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PDES OF HAMILTON-PFAFF TYPE VIA MULTI-TIME

OPTIMIZATION PROBLEMS

Savin Treanţă1

In this paper, PDEs of Hamilton-Pfaff type are derived in the sense of
exterior differential via a multi-time optimal control problem. Using the control
Hamiltonian 1-form associated with our basic optimal control problem and the
corresponding adjoint distributions, we obtain PDEs of Hamilton-Pfaff type.

Keywords: Hamilton-Pfaff PDEs; control Hamiltonian; Lagrangian 1-form; Euler-
Lagrange exterior PDEs; adjoint distributions.

MSC2010: 70H05, 49J20, 34H05, 93C20, 65K10, 70S05.

1. Introduction

Nowadays, the multi-time optimal control problems and multi-time optimiza-
tion are intensively studied (see [10], [14]-[17]), both from theoretical and applied
reasonings. The cost functionals of mechanical work type become very important in
applications due to their physical meaning. In this direction (see [10]), let consider
the following multi-time optimal control problem, formulated using as cost functional
a path independent curvilinear integral with distribution-type constraints:

max
u(·)

{
J (u(·)) =

∫
Γt0,t1

Xβ

(
t, x(t), xα1(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ

}
(1.1)

subject to

dxiα1α2...αs−1
(t) = Xi

β

(
t, x(t), xα1(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ (1.2)

u(t) ∈ U, ∀t ∈ Ωt0,t1 ; x(tξ) = xξ, xα1...αj (tξ) = x̃α1...αjξ (1.3)

i = 1, n, αζ ∈ {1, . . . ,m}, ζ, j = 1, s− 1, ξ = 0, 1.

The mathematical data used are: t = (tα) ∈ Ωt0,t1 (see Ωt0,t1 ⊂ Rm+ , the

hyperparallelepiped with the diagonal opposite points t0 =
(
t10, . . . , t

m
0

)
and t1 =(

t11, . . . , t
m
1

)
) is a multi-parameter of evolution or a multi-time; Γt0,t1 is a C1-class

curve joining the points t0 and t1; x(t) = (xi(t)), i = 1, n, is a Cs+1-class func-
tion, called state vector ; u(t) = (ua(t)), a = 1, k, is a continuous control vector ;

the running cost Xβ

(
t, x(t), xα1(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ is a non-autonomous

Lagrangian 1-form; the equations in (1.2) are distribution-type equations; the func-
tions Xi

β

(
t, x(t), xα1(t), . . . , xα1α2...αs−1(t), u(t)

)
are of C1-class; we accept the no-

tations xα1(t) :=
∂x

∂tα1
(t), . . . , xα1...αs−1(t) :=

∂s−1x

∂tα1 . . . ∂tαs−1
(t), αj ∈ {1, 2, . . . ,m},
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j = 1, s− 1. We assume summation over the repeated indices. For more details, see
references [9], [10].

Consider û(t) ∈ IntU an interior optimal solution which determines the opti-
mal evolution x(t) in (1.1), subject to (1.2) and (1.3). In a very recent work (see
[10]), we proved that there exist the C1-class co-state 1-forms, pr = (pir) , r = 1, s,
defined on Ωt0,t1 , such that the relations

dpj1(t) = −Hxj
(
t, x(t), . . . , xα1...αs−1(t), û(t), p(t)

)
, pj1(t1) = 0 (1.4)

dpj2(t) = −H
xjα1

(
t, x(t), . . . , xα1...αs−1(t), û(t), p(t)

)
, pj2(t1) = 0

...

dpjs(t) = −H
xjα1...αs−1

(
t, x(t), . . . , xα1...αs−1(t), û(t), p(t)

)
, pjs(t1) = 0

∀t ∈ Ωt0,t1 ;

Hua
(
t, x(t), . . . , xα1...αs−1(t), û(t), p(t)

)
= 0, ∀t ∈ Ωt0,t1 ; (1.5)

dxiα1...αr−1
(t) =

∂H

∂pir

(
t, x(t), . . . , xα1...αs−1(t), û(t), p(t)

)
, ∀t ∈ Ωt0,t1 (1.6)

x(t0) = x0, xα1...αj (t0) = x̃α1...αj0, j = 1, s− 1, i = 1, n, r = 1, s(
see dxiα1...α0

(t) := dxi(t)
)

are fulfilled (see H as the associated control Hamiltonian 1-form).
The aim of this paper is to introduce PDEs of Hamilton-Pfaff type (often used

in Mechanics) using the simplified multi-time maximum principle (see (1.4), (1.5),
(1.6)). For other different ideas connected to this subject, see [1]-[8], [12], [13], [18].

Section 1 motivates the study and provides, for a better coherence of this
paper, the main ingredients used in previous works (see [10], [11], [14]-[17]). Section
2 includes the main result, while Section 3 contains the conclusions of this study.

2. Hamilton-Pfaff PDEs

Let consider the following path independent curvilinear integral functional

J (u(·)) =

∫
Γt0,t1

Xβ

(
x(t), xα1(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ

subject to
dxiα1α2...αs−1

(t) = uiβ(t)dtβ

t ∈ Ωt0,t1 ⊂ Rm+ ; x(t0) = x0, xα1...αj (t0) = x̃α1...αj0

i = 1, n, αζ ∈ {1, . . . ,m}, ζ, j = 1, s− 1.

Here, the running cost Xβ

(
x(t), xα1(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ is a C2-class au-

tonomous Lagrangian 1-form, the control vector u(t) =
(
uiβ(t)

)
is a continuous vector

function and Γt0,t1 is a C1-class curve joining the points t0 and t1 from Rm+ .
For solving the associated basic control problem, we need the control Hamil-

tonian 1-form
H (v1(t), v2(t), . . . , vs(t), u(t), p1(t), . . . , ps(t))

= Xβ (v1(t), v2(t), . . . , vs(t), u(t)) dtβ + pi1(t)vi1α1
(t)dtα1

+ . . .+ pis−1(t)vis−1αs−1
(t)dtαs−1 + pis(t)u

i
β(t)dtβ,
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where {v1(t), . . . , vs(t)} are auxiliary variables, defined as follows:

x(t) := v1(t), (xα1(t)) := v2(t), · · · ,
(
xα1α2...αs−1(t)

)
:= vs(t),

dvis(t) = uiβ(t)dtβ, i = 1, n, β = 1,m,

or, equivalently,

(v1α1(t)) = v2(t), (v2α2(t)) = v3(t), · · · ,
(
vs−1αs−1(t)

)
= vs(t)

visβ(t) = uiβ(t), i = 1, n,

(we have denoted vγη(t) :=
∂vγ
∂tη

(t), γ = 1, s, η ∈ {1, . . . ,m}), and the co-state

1-forms pγ(t) = piγ(t)dviγ , γ = 1, s, satisfying the following adjoint distributions:

dpj1(t) = −
∂Xβ

∂xj
(
x(t), xα1(t), . . . , xα1...αs−1(t), u(t)

)
dtβ (2.1)

dpj2(t) = −pj1(t)dtα1 −
∂Xβ

∂xjα1

(
x(t), xα1(t), . . . , xα1...αs−1(t), u(t)

)
dtβ

...

dpjs(t) = −pjs−1(t)dtαs−1 −
∂Xβ

∂xjα1...αs−1

(
x(t), xα1(t), . . . , xα1...αs−1(t), u(t)

)
dtβ.

According to (1.4) and (1.5), we have

H
xjα1α2...αη

(
x(t), . . . , xα1α2...αs−1(t), u(t), p1(t), . . . , ps(t)

)
= −dpjη+1(t) (2.2)

η = 0, s− 1, t ∈ Ωt0,t1 , pjr(t1) = 0, r = 1, s

H
ujβ

(
x(t), xα1(t), . . . , xα1α2...αs−1(t), u(t), p1(t), . . . , ps(t)

)
= 0, ∀t ∈ Ωt0,t1 .

By a direct computation, we get

Hxi
(
x(t), . . . , xα1α2...αs−1(t), u(t), p1(t), . . . , ps(t)

)
= Xβxi

(
x(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ;

Hxiα1α2...αη

(
x(t), . . . , xα1α2...αs−1(t), u(t), p1(t), . . . , ps(t)

)
= Xβxiα1α2...αη

(
x(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ + piη(t)dt

αη , η = 1, s− 1;

Huiβ

(
x(t), . . . , xα1α2...αs−1(t), u(t), p1(t), . . . , ps(t)

)
= Xβuiβ

(
x(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ + pis(t)dt

β,

or, equivalently, (see (2.2))

Xβxi
(
x(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ + dpi1(t) = 0 (2.3)

Xβxiα1...αη

(
x(t), . . . , xα1...αs−1(t), u(t)

)
dtβ + piη(t)dt

αη + dpiη+1(t) = 0

η = 1, s− 1

Xβuiβ

(
x(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ + pis(t)dt

β = 0.

The previous relations give us

piηdt
αη = −dpiη+1 −

∂Xβ

∂xiα1α2...αη

dtβ, η = 1, s− 1 (2.4)
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dpi1 = −
∂Xβ

∂xi
dtβ, pisdt

β = −
∂Xβ

∂uiβ
dtβ.

From the relations (2.4), we find

dpiη ∧ dtαη = −d

(
∂Xβ

∂xiα1α2...αη

)
∧ dtβ, η = 1, s− 1

dpis ∧ dtβ = −d

(
∂Xβ

∂uiβ

)
∧ dtβ.

Now, using (2.4) and the above equalities, we get

−
∂Xβ

∂xi
dtβ ∧ dtα1 + d

(
∂Xβ

∂xiα1

)
∧ dtβ = 0

s−2∑
r=1

{[
−pirdtαr −

∂Xβ

∂xiα1...αr

dtβ
]
∧ dtαr+1 + d

(
∂Xβ

∂xiα1...αr+1

)
∧ dtβ

}
= 0

[
−pis−1dt

αs−1 −
∂Xβ

∂xiα1...αs−1

dtβ

]
∧ dtβ + d

(
∂Xβ

∂uiβ

)
∧ dtβ = 0

or, equivalently, [
∂Xλ

∂xi
δα1
β −

∂

∂tλ

(
∂Xβ

∂xiα1

)]
dtλ ∧ dtβ = 0

(Euler-Lagrange exterior equations), and[(
pirδ

αr
λ +

∂Xλ

∂xiα1...αr

)
δ
αr+1

β − ∂

∂tλ

(
∂Xβ

∂xiα1...αr+1

)]
dtλ ∧ dtβ = 0, r = 1, s− 2

[(
pis−1δ

αs−1

λ +
∂Xλ

∂xiα1...αs−1

)
− ∂

∂tλ

(
∂Xβ

∂uiβ

)]
dtλ ∧ dtβ = 0.

Suppose that the critical point condition (see (2.3), the third relation)

pis(t)dt
α = −Xβuiα

(
x(t), . . . , xα1α2...αs−1(t), u(t)

)
dtβ

admits a unique solution that satisfies

uiβ(t)dtβ = uiβ
(
x(t), . . . , xα1...αs−1(t), p1(t), . . . , ps(t)

)
dtβ = dxiα1...αs−1

(t).

Using a path independent curvilinear integral, we have

xiα1...αs−1
(t) = xiα1...αs−1

(t0) +

∫
Γt0t

uiβ
(
x(l), . . . , xα1...αs−1(l), p1(l), . . . , ps(l)

)
dlβ,

where Γt0t is a piecewise C1-class curve included in Γt0t1 . Let remark that the
previous critical point condition defines the co-state pis as a moment along the
curve Γt0t. Now, we establish the main result of our study.
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Theorem 2.1. (PDEs of Hamilton-Pfaff type) Under the above assumptions,
consider the control Hamiltonian 1-form

H
(
x(t), . . . , xα1...αs−1(t), u

(
x(t), . . . , xα1...αs−1(t), p1(t), . . . , ps(t)

)
, p1(t), . . . , ps(t)

)
.

Then, the associated PDEs of Hamilton-Pfaff type are given by

dxiα1...αr−1
=
∂H

∂pir
, t ∈ Ωt0,t1 , x(t0) = x0, xα1...αj (t0) = x̃α1...αj0

j = 1, s− 1, i = 1, n, r = 1, s,
(
see dxiα1...α0

(t) := dxi(t)
)

and

−∂H
∂xi

= dpi1, − ∂H

∂xiα1

= dpi2, · · · , −
∂H

∂xiα1...αs−1

= dpis.

Proof. Computing the partial derivative of

H
(
x(t), . . . , xα1...αs−1(t), u

(
x(t), . . . , xα1...αs−1(t), p1(t), . . . , ps(t)

)
, p1(t), . . . , ps(t)

)
with respect to pir, r = 1, s, we get the first part of Hamilton-Pfaff equations

dxiα1...αr−1
(t) =

∂H

∂pir

(
x(t), . . . , xα1...αs−1(t), u(t), p1(t), . . . , ps(t)

)
t ∈ Ωt0,t1 , x(t0) = x0, xα1...αj (t0) = x̃α1...αj0, j = 1, s− 1, i = 1, n, r = 1, s(

see dxiα1...α0
(t) := dxi(t)

)
.

Let illustrate two computations:

∂H

∂pj1
=
∂Xβ

∂uiα
dtβ

∂uiα
∂pj1

+ dxj + pis
∂uiα
∂pj1

dtα = dxj

∂H

∂pjs
=
∂Xβ

∂uiα
dtβ

∂uiα
∂pjs

+ ujαdt
α + pis

∂uiα
∂pjs

dtα = dxjα1α2...αs−1
.

Now, by a direct computation and using the relations in (2.1), we obtain the second
part of Hamilton-Pfaff equations

−∂H
∂xj

= −
[
∂Xβ

∂xj
dtβ +

∂Xβ

∂uiα
dtβ

∂uiα
∂xj

]
− pis

∂uiβ
∂xj

dtβ = dpj1

− ∂H

∂xjα1

= −

[
∂Xβ

∂xjα1

dtβ +
∂Xβ

∂uiα
dtβ

∂uiα

∂xjα1

]
− pj1dtα1 − pis

∂uiβ

∂xjα1

dtβ = dpj2

...

− ∂H

∂xjα1...αs−1

= −

[
∂Xβ

∂xjα1...αs−1

dtβ +
∂Xβ

∂uiα
dtβ

∂uiα

∂xjα1...αs−1

]
− pjs−1dt

αs−1

−pis
∂uiβ

∂xjα1...αs−1

dtβ = dpjs,

and the proof is complete. �
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3. Conclusion

In this paper, we introduced a study of a multi-time optimal control problem
subject to distribution-type constraints. Using a geometrical language and varia-
tional calculus techniques (under simplified hypotheses), we formulated the main
result of this paper (see Theorem 2.1), that is, the form of Hamilton-Pfaff PDEs.
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[17] C. Udrişte, Multitime optimal control with second-order PDEs constraints, Atti Accad. Pelorit.

Pericol. Cl. Sci. Fis. Mat. Nat., 91, 1, art. no. A2, 10 pages, 2013.

[18] M. Wagner, Pontryagin maximum principle for Dieudonne-Rashevsky type problems involving

Lipcshitz functions, Optimization, 46, 165-184, 1999.


