algorithm where the second processor applies a median filter, then the
1™ processor waits the completion of the previous filtering and applies a
smoothing filter and after that both processors apply (one line/ each processor) a
sharpen filter.

Another way to parallelize this algorithm is to use the data parallelism,
which allows two processors to work at the same time, on different areas of the
image. Thus we have proposed two other algorithms:
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3. An algorithm in which each processor applies all three filters sequentially
(one processor applies filters to even lines, and the other processor applies filters
to odd lines) on different lines. In this algorithm the two processors work on the
image in a symmetrical way.

4. An algorithm where the processors act similar to the previous algorithm
except this time the data is divided in a lop sided manner, thus the 1** processor
applies the filters on every 3 line, and the 2™ processor applies the filters on the
2 lines skipped by the1® processor .

In these algorithms that use data parallelism, the task mapping was
initially made by dividing the tasks equally on each processor (this happens in the
symmetric algorithm), thus the 1%processorworks on the even lines and the 2
processor works on the odd lines. Analyzing the performance of the two
processors obtained using the symmetrical algorithm, we adopted an unequal
division of the tasks on each processor. In this way, in the lop-sided algorithm the
1*processorreceives one task while the 2nd processor has two tasks assigned to
it[14][18].

Given the fact that the maximum size of internal data memory is 256 KB
and that the program used for reading an image, line by line, requires more than
500KB memory, we choose to add an external SRAM memory to the
1*subsystem (1* processor) which contains the xps sysace peripheral used to
access the memory card. In this way, the 1%processorreads the entire image and
stores it in the shared memory and therefore, the 2 processor does not require an
external memory due to the fact that the image filtering program code is small
enough to fit within the internal memory of 128 KB.

Choosing the memories that will be used in the system is very important
because using an external memory affects the whole system performance.
Therefore the 1%processorwill achieve a smaller performance because of the
delays on the PLB bus, unlike the 2™ processor which has both data and
instruction zones mapped in the local memory. The mapping of such areas in the
external memory leads to a decrease of system bus frequency (this is because
connecting both the data and the instruction interface to the system bus, they
behave as two master components related to the access bus arbitration)[13][19]. In
other terms, the 1% processor bus runs at a frequency of 303MHz while the
2"processorbus runs at a frequency of 324MHz. These influence the frequency of
shared memory controllers, thusthel®processor shared memory controller runs at
a frequency of 280MHz while the 2™'processorshared memory controller runs at a
frequency of 430MHz. Therefore, dividing the filtration tasks in an asymmetrical
mode, the 2™ processor (which is faster) is being used more efficiently.
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3. Synthesis Results

In order to perform the experiments, we used the Xilinx XUP
V5development kit [1] and Xilinx Embedded Development Kit software package
[6][7]. With these tools we have designed a system on chip with one Microblaze
processor and a multiprocessor system on chip with two Microblaze processors.
We also analyzed the performance criteria in a comparative way (regarding
execution time, power consumption and cost expressed in logic cells) for running
an image filtering algorithm described in subparagraph 2.2. Having as reference
the results obtained on the architecture with one processor, the goal is to achieve
an efficient implementation on the two processors architecture, with lower
execution times and also a reduced power consumption and cost.

In order to achieve this, a performance analysis is made on various
configurations of the MicroBlaze processor (by enabling or disabling optional
modules). Thus, the optional modules used are: Barrel Shifter (wrote B) 32-bit
multiplier (wrote M), hardware divider (wrote D) pipeline depth (wrote O, 5
levels for O deactivated and three levels for O activated). In terms of software, the
compiler allows three optimization levels: 1 = low level software optimization, m
= medium level software optimization, h = high level software optimization.

For the image filtering application, as we see in chart 1, the only
significant improvement on both the execution time (represented graphically as a
value inversely related to performance) and the logic resources used (lower score
is better) is obtained at the activation of 32-bit multiplier and other configurations
that use this option. Therefore, the best performance is achieved using the
configuration B + M + D with a score of 1.48 for performance, 1.09 for logic
resources and 1.29 for dynamic power, while the optimal configuration regarding
the consumption of logic resources is B + M + D + O with a performance score of
1.45 (corresponding to a total filtering time of 3251.67 ms) 0.89 for logic
resources and 1.68 for dynamic power.

A series of software optimizations can be added to these configurations.
The Xilinx Platform Studio application (XPS) provides the ability to make
improvements in the compiler, so the designer can use four optimization levels: 0,
low, medium and high:

- low level - is done by tweaking the jump and pop instructions

- medium level - performs almost all the optimizations available that do
not involve a significant increase in the size of the memory consumption. The
compiler does not perform optimizations to the waiting loops or to the data
accessing memory.

- high level - in addition to the medium optimization level, improvements

that will increase the size of the executable file are added [6][7].
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In order to obtain the best performance without affecting the logic
resources used, with software optimization we can reach a maximum score of 2.83
corresponding to a filter time of 1668.215 ms for the BMDh configuration.

If the software optimizations are applied to the BMDO configuration,
similar greatly improved performance will be obtained but also, the performance
difference between BMD and BMDO of 0.035 which corresponds to a total
filtration time increased by 77ms (for BMDO) will be kept.
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Although we have found an optimum ratio between performance and logic
resources used, we also intend to optimize the dynamic power consumption. As
expected, there is no perfect configuration, because of the high power
consumption of the B+M+D+O configuration (the best one). In this case we have
noticed that this configuration led to a significant increase of the dynamic power
consumption reaching the value of 0.764W (score 1.68) compared to the
minimum consumption of 0.419W (score 0.99) obtained in the configuration
where the only enabled option was the optimization. Thus in terms of system
power consumption the configurations B+M+D and M+D are compared, yet
having a moderate power consumption. These two patterns have increased power
consumption up to 9.3% (0.18 W) however they bring a better performance of up
to 50% (1.58 seconds).

The optimal configuration in terms of dynamic power consumption is
B+M+D+h. The aim of this paper is to find the Speed Up of the multiprocessor
system, and that is why we choose the configuration with the highest performance
at the expense of power consumption.

Along with the transition to the 2 processor architecture, a filtering
algorithm transformation has to be made in order for the 2 processors to work in
parallel (as can be seen in figure 7 above). Thus, the filtering algorithm was
parallelized resulting two types of algorithms: one based on data parallelism
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(Symmetric and Lop-sided) and one based on a pipeline structure. (Syncro and
Syncro2). All these algorithms were summarized in section 2.2

The following graph presents the speedup of each algorithm and as a result
of the performance obtained by running these algorithms. The Speed Up actually
represents the performance improvements brought by the architecture with two
processors comparing to the performance obtained on single processor
architecture. By analyzing this graph we can easily see that enabling the 32-bit
multiplier has a positive impact on Speed Up's filtering algorithms. Also, from
this graph we can see that the best performance is obtained in the asymmetrical
algorithm since the new added processor, which uses only internal memory is
more efficiently exploited. Similar to the architecture with one processor, in this
case the most capable configuration is B+M+D+h with a maximum Speed Up of
1.69.
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Graph 2 Filtering algorithm SpeedUP( processor's configurations)

In terms of dynamic power consumption it can be seen that the enabling of
an option which brings significant performance benefits, will not necessarily lead
to increased power consumption. This is observed for the activation of the 32-bit
multiplier where the architecture with two processors has obtained a consumption
with 0.007 W less than the consumption obtained on the same architecture but
with the basic configuration. On the other hand, the architecture with two
processors has a slightly higher consumption than the one obtained on single
processor architecture because the dynamic power depends on the interconnection
node capacitance, circuit voltage and switching frequency [20].Therefore, if you
add new components to architecture, they require additional interconnection nodes
that will lead to an increase of the dynamic power consumption for example: the
architecture with 2 processors consumes with 0.189W more than single processor
architecture for a configuration in which the 32 bits multiplier is activated. The
dynamic power consumption difference between the two architectures varies
depending on the processors configuration, so that the maximum difference is
reached in the configuration with the barrel shifter activated (it consumes with
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0.43W more than the single processor architecture in the same configuration), and
respectively the minimum of this difference (0.134W) is achieved in the BMDO
configuration. Thus, this configuration consumes with 17.6% more power and
with 58.9% more logic resources than the single processor architecture, however
it gains a performance boost of up to 35.4%.The BMDh configuration that was
considered optimal, presents a 26.5% power consumption increase, a 57.7%
increase in logic resources used and also the best performance increase (by
69.3%) comparing to the single processor architecture.

Therefore we obtained two optimal configurations, an optimal
configuration in terms of power consumption (BMDO) and an optimal
configuration in terms of performance (BMDh). Depending on the designer or
application purpose, one of these two configurations is chosen. In our case the
configuration considered optimal is the one with the best performance (BMDh)
because our goal was to obtain better performance using two processors
architecture.
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Graph 3 Comparison of the dynamic power consumption of the two architectures

Ideally, the efficiency (efficiency = Speed Up / number of processors) of a
system with two processors should be 1, which means that by adding a processor
to the system should double the system performance, but unfortunately this is not
achieved in this case. As expected, each parallelization method lends itself better
or worse to a particular type of filter, however the lop-sided algorithm provides a
balanced efficiency for all three algorithms, resulting a maximum efficiency of
0.85 for the B+M+D+h configuration. After a brief analysis of the effectiveness of
each algorithms graph (shown in graph 4) we can easily see that the efficiency
increases significantly with the enabling of the software optimizations, so we can
conclude that these filtering algorithms were not fully parallelized.
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4. Conclusions

The best performance for the single processor architecture has been
obtained for the configuration in which the hardware multiplier, the barrel shifter,
the hardware divider and the high level software optimization have been activated.
Therefore we have obtained a minimum filtering time of 1.66 s.

In order to achieve a smaller filtering time, we have chosen the
architecture with two processors. Once created the multiprocessor architecture, we
started the parallelization of the filtering algorithm resulting four versions, each
with its advantages and disadvantages. After examining the data obtained for each
version, we have concluded that the best parallelized filtering algorithm was the
one called lop-sided (asymmetrical), which has reached a minimum filtration time
of 0.98 s, thus achieving a speed-up rate of 1.69 and an efficiency rate of 0.84. We
then analyzed how the power consumption and the number of logic cells were
affected. Comment: for a 40.95% decrease in the execution time, the power
consumption increased by 26.5% and the number of logic cells increased by
57.75% (sum of Register Slice and Slice LUT).Considering that the HW-SW
design of multiprocessor systems based on FPGA IP Cores is new, it is necessary
to examine very closely the available possibilities. By exploiting the advantages
of this technology, we can implement new MPSoC architectures that offer an
optimal performance/power consumption ratio.

Given the fact that a standard for these multiprocessor systems on chip
does not yet exist, in addition to the solutions used in this paper, there are other
improvements that could be added to this system. These improvements can be
hardware related, consisting in the processors interconnection using FSL [8], the
transmission of the processed data from one processor to another using
xps_mailbox [8], or adding an external DDR memory which will allow the
processing of larger color images. Other improvements can be software related, so
these algorithms could be optimized by editing the part of the code that allows the
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image to be read from the memory card in a way that the program code will fit
entirely in the internal memory. Another improvement could be the usage of
different methods of parallelizing the filtering algorithm.
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