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RHOM-DERIVATIONS IN FUZZY BANACH ALGEBRAS
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In this paper, we solve an additive o-random operator inequality and by the
fized point technique we get an approrimation of mentioned additive o-random operator
in fuzzy Banach spaces. Also, we get an approximation of rhom-derivations in fuzzy
complex Banach algebras.
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1. Introduction

Let (92,4 1) be a probability measure space. Assume that (U, By) and (V,By) are
Borel measureable spaces, in which U and V' are complete FN spaces and T : Q x U — V is
a random operator. In FN-spaces, first we solve the additive o-random operator inequality

(T (w,u+v) — T(w,u) — T(w,v),t) (1)
> no(T(w,u —v) —T(w,u) — T(w, —v)),t),
where 0 # o € C is fixed and |o| < 1.
By the fixed point technique, we get an approximation of the above additive o-random

operator inequality (1) in FB-spaces. Also, we get an approximation of hom-derivations in
FB-algebras.

2. Preliminaries
In this paper, we let I = [0,1] and J = (0, 1].

Definition 2.1. ([1, 2]) A continuous triangular norm (shortly, a ct-norm) is a continuous
mapping & from I? to I such that

(a) k(s,7) = k(7,¢) and (s, k(7,0)) = K(k(s,T),0) for all ¢, 7,0 € T;

(b) k(s,1) =< for all ¢ € I;

(¢) w(s,7) < k(0o,1) whenever ¢ < ¢ and 7 < ¢ forall ¢,7,0,0 € I.

Some examples of the ct-norms are as follows:

(1) wp(s,m) = <73

(2) kp(s,7) =min{s, 7};
(3) kr(s,7) =max{s+7 — 1,0} (: the Lukasiewicz t-norm).

Definition 2.2. ([3, 4]) Suppose that k is a ct-norm, V' is a linear space and 7 is a fuzzy set
from V' x (0,00) to J. In this case, the ordered tuple (V,n, ) is said a fuzzy normed space
(in short, FN-space) if the following conditions are satisfied:

(FN1) n(v,t) =1 for all ¢ > 0 if and only if v = 0;
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(FN2) n(av,t) =n (v, ﬁ) for all v € V and a € C with a # 0;

n
(FN3) n(u+wv,t+s) > k(n(u,t),n(v,s)) for all u,v € V and ¢,s > 0.
(FN4) n(v,.) : (0,00) — J is continuous for all v € V.

Example 2.3. Consider linear normed space (V|| - ||). Then

v
(v, s) = exp(—@)
for all s > 0 defines a fuzzy norm and (V,n, k) is a FN-space.

Let (V,n,k) be a FN-space. We define the open ball B,(r,t) with center v € V and
radius 0 < r < 1 for all t > 0 as follows:

By(r,it)={ueV : nv—u,t)>1—-r}

In [5, 6] the authors show, every open ball B,(r,t) is open set. Now, different kinds of
topologies can be introduced in a FN-space. The (r, t)-topology is introduced by a family of
neighborhoods

{By(r,t) }oev,i>0,re(0,1)-

In fact, every fuzzy norm 7 on V generates a topology ((r,t)-topology) on V' which
has as a base the family of open sets of the form

{By(r,t) }oev,i>0,re(0,1)-

A sequence {v,} in V is said to be convergent to a point v € V' if, for any € > 0 and A > 0,
there exists a positive integer N such that

n(vp, —v,€) >1— A
whenever n > N. Also, a sequence {v,,} in V is called a Cauchy sequence if, for any € > 0
and X\ > 0, there exists a positive integer N such that

NV — Vm,€) > 1 — A

whenever n > m > N. A FN-space (V,n, k) is said to be complete if every Cauchy sequence
in V is convergent to a point in V.

Definition 2.4. [7, 8] A fuzzy normed algebra (in short FN-algebra) (V,n, k,k’) is an
FN-space (V,n, k) with the structure of an algebra such that

(EN-5) n(uv,ts) > k'(n(u,t),n(v,s)) for all u,v € V and all ¢,s > 0. in which £’ is a
ct-norm.

Example 2.5. Every normed algebra (V.| - ||) defines a FN-algebra (V,n, Kk, kp), where

n(v,s) = exp(—@)

for all s > 0 if and only if
lwv[| < Ylulllloll + sllvll + tllull (u,v € V; t,5>0).

This space is called the induced FN-algebra. A complete FN-algebra is called fuzzy Banach
algebra, in short FB-algebra.

Let (2,4, 1) be a probability measure space. Assume that (U,By) and (V, By )
are Borel measureable spaces, in which U and V are complete FN spaces. A mapping
T:QxU — V is said to be a random operator if {w: T(w,u) € B} € U for all u in U
and B € By. Also, T is random operator, if T'(w,u) = v(w) be a V-valued random variable
for every w in U. A random operator T : Q x U — V is called linear if T'(w, auy + fus) =
oT (w,u1) + BT (w,usz) almost every where for each wy,us in U and «, 8 scalers, and fuzzy
random bounded (in short FR-bounded) if there exists a nonnegative real-valued random
variable M (w) such that

(T (w,u1) = T(w, ug), M(w)t) > n(ur — us, ),
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almost every where for each uy,us in U and t > 0. The set of all linear FR-bounded random
operator from U to V showed by R(U,V). Also, the random operator T : Q x U — V is
homomorphism if T'(w, .) is homomorphism.

Mirzavaziri and Moslehian [9, 10] introduced the concept of h-derivation. Recently,
Park et. al. [11], generalized the concept of h-derivation and introduced the concept of
hom-derivations in a Banach algebra.

Definition 2.6. Let V be a complex FB-algebra and ¢ : V' — V be a homomorphism. A
C-linear operator R : V' — V is called a rhom-derivation on V if R satisfies

R(w,uv) = R(w,u)((w,v) + ((w,u)R(w,v)
for all u,v € V and w € (.

When we consider stability process of a random operator equation we get an ap-
proximation of random operator, the similar process done for functional equation first time
introduced by Ulam [12] and solved by Hyers [13], next some mathematician got important
results of this subject, Aoki [14], Rassias [15], Gavruta [16], Skof [17], Cholewa [18] and Park
[19, 20] and et. al. [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

Theorem 2.7. ([37, 38]) Consider a complete generalized metric space (I', A) and a strictly
contractive function L : I' — I with Lipschitz constant B < 1. So, for every given element
v €T, either
A(L™y, L™*1y) = oo

for each m € N or there is mg € N such that

(1) A(L™~, L™ 1y) < oo, Ym > mg;

(2) the fized point w* ofL is the convergent point of sequence {L™~};

(3) in the set T = {w el | A(L™oy,w) < oo}, w* is the unique fized point of L;

4) 1 - B)A(w,w*) < A(w, Lw) for every w € Y.

3. Additive o-random operator inequality: FPT
Lemma 3.1. Let the random operator T : Q x U — V satisfies (1), then T is additive.
Proof. Let T satisfies (1). Replacing v by —v in (1), implies that
U(T(Wa C U) - T(W, ’LL) - T(w7 _U)a t) > U(U(T(Wa u+ U) - T(wv ’LL) - T(w7 U))a t) (2)
for all u,v € U, w € Q@ and ¢t > 0. (1) and (2) imply that
t
(T (w,u+v) —T(w,u) — T(w,v),t) >n (T(w, u—v)—T(w,u) —T(w,—v), 2)
o
and hence T'(w,u+v) = T'(w,u) + T(w,v) for each u,v € U and w € Q, since |o| < 1. Thus
T is additive. u
By fixed point technique we get an approximation of the additive o-random operator
inequality (1) in FB-spaces.

Theorem 3.2. Let (V,n,kn) be an FB-space. Assume that ¢ : U? x (0,00) — J be a fuzzy
set such that there exists an < 1 with

o (555 2 vwon ®)

and

t
lim 1 (uv> 4
P—00 20 2P 9p

for allu,v € U and t > 0. Suppose that T : QA x U — V is a random operator, where
(T (w,u+v) = T(w,u) = T(w,v),t) (4)
> runo(T(w,u—v) = T(w,u) = T(w,—v)),t), ¥ (u,v,1))
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for each u,v € U, w € Q and t > 0. So, there is a unique additive random operator
S QxU—YV such that

(T (w,u) — S(w,u),t) > (u,u, 2(1’5@15)

almost every where for each w € U and t > 0.

Proof. Putting « = v in (4), we have that
n(2T (w,u) — T(w,2u),t) > ¥ (u,u,t) (5)
almost Oevery where for each uw € U, w € Q and t > 0.
! ={H:QxU—-V, Hw,0) =0}
we define the following generalized metric:
A(G,H) =inf{a € R} : n(G(w,u) — H(w,u),at) > (u,u,t), Yu e U, t > 0}.
In [39], Mihet and Radu proved that (T, A) is complete (see also [40]).
Now we consider the linear mapping L : I' = I" such that

LG(w,u) :=2G (w, %)

almost every where for each u € U and w € €. Consider G, H € T such that A(G,H) =¢.
So,
U(G(wv ’U,) - H(UJ7 ’LL), Et) > 7/’ (u7 U, t)
almost every where for each v € U and ¢ > 0. Also,
u

n(LG(w,u) — LH(w,u), Bet) = n (G (w, g) - H (w, 5) , ﬁ;)

u u [t
w(wm)

,ll)(u7 u’ t)
almost every where for each u € U, w € Q and ¢t > 0. Then, from A(G, H) = € we conclude
that A(LG,LH) < e and so

Y

Y

A(LG, LH) < BA(G, H)

for each G, H €T.
By (5) we have that

" (2T (w, g) — T(w, ), ﬁ;) > (u, u, t)

almost every where for each v € U and t > 0, which implies that A(T, LT) < g
Theorem 2.7 implies that, there exists a random operator S : Q x U — V such that:
(1) A fixed point for function L, is S,

u
S(w,u) =28 (w, 5) (6)
almost every where for each u € U, which is unique in the set
YT={Gel:A(G,H) < 0};
(2) A(LPT,S) — 0 as p — oo, which implies that
m 9P L
plggo2 T (w, 2p) = S(w,u) (7)

almost every where for each u € U and w € Q;
(3) A(T,S) < ﬁA(T, LT), which implies

(T (w,u) — S(w,u),t) > (u,u, 2(11‘55%)
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almost every where for each v € U, w € Q and t > 0.
Using (4) and (7) imply that

n(S(w,u+v) — S(w,u) — S(w,v),t)

= (7 (0 ) T (o) T () )

> g (n (o (1 (w52 ) -7 (o) - (5 ))
()

=n(o(S(w,u —v) — S(w,u) — S(w,v)),t)
almost every where for each u,v € U, w € Q2 and ¢t > 0. Then
N(S(w,u+v) — S(w,u) — S(w,v),t)
> n(e(Sw,u—v)— Sw,u) — S(w,v)),t)

almost every where for each u,v € U, w € 2 and ¢t > 0. Now, Lemma 3.1, implies that S is
additive random operator. O

N—

Corollary 3.3. Let (V,n,kn) be a FB-space, p > 1 and 7 > 0. Suppose that T : QxU —V
18 a random operator, where

T (w,u+v) —T(w,u) — T(w,v),t) (8)
t
> ot (0 (T, u = 0) = T(w,u) = T(w, =), 1), ).
t+7([[ull” + [[v]7)
in which |o| < 1. So, there is a unique additive random operator S : Q x U — V such that
(1—21=r)t
(1= 27t + 72 [ul]?

(T (w,u) — S(w,u),t) >

for eachu e U, we Q andt > 0.

Proof. In Theorem 3.2 put ¢ (u,v,t) = W for each w € U and t > 0 and
6 — 21—p. O
Theorem 3.4. Let (V,n,kn) be an FB-space. Assume that ¢ : U? x (0,00) — J be a fuzzy
set such that there exists an 5 < 1 with

¥ (0,260 2 (5. 5.) (9)

and

lim ¢ (2Pu, 2Pv,2Pt) = 1

p—o0

for all u,v € U andt > 0. Suppose that T : Q x U — V is a random operator, where
satisfies in (4). So, there is a unique additive random operator S :: Q@ x U =V such that

(T (w,u) = S(w,u),t) =1 (u,u,2(1 = B)t)

almost every where for each w € U and t > 0.

Proof. Consider the generalized metric space (I'; A) defined in the proof of Theorem 3.2.
Now we consider the linear mapping L : I' — I such that

1
LG(w,u) == gG(w,Qu)
almost every where for all u € U. It follows from (5) that

(2 rn) o (35)

almost every where for each v € U and ¢ > 0.
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The proof of Theorem 3.2 leads the rest of the proof. O

Corollary 3.5. Let (V,n,kn) be a FB-space, p < 1 and 7 > 0. Suppose that T : QxU —V
be a random operator satisfies (8). So, there is a unique additive random operator S :
QxU =V such that

(1—2t=P)t
(1 =2t=0)t 4 7[ull?

n(T(w,u) — S(w,u),t) >

for eachuw e U and t > 0.

Proof. In Theorem 3.4 put ¢ (u,u,t) = W for each v € U and ¢ > 0 and

6 — 2p71. O
4. Additive o-random operator inequality: DT

By direct technique we get an approximation of the additive o-random operator in-
equality (1) in FB-spaces.

Theorem 4.1. Let (V,n,kar) be a FB-space. Let ¢ : U? x (0,00) — J be a fuzzy map such
that such that there exists an < 1 with

o (555 ) 2 vwon (10)
and
. u v t
plggow (2]0, 9’ 21,) =1 (11)

for allu,v € U and t > 0. Suppose that T : QA x U = V is a random operator, where
satisfies in (4). So, there is a unique additive random operator S : Q x U — V such that

2(1 —
(T (w,u) — S(w,u),t) > (u,u, (ﬁﬁ)t> (12)
almost every where for each u € U, w € Q and t > 0.
Proof. Putting u = v in (4), we have that

n(2T (w,u) — T(w,2u),t) > ¢ (u,u,t) (13)
and
n (QT (w, %) —T(w,u),t) > (g,g,t) (14)
and so
n <2T (w, %) —T(w,u), §t> > (u,u,t) (15)

almost every where for each u € U, w € Q and ¢ > 0. Replacing u by 57 in (15) and applying
(10) we get

041 u ’ uy B
77<2+T(w,2€+1>—2T(w,2€), 5t ) 20 (wut) (16)
which implies that
QET( ﬁ) ~T(w,u), Y i > o (u, u, {) (17)
’r] w, 2[ w7u ’k:1 2 p u, u7

Replacing u by 5% in (17) we get

m U m U t
2



Additive o-random operator inequality and rhom-derivations in fuzzy Banach algebras 9

which tend to 1 when m, £ tend to oo and so the sequence {25T (w, 2%)} is Cauchy in the
FB-space (V,n, kar) and converges to a point S(x) € V. Now, for every ¢ > 0 we have that,
W(T(Wau) - S(wuu)7t+<) (19)

U

KM (n(T(w,u) —ofr (w, ?) ,8),n(S(w,u) — ot (w7 %) ,g))

t U
KM <¢ <u,u, w) ,n(S(w,u) — ofT (w, ?> ,g))

2

Y

v

when when ¢ tend to oo in (19) we have that

(T (w,u) — S(w,u),t+5) >1/J<u7u, 2(1‘g»3)t> . (20)

Since ¢ > 0 is arbitrary in (20) we have that
(T (w,u) — S(w,u),t) > <u,u, 2(15_5)15) . (21)
Replacing u and v by g4 and 5% in (4) and using (11) implies that S satisfies Lemma

3.1 and hence is additive. Now, let S” be another additive satisfies (12). For a arbitrary
u € U and w € Q, we have that 2"S (w, 5% ) = S(w,u) and 25’ (w, 5% ) = S'(w,u) for
each natural element m. Using (12), we have that,

n(S(w,u) — S (w,u),t)

- (5 ()25 (0. 25)

e (o (5 () o) ).
" <2mT (w, 2%) _omg (w, 2%) , ;))

> im0 (g5

> o ()

— 1,

which implies that S(w,u) = S’ (w, u) shows the uniqueness.
]

Corollary 4.2. Let (V,n,kn) be a FB-space, p > 1 and 7 > 0. Suppose that T : QxU —V

is a random operator, hold in (8). So, there is a unique additive random operator S : QxU —
V' such that

(2—2277)t
(2 —227°)t + 722~ Jul}”

U(T(w7u) - S(‘*}’u)vt) 2
for eachue U, weQ andt > 0.

Proof. In Theorem 4.1 put ¥ (u,u,t) = m for each v € U and ¢ > 0 and
6 — 21—p. O

Theorem 4.3. Let (V,n,kp) be an FB-space. Assume that ¢ : U2 x (0,00) — J be a fuzzy
set hold in (9) and

lim ¢ (2Pu, 2Pv,2Pt) = 1

p—r 00
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for allu,v € U and t > 0. Suppose that T : QU x U — V is a random operator, where
satisfies in (4). So, there is a unique additive random operator S :: Q@ x U — V such that

(T (w,u) — S(w,u),t) > (u,u,2(1 — B)t)
almost every where for each u € U, w € Q and t > 0.

Proof. Putting u = v in (4), we have that

n <T (w,u) — T(w,2u)’t> > ¢ (u,u, 2t) (22)

and so

(7w - T2 ) 2 0 (3, 20) (23)

almost every where for each u € U, w € Q and ¢ > 0. Replacing u by 57 in (23) and applying
(10) we get

T(w,u) T(w,2u) ﬂe
(F5 - T 5) 2 vt (21)
which implies that
T(2¢u) e
77( 5T~ 27 > (u,u,t). (25)
k=0
The rest of the proof is similar to the proof of Theorem 4.1. O

5. Approximation of rhom-derivations in FB-algebras

By fixed point technique, we get an approximation of rhom-derivations in FB-algebras,
associated to the additive o-random operator inequality (1).

Theorem 5.1. Let (V,n, ks, k) be a FB-algebra. Let ¢ : V2 x (0,00) — J be a fuzzy map
such that such that there exists an 8 < 1 with

t t
o(35.5) 20 (555) 2 v o (26)

and

. u vt . u v ot
pIL“;ﬂ(gzwzp’gp) plingo¢(mavma’4p> =1 27)
for allu,v € U and t > 0. Suppose that T, S : Q x V — V are odd random operator,
where satisfies in

n(T(w, c(u+v)) — C(T(w u) T(w,v)),t) (28)

> (o (T(w,u —0) — T, ) — T(w,~0)), ), (u, 0,1)),
n(S(w, c(u+v)) — c(S(w, u) — S(w,v)),1) (29)

> wm(m(o(S(w,u—v) = S(w,u) — S(w, —v)),t), ¥ (u,v,t)),
n(S(w,uv) — S(w,u)S(w,v),t) > P (u,v,t), (30)
(T (w,uww) — T(w,u)S(w,v) — S(w,u)T(w,v),t) > o (u,v,t), (31)

almost every where for each u,v € V, w € Q and t > 0 and for allc € T :={d € C: |d| =

1}.
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So, there is a unique random homomorphism ¢ : Q@ x V. — V and a unique rhom-
derivation R : QQ x V. — V such that

(T (w,u) — R(w,u),t) > <u,u, 2(15_B)t) , (32)
n(S(w,u) — ((w,u),t) > (u,u, 2(1’56)t> , (33)
R(w,uv) = R(w,u)((w,v) + ((w,u)R(w,v), (34)

almost every where for each u,v € V, w € Q, t > 0.

Proof. Put ¢ = 11in (28) and (29). According proof of Theorem 3.2, there are unique random
operators (, R : Q x V — V hold in (32) and (33), respectively, where made by

Clwyu) = HILH;O 2nS (w, 2%) ,
R(w,u) = nh_{g(}Z"T( ;)

foreachu eV, w € Q.
Putting v = 0 in (28), implies that

(T (w, cu) = eT'(w, u),t) = ¢ (u,0,1),
foreachu € V,w e Qand t >0 and for all c € T' := {d € C: |d| = 1}. Then

N(R(w, cu) — cR(w, u),t) n (QPT (w, 02%) — 2PcT (w, 2%) ,t)
0 (7 (wez) e (e55) )

U t
> w(Q,, 072>%1

and so R (w,cu) = cR(w,u) for eachu € V,w e Qand ¢t >0 and forall c€ T :={d € C:
|d| = 1}. By the same reasoning as in the proof of [41, Theorem 2.1], the random operator
R:QxV =V is C-linear.

By similar method we can prove that the additive random operator ( : Q@ x V — V is
C-linear.

From inequality (30) we have that

n(¢(w,uwv) — ((w,u)((w,v),t) = 77(4p5<w —)—4”5( 2P)S(w,2%),t)
= (s -sl5)slon)5)
v (5520 )

N(R(w,uv) — R(w,u)((w,v) — ((w,u)R(w,v),t)
= (07 (0 5) 0T (0. 5) S (0 5) ~ 05 (0 55) T (e 5) )
U v u v t
(7 () - (,21,)5( )~ (5) T (0 55) )
t

Y

u
Z ¢ (2;0,07 4p) — 1
for each u,v € V, w € Q and ¢t > 0 and for all c € T! := {d € C : |d| = 1}. Then,
C(w,uv) = ( 7u) (w,v) for each u,v € V, w € Q. Therefore the C-linear random operator

¢:QxV —Visarandom homomorphism hold in (33).
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From inequality (31) we have that
W(R(Wa UU) - R(OJ, U)C(wa ’l)) - C(wv U)R(wv ’U)7 t)

= (T (o 5) T (0 5) 8 (v 5) ~ 08 (01 5) T (4 35) 1)
= (rg) rleg)s(eg) s () Tl0) 5)

U t
2 ¢(2p,074p)—>1’
for each u,v € V, w € Q and t > 0 and for all ¢ € T! := {d € C : |d| = 1}. Then,

R(w,uv) = R(w,u)((w,v) — ((w,u)R(w,v) for each u,v € V, w € Q. Thus the C-linear
random operator R: Q x V — V is a rhom-derivation hold in (32) and (34). O

Corollary 5.2. Let (V,n, &y, kpm) be a FB-algebra, p > 1 and 7 > 0. Suppose that T, S :
QO xV =V is a random operators, where hold in

DT (@, e+ ) = o T(ew,w) = T(w, ), ) (%)
>k (nw(T(w,u =) = Tlw,u) = T(w, —0)): 1), - T<||untp n ||vp>> ’
(S e, -+ ) — e(S(eo,u) — S(eo, ) 1) (30)
>k (nw(sw —v) = S(w,u) = S(w,—v)), 1), 5 +T<uu||tp n ||v||ﬂ>> ’
t
M8, ww) = Slw,u)Sw, ) 1) 2 7
(T (w, wv) — T(w, w)S(w,v) — S(w, w)T(w,v),t) t (38)

> )
t47(llull” +vll?)
almost every where for each u,v € V, w € Q and t > 0 and for allc € T :={d € C: |d| =
1}.
So, there is a unique random homomorphism ¢ : Q@ x V. — V and a unique rhom-
derivation R : Q x V — V such that

(2 — 227t
U(T(Wa 'LL) - R(wvu)vt) > (2 — 22_p)t + 7'22—/’Hu||/” (39)
(2— 22t
U(S(W»u) - C(wa 'U,),t) > (2 — 22_p)t + 7_22_‘0”qu7 (40)
R(wa uv) - R(wv U)C(wv U) + C(w7 U)R(wa 7”)7 (41)

almost every where for each u,v € V, w € Q, t > 0.

Proof. In Theorem 5.1 put ¥ (u,u,t) = m for each v € U and t > 0 and
6 — 21—;). O

Theorem 5.3. Let (V,n, kar, k) be a FB-algebra. Let ¢ : V2 x (0,00) — J be a fuzzy map
such that such that there exists an 8 < 1 with

¥ (w0, 480) > v (u0,260) > v (5. 5.1) (42)
and
lim ) (2Pu, 2Pv,2Pt) = lim o (2Pu,2Pv,4Pt) =1 (43)

pP—o0 pP—>00
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for allu,v € U and t > 0. Suppose that T,S : Q x V = V are odd random operator,
where satisfies in (28), (29), (30) and (31). So, there is a unique random homomorphism
C:Q2xV =V and a unique Thom-derivation R : Q. xV — V such that

n(T(Wau) - R(wvu)vt) > d} (uau72(]~ - ﬁ)t) ) (44)
W(S(Wa u) - C(Wuu)vt) > 11) (uvuv 2(1 - B)t) ’ (45)
R(w,w) = R(w, u)((w,v) + ((w,u)R(w,v), (46)

almost every where for each u,v €V, w e Q, t > 0.
Proof. By similar method used in the proof of Theorem 5.1, we can get the results. O

Corollary 5.4. Let (V,n,kup, ka) be a FB-algebra, p < 1 and 7 > 0. Suppose that T, S :
Q xV =V is a random operators, where hold in (35), (36), (37) and (38).

So, there is a unique random homomorphism ¢ : Q x V. — V and a unique rhom-
derivation R : Q x V — V such that

(1—2'7)t
U(T@%U) _R(w’u)’t) > (1721*P)t+7'||u\|ﬂ’ (47)
(1—21=r,)t
ASe) = () ) > g (15)
R(w,uv) = R(w,u)((w,v) + ¢(w,u)R(w,v), (49)

almost every where for each u,v €V, w € Q, t > 0.

Proof. In Theorem 5.3 put ¢ (u,u,t) = W for each v € U and t > 0 and
5 — 2p—1. O
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