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PDES OF HAMILTON-PFAFF TYPE VIA MULTI-TIME
OPTIMIZATION PROBLEMS

Savin TREANTA!

In this paper, PDEs of Hamilton-Pfaff type are derived in the sense of
exterior differential via a multi-time optimal control problem. Using the control
Hamiltonian 1-form associated with our basic optimal control problem and the
corresponding adjoint distributions, we obtain PDEs of Hamilton-Pfaff type.
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1. Introduction

Nowadays, the multi-time optimal control problems and multi-time optimiza-
tion are intensively studied (see [10], [14]-[17]), both from theoretical and applied
reasonings. The cost functionals of mechanical work type become very important in
applications due to their physical meaning. In this direction (see [10]), let consider
the following multi-time optimal control problem, formulated using as cost functional
a path independent curvilinear integral with distribution-type constraints:

rgg;c{ﬂu(-)): i Xﬁ(t,x<t>,xa1<t>,...,xam...as1<t>,u<t>)dtﬁ} (L.1)

subject to

dxia1012,..as_1 (t) = XZ% (t, 2(t), Ty (1), - - Tayas..as_y (1), u(t)) dt” (1.2)
u(t) e U, Vt € Quopy; x(te) = e, Tay..0 (te) = Tay..az¢ (1.3)

i=1n, ace{l,....m}, (j=1,s—-1, £=0,1
The mathematical data used are: t = (t%) € Q¢ (see Qy4 C R, the
hyperparallelepiped with the diagonal opposite points tg = (t(l), . ,tgl) and t; =
(t%, ., ")) is a multi-parameter of evolution or a multi-time; Ty, is a C'-class
curve joining the points to and t1; z(t) = (2'(t)), i = 1,n, is a C*"'-class func-
tion, called state vector; u(t) = (u®(t)), a = 1,k, is a continuous control vector;
the running cost Xg (t,x(t), T, (), ..., Tajas...as_, (), u(t)) dt? is a non-autonomous
Lagrangian 1-form; the equations in (1.2) are distribution-type equations; the func-
tions X} (¢, (t), Za, (), - - -, Tayas...as_, (1), u(t)) are of C'-class; we accept the no-

, Ox o5l
tations Loy (t) = dtar (t), ey $a1...a571(t) = W
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(t), Q; € {1,2,...,m},
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j=1,s — 1. We assume summation over the repeated indices. For more details, see
references [9], [10].

Consider 4(t) € IntU an interior optimal solution which determines the opti-
mal evolution z(¢) in (1.1), subject to (1.2) and (1.3). In a very recent work (see
[10]), we proved that there exist the C'-class co-state 1-forms, p, = (pi), 7 = 1, 5,
defined on 2, ¢,, such that the relations

dpjl(t) = _Hacj (t’ :L‘(t), cee awal...as—l(t)vﬂ(t)vp(t)) ) pjl(tl) =0 (14)
dpﬂ(t) = _H‘ng (t7$(t)> e 7xa1-..asf1(t)7a(t)vp(t)) ’ ij(tl) =0

dpjs(t) = _Hxél--'o‘s—l (tv CC(t), s 7xa1...043_1(t)) ﬁ(t),p(t)) ) p]s(tl) =0
\V/t S Qt07tl;
Hya (ta ‘T(t)a o Togos (t), ﬂ(t),p(t)) =0, Vte Qto,tl; (1'5)
i OH N
N (O B (t,z(t), ..., Taya,, (1), 0(1),p(t)), VtE Uy (1.6)

x(t()) = Zo, xoq...aj(t()) = joq...og()a j = 17 s — 17 1= 17”7 r= 17 S
(see da! (t) := dxi(t))

aq...00
are fulfilled (see H as the associated control Hamiltonian 1-form).
The aim of this paper is to introduce PDEs of Hamilton-Pfaff type (often used
in Mechanics) using the simplified multi-time mazimum principle (see (1.4), (1.5),
(1.6)). For other different ideas connected to this subject, see [1]-[8], [12], [13], [18].
Section 1 motivates the study and provides, for a better coherence of this
paper, the main ingredients used in previous works (see [10], [11], [14]-[17]). Section
2 includes the main result, while Section 3 contains the conclusions of this study.

2. Hamilton-Pfaff PDEs

Let consider the following path independent curvilinear integral functional

J (u()) = Xﬁ (.Z'(t), Tay (t)’ oy Lajag...as—1 (t)’ u(t)) dtﬁ

Lig,tq
subject to ‘ .
AT, . crn, () = () dt”
te Qe CRY x(to) = o, Tay..0; (to) = Tay...a0
i=Tn, ace{l,...,m}, Cj=Ts—1
Here, the running cost Xg (z(t), T, (1), . - -, Taag...as_, (t), u(t)) dt? is a C*-class au-
tonomous Lagrangian 1-form, the control vector u(t) = (ufg (t)) is a continuous vector

function and I' 4, is a C'-class curve joining the points ¢y and t; from R’
For solving the associated basic control problem, we need the control Hamil-

tonian 1-form
H (vi(t),v2(t), ..., vs(t),u(t), p1(t), ... ,pé(t))
= X5 (v1(t),v2(t), ..., vs(t), u(t)) dt’ + ps (t)vi,, (£)dt™

Fo Pis1 (Vo () + pis(t)ub(t)dt?,
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where {vi(t),...,vs(t)} are auziliary variables, defined as follows:
z(t) == v1(t), (Tay (1)) = v2(t), -+, (ma1a2---asf1(t)) 1= (1),
dvi(t) = uf(t)dt®, i =T,n, B=T,m,

or, equivalently,

(Ula1 (t)) = UQ(t)7 (UQOQ (t)) = U3(t), R (Usflas,l (t)) = Vs (t)

(we have denoted v,,(t) = %(t), v =1,5, n € {1,...,m}), and the co-state
1-forms p,(t) = pm(t)dvi, ~v =1, s, satisfying the following adjoint distributions:
0X
dpj (1) = — axf (2(t), Tay (), - - Ty s 1 (1), u(t)) di”? (2.1)
0X
dpja(t) = —pjr (t)dt™ — M‘B (2(t), oy (), - -+ s Tay s (), u(t)) dt?
a1
o 0X
dpis(t) = —pje—1(t)dtos—1 — aﬁiﬁ (€(t)s Tay (£), -+ Tay.an_y (1), ul(t)) di°.
a1...05_1

According to (1.4) and (1.5), we have
H ; (x(t), ce s Tagan..ae (B),u(t), p1(t), . .. ,ps(t)) = —dpjp+1(t) (2.2)

xala2..,an

n=0,s—1 tE€Qs, ppr(t)=0r=1Is
Hu;s (x(t), ZTay(t)s s Taga..aeq (D), u(t), p1(t),. .. ,ps(t)) =0, VteQ,.
By a direct computation, we get
Hyi (2(t), .-, Tarag.ass (£)su(t), pr(t), .., ps(t))
= Xggr (2(), - Tayas. .a, 1 (), u(t)) dt’;

Hx,é‘IO‘Q"'a"] (l’(t), ce 7xa10¢2~~0!s—1(t)7 u(t)apl(t)7 R aps(t))
= Xoui oy o (@0, Tarag.ae (0, u(t)) dt” + piy(D)dt™, 9 =T5—T;
Huk (.’E(t), e 7$a1a2...as_1(t)’ u(t))pl (t)v e 7ps(t))
= Xgus, (2(1), -+ Taran.cas (1), u(t) dt? + pis(t)dt®,
or, equivalently, (see (2.2))
Xiai (£(1), -+, Taras.aes (), u(t)) dt® + dpi (t) = 0 (2.3)
Xﬁx%ﬁﬂn(m(ﬂ,”.,xaL”a&J(ﬂ,u(ﬂ)cﬁﬁ—%pyﬂtﬁﬁa"4—dpm+1@)::0

n=1s—-1
Xpus, (2(1),- -+, Tayas...asr (1), u(t)) dt® + pis(t)dt® = 0.

The previous relations give us

Pindt®™ = —dpipy1 — ——2—dtP, n=T5—-1 (2.4)
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dX X
dpiy = ——dtﬁ pisdt? = —Z=2qtP
ox* ou’ 5

From the relations (2.4), we find

09X
oxt

araz...oq

dpm/\dta":—d< >Adtﬁ, n=1,s—1

up

Now, using (2.4) and the above equalities, we get

X
dpis A dtP = —d (a 5) AdtP.

X 0X
5dt5Adta1+d<8 5)Adt5 0

 oa zl,

s—2
0X 0X
[ pirdt®” — Z.’Bdtﬁ]/\dta"“—kd | ndt? =0
axal...ﬂér axal..‘arJrl

r=1

ox?

Qp..0g—1

0X 0X3
[—pis—ldta31 = WBdtﬁ] AdtP +d ( ) Adt? =0
8uﬁ

or, equivalently,

OXngon _ 0 (OX\| 1x \ i _
[w‘% 50 <axgl dt* A dt? =0

(Euler-Lagrange exterior equations), and

5o 4 X\ Qrt1 9 an A 8 _ _ 1 <_9o
[<p”=5>\ o i >6B _875)\<8;ﬁ dt* N dt —07T—1,S 2

al Qo Q1.0 1

DXy o (0x5\] .,
is— Qo1 T A dt /\dtﬂ:().
(p T, ) o0 (6 ﬂ>]

Suppose that the critical point condition (see (2.3), the third relation)

Pis(t)dt® = —Xg,i (2(t),.. ., Taray...as, (£), u(t)) dt’

admits a unique solution that satisfies

uzﬁ(t)dtﬁ = u/’g (fE(t), ce ,-Tal...as,l(t)apl(t)a s 7p8( )) dt/B = dmal Qg 1(t)

Using a path independent curvilinear integral, we have

T () =2 o (to) + /F uy (2(1), .., Tay e (1, p1(0), - - -, ps(1)) dIP,
t()t

where Ty, is a piecewise C'-class curve included in Tyy,. Let remark that the
previous critical point condition defines the co-state p;s as a moment along the
curve I'y;;. Now, we establish the main result of our study.
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Theorem 2.1. (PDEs of Hamilton-Pfaff type) Under the above assumptions,
consider the control Hamiltonian 1-form

H (x(t), ey Ty ae s (1), u (a:(t), ey T ae (1), p1(1), . .. ,ps(t)) ,p1(t), ... ,ps(t)) .
Then, the associated PDFEs of Hamilton-Pfaff type are given by

o101 ) te Qto,tla x(tO) = To, l'al..,ozj (tO) = :foq...ajo

, r=1,s, (see d:rgl.__ao(t) = d:ri(t))

and
oOH OH oOH
—a =dpi1, —5— =dpi2, -+, —5——— = dpis.
ort P T TP o b

ay...Qs—1

Proof. Computing the partial derivative of

H (a:(t), e T ae s (1), 1 (a:(t), ey T ae (1), p1(1), . .. ,ps(t)) ,p1(t), ... ,ps(t))
with respect to p;., 7 = 1, s, we get the first part of Hamilton-Pfaff equations
i OH
d, o, (1) = i (t)y . Tay..aeq (), u(t), pr(t),. .. ,ps(t))

te Qto,tly x(t()) = 20, (L.Oq...oc]' (t0> == '%041...01]‘07 .7 - 178 - 17 1= 17”7 r= 17 S

(see d$gln_a0 (t) := d;vi(t)) .

Let illustrate two computations:

= BP0 T i dt® = da
Opjp  Ouy,  Opp P opin
OH aXB out ) Ol '
= —PatP = 4l dt® + pis—2dt® = da) .
8]9]5 8uza 8]9]8 + Uy, + Dis apjs quOzz...as_l

Now, by a direct computation and using the relations in (2.1), we obtain the second
part of Hamilton-Pfaff equations

OH  [0Xg 5 0Xz  z0ul, ouly 5
Tow [axjdt T o, W o | TP ge W = b

oH 0X 4 0Xg . 4 Oul dujy
= — | EdtP + —LdtP | — pjdt® — pia—dt® = dpjo

b, [axgl ou, axgll ’ drh, ’
_,87[{ = _ ?Xﬁ dtb + aX.ﬁ dt? 8 Ua — Pjs—1dt*!
al‘?xl...a571 833{)41..,(15,1 8“?)4 833?11...a571

oul
| B at® — dp.
—Dis dt _dp]57
81"&1._04571

and the proof is complete.
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3. Conclusion

In this paper, we introduced a study of a multi-time optimal control problem
subject to distribution-type constraints. Using a geometrical language and varia-
tional calculus techniques (under simplified hypotheses), we formulated the main
result of this paper (see Theorem 2.1), that is, the form of Hamilton-Pfaff PDEs.
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