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SECURE COMPUTATION ON SENSITIVE DATA USING
HOMOMORPHIC ENCRYPTION ON ETHEREUM
BLOCKCHAIN

Rizvan Serban®, Alexandru Vochescu?, Daniel Dosaru®

Due to the proliferation of electronic devices, there is an ongo-
ing creation of new data for each and every human. There is an ongoing
debate about data because of the trade off that happens: security of the data
versus the convenience of accessing the data. The exclusivity between the
two can simply be narrowed by using a homomorphic encryption algorithm
over one of the many blockchains available. This allows for the data to be
available to the owner at any time, while also permitting for third parties
to operate on the data while not leaking anything about the data involved in
the computations.
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1. Introduction

Technology is in a continuous evolution because it is based on certain
human demands that need to be fulfilled. This led to the current situation
that computers are ubiquitous [1] in our lives. By simply interacting with
payment systems, public transport, different businesses, or even government
services, we are using the interface of a computer and are creating a lot of
data [2]. Most of this data generates other demands from people, that in turn
generates more data in a never ending circle. This data could be harmless, but
the majority of it is not [3] because no one wants to share with third parties
the places they have been or how much money they have spent on what items.
There is a paradox that this huge amount of data entails [4] regarding the
needs that appear from it. This paradox can be summarized as the 3 needs
for data that, nowadays, at any given time, at most 2 of them are checked off.
Firstly, we need to process it, but we do not have the computational power,
storage capacity or algorithms to get a final useful result. Secondly, because
we are using other actors’ resources, they can be considered from a security
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standpoint that they are a third party and any data that we have and are
giving up freely to them is a liability for us [5] because, as mentioned before,
the data that a person usually generates in their day-to-day life is usually
sensitive. Thirdly, another need for the data that we create is to be available
for whomever we are agreeing to give access to, that is convenience.

With this in mind, we propose a way to combine these 3 seemingly dis-
parate needs for data, by allowing a third party to perform computations on
it, not allowing unrestricted third party access to the data, while also allowing
access to other parties that we whitelisted.

The rest of the paper is structured as follows. In Section 2 we present
the main challenges and the background of the existing status quo, in Section
3 we present a way to reconcile all the three needs for sensitive data presented
above, Section 4 discusses an implementation, while Section 5 presents the
evaluation and the caveats of the implementation, as the system is a mostly
theoretical one, as we have not reached the technological computing speeds for
a fully-fledged system. The final section presents our conclusion and future
work.

2. Background and challenges

Currently, at the moment of writing this paper, all the three require-
ments for data that we have mentioned above: privacy, away computation,
and convenience, are not fully solved by any system. There are some systems
that manage to check 2 of them while not fulfilling the last one [6] [7].

2.1. Homomorphic encryption

The first 2 ones, privacy and the possibility of computing at a third party,
are being allowed nowadays by using homomorphic encryption.

Homomorphic encryption [8] [9] is the possibility of doing operations
on sets of data while the data stays encrypted. As an example, instead of
doing multiplication on 2 clear text numbers, if we encrypt those 2 numbers
separately, but with the same key, and then run a modified multiplication
operation on them, the final result would be a ciphertext that when decrypted
with the same key that was used on the initial numbers, the multiplication
result would appear.

This has big security implications regarding the possibility of someone
else handling our data, while at the same time not knowing what the data
contains. The clear text version of the data is only present on our premises and
will never leave the system unencrypted. Anything that happens between the
personal system and the system that performs the computations, for example
modifying or simply reading the message, is harmless as it happens only on
ciphertext. The system that performs the computations will receive the data
not in clear text.
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2.2. Blockchain

The blockchain [10] [11] is a collective name for technologies that allow
for distributed computing. They are, in most scenarios, networks of a group of
computing devices that create read-only data and store them as blocks linked
by hashes (the N block depends on the hash of the block at N-1) by using
the data structure named Merkle Tree [12]. Over the years, blockchains have
evolved to allow for different ways of proving that the block N+1 is a block
that needs to be created after block N. Proof of Work [13] is one such system
in which the miners verify a huge number of calculations, and the threshold
for adding a block is for finding a result within certain limits. Proof of Stake
[14] and Proof of Location [15] are novel new ways for the network to reach a
consensus on the next blocks to be added.

Some blockchains such as Ethereum [17] allow for snippets of code to
be run by the miners [18]. Miners are working computer nodes that validate
the blocks. As a consequence, they offer a decentralized consensus [19] on the
result of that computation. There is a special language used for writing these
code snippets called Solidity [20], which was inspired by JavaScript, C++, and
Python [21] .

The main element in the Solidity language is called “contract”. It is a
decentralized class, that lives in the blockchain network and can be instantiated
at will by anyone. Like the classes that usual programming languages have,
it has fields and methods that change the fields. Anything in the contract
is known by everybody [21]. The value of the fields at any point during the
life of the contract and the methods that were called, their order of calling,
and who called them - the private address. That means that any data put on
the blockchain is visible to anybody, while at the same time, the decentralized
nature of the network can vouch that the data will be kept as it was intended
[22]. If the data is not changing, the data will not become suddenly corrupt
or be gone.

3. Design of the system

In this section, we propose a system that allows the 3 aforementioned
human needs for data management and processing, to be resolved and to co-
exist at the same time.

e The ability to process the data but by using resources, such as memory
and computational power, that are not in our possession.

e There is an obligation to give as little information as we can to the third
parties that perform computations on the data. These actors mentioned
here could range in size from small companies to big companies and in the
categorization of them, binning them in public governments versus private
enterprises. Any data sent to them in clear text is a liability because of
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both the destination of data and the malicious actors that can intercept
the data in passing

e Open access to data at any moment is of high importance. To do this, it
needs to have high availability. Anytime we want to inspect the data or
give the data to a third party to process it, it should be available. Physical
boundaries can be overcome by networks that link the storage memory
and the computing power, and they need to be powered at all times.

Such a system can be created by combining privacy-aware homomorphic
encryption alongside the blockchain capability to be a read-only database.

By implementing the homomorphic encryption methods as functions into
a contract on the blockchain, the decentralized system can operate on data
that is encrypted and return trustful results, without needing to reveal what
is hidden under the encryption.

As the encrypted data is public on the blockchain to use, the conve-
nience of data sharing would amount only to sharing the decryption key of the
compounding data and the result to the whitelisted parties interested. The
high availability of the data on the blockchain combined with the decentralized
verification that the reporter of the encrypted data is not changing the data,
allows for ”convenience and high availability”, one of the most important need
for our data, to be checked off.

The system as a whole allows people to share their data with whomever
they want, while at the same time making use of a more powerful computer
not in their control to do the calculations on the data for them.

4. Implementation

The implementation chosen is just a mock one. There are numerous ho-
momorphic encryption algorithms and blockchains. For this paper, we settled
on just one of each for the demonstration.

4.1. Choice of homomorphic encryption

As mentioned before, homomorphic encryption is still in its infancy as a
cryptographic system, but some implementations with limitations exist. One
of them is the FV12 [23] that, despite the name, is not a fully homomorphic
encryption because the technological speed of the electronic components has
not reached yet a practical level [24]. It has an implementation in multiple
languages, including Python, Go, JavaScript and Ruby.

4.2. Choice of blockchain

The most popular blockchain [16] that allows smart contracts to be writ-
ten inside it is Ethereum [17], and it uses Solidity [20] as the programming
language inside it. We have chosen Ethereum because it is the blockchain that
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implements the most up-to-date version Solidity language, and the team that
maintains the Solidity language is made of Ethereum core contributors.

Because by its nature the blockchain system is scalable, so by deploying
this onto the Ethereum blockchain, we can take full leverage of all the nodes
that comprise the network.

4.3. Build and deployment

By being Turing-complete languages, we can take Python implementa-
tion of the homomorphic encryption algorithms and map them to the Solidity
programming language. As a result, we can have a way to create a contract
that has all the primitives a homomorphic encryption system has: the func-
tions that can operate on the data being introduced. In this situation, the
2 operations used are multiplication and addition of ciphertext numbers en-
crypted with the same key separately.

The way the contract works is by taking the encrypted numbers as ar-
guments to the function being called and having the contract itself keep the
results as data. Alongside the numbers, the method takes an ID for an easier
identification of the result. We would be using an array as a field for keeping
the data on the blockchain, but we are not concerned with modifying the data,
only with adding more results from the methods that are called. Therefore,
we are using the transaction’s log as an out-of-band data store of the contract,
those are the events in Solidity. We will then send an event with the calcula-
tion done and with the address that initiated the calculation. The polling of
the result is simple, just with the address or with the ID that was given at the
method call. After getting the result back, by decrypting it with the private
secret key, we can get the actual addition of the numbers sent the first time.

4.4. Functional testing

We first used a local deployed blockchain network that copies the Ethereum
using the Hardhat suite and having only one node. Then, after checking that
everything works as they should, we deployed to the Goerli test network. Be-
cause there were no issues, we finally published on the Ethereum main network.

After creating the contract and deploying it, the only way to test the
functions is to get some random numbers A and B and then create a public
key (pk) and a secret key (sk).

After encrypting the A and B numbers with the pk, we will get A’ and
B’, the encrypted versions of A and B.

We want to test that the application of the addition function on the A’
and B’ will yield the encrypted sum. More generally, we describe the flow of
the function in Figure 1 for addition. For simplicity, we used the > mark to
signify encrypted data and visually separate it from its clear text counterpart.

After choosing A to be 80 and B to be 100, we encrypted them to A’
and B’ using pk, we called the addition function, took the result from the
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Fi1G. 1. General homomorphic encryption data flow

contract event, and applied offline on our computer the decryption with sk
that never left our device. The final result is, as expected, the number 180.

Besides the functions that operate on encrypted data, there is a version
of the functions that operate on one argument being clear text and the other
one encrypted, both for addition and multiplication. As a result, linear combi-
nations of 2 numbers with known coefficients can be made even if the numbers
are not in plain text.

We take our initial 3 needs for data and check if they are satisfied.

e The bulk processing of the data is done on the blockchain. Even if the
system that holds our data is not capable to do the computations, the only
requirement is to encrypt the data that will be in transit and decrypt it
at the moment we want our result back.

e Because the data does not leave our system in clear text, there is no way
for any actor outside our system to gain access to our data. As a result,
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the data is safe and no accidental leakage of information escapes our safe
environment.

e As we mentioned before, all the computations and the storage take place
on a blockchain, the Ethereum blockchain. Because the blockchain can be
as a model substituted with a read-only database, we can be sure that the
data that gets committed to the chain stays there and is available 24 hours
a day, 7 days a week. We can always access our data, and we can easily
”send” it to someone else to process it (sending is merely a symbolic oper-
ation; the "processor” takes the info directly from the blockchain without
any approval from us). The malicious actors can also take our data and
process it, but without a decryption key, the result is at least meaningless
to use, and at most energy, time, and resource consuming, thus deterring
any bad actors from even touching our data.

Operand 1  Operand 2 Result
o 0
AND 0 1 0
1 0 0
1 1 1
Operand 1  Operand 2 Result
0 0
Multiplication

mlo|o

1 0
0 0
1 1

-

Fi1G. 2. Multiplication and AND operations truth table

Operand 1 Operand 2 Result
] 0 0
XOR 0 1 1
1 0 1
1 1 0
Operand 1 Operand 2 Result
. 0 0 0
Addition(mod 2) o 1 1
1 0 1
1 1 0

Fic. 3. Addition and XOR operations truth table

Figure 1 presents the flow of data using addition as a core homomorphic
operation. We can use the usual known addition on two unencrypted numbers,
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or the special homomorphic addition that allows us to operate on encrypted
numbers. An identical flow exists using multiplication as a core operation.
In Figure 2 and Figure 3, we have the truth tables for the bitwise operations
of addition, multiplication, logical XOR, and logical AND. The addition
operation used here is the one used in the homomorphic encryption algorithm
schema, the one that takes a modulo out of the final result. We can observe
that the truth tables are identical in both the addition/XOR pair and the
multiplication/AND pair if the modulo set is 2. Because we can see that
the bitwise versions of addition and multiplication are just the operation of
AND and XOR in disguise, we can use them to create other logic gates.

We can create all the existing logic gates by using the XOR and AND
gates and combining them for a new gate [25]. To simplify the walkthrough,
we know that NAND and NOR are the acknowledged gates that we can use
to create all the other existing boolean functions. We will use a XOR and an
AND in Figure 4 to generate a NAND universal gate by using the following
formula:

XOR(AND(A, B),1) = NAND(A, B)
Starting from the NAND gate, all the other gates can be created and as
a result, the arbitrary computation can be executed on the data that is input
into the system.
The only requirement that the circuit has is a standalone extra data that
is encrypted, which represents a 1. This can easily be pushed to the blockchain
at the initial moment of sending the data, concatenating the 1 alongside it.

NOT

—— ANANDB

A — XOR

Fic. 4. Creating a NAND out of a XOR and an AND

5. Evaluation and caveats

Because the homomorphic encryption in our example is mostly theoreti-
cal, we can measure how this partial homomorphic encryption scheme stands
up in the blockchain against repeated operations. Because of their formation,
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the models introduce some noise that can override and even change the result
of the final calculations.
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Fi1G. 5. Graph of the errors plotted against the number of operations

We devised a test to check how big the noise disturbance is. We can
subtract the obtained value from the value that we expect to find and measure
the difference. The blockchain that we used for these tests is a local clone of
the Ethereum blockchain created using Hardhat, a blockchain testing suite, as
the tests that we are devising are economically cost-prohibitive to be run on a
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public blockchain even for a test Ethereum network, compared to just running
the homomorphic encryption algorithm once.

We used the addition operation in this test. By adding 2 terms repeatedly
several times (number of additions) and doing this set of operations multiple
times (number of iterations), we can extract a mean error of the difference to
the originally expected result.

We have tried to keep the number of additions to a maximum of 250 and
the number of iterations to 10000. In Figure 5 we have plotted the number of
additions relative to the error that the accumulated operations entail.

Alongside the raw measurements, we have done a linear regression on the
data and plotted it in the Figure 5 so we can have a better understanding of
how the error evolves with a higher number of operations. The equation that
we obtained from the model is:

0.00256195 * X + 0.00368895 = Y’

The equation shows that by each extra operation that we make, an extra
~ 0.0025 of error gets added to the final result.

As explained before, the experiments done are on a very early iteration of
what homomorphic encryption is capable of. At the moment of experimenting,
the computing power has not reached a comfortable level to be used in fully
homomorphic encryption while also having the error be negligible. The com-
puting power available also does not economically allow for more complicated
operations to be done on the blockchain and so, any complicated polynomial
handling still cannot be run in a real user-facing blockchain.

We presented here only addition and multiplication as the operations that
allows homomorphic encryption to be used. If we consider these operations as
the numerical equivalent to the logical AND and XOR, we can conclude that
we can make any gate from just the addition and multiplication, performing
any data manipulation that we want, not being limited to only addition and
multiplication.

When the computing power will increase worldwide [26] [27] and both
blockchain operations and homomorphic encryption capabilities will be easier
to reach, there will be another roadblock. The storage needed on the blockchain
to store the data that people create needs to be sufficiently large and adaptive
to allow replication and checking between the blockchain nodes that hold the
aforementioned storage linked to them.

6. Future uses

A potential use of homomorphic encryption using the blockchain net-
works would consist in secure voting systems. Creating a protected, transpar-
ent and tamper-proof voting system always comes with the need for security
above all. The blockchain can provide a decentralized ledger that records votes,
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ensuring that no single entity can manipulate the results. At the same time,
homomorphic encryption allows votes to be encrypted, so that they can be
counted without being revealed

Another use is in the healthcare data management. Hospitals and health-
care providers can use blockchain to create a secure, decentralized record of
patient data. Homomorphic encryption can be used to encrypt this data, al-
lowing it to be analyzed and used for research without compromising patient
privacy.

7. Conclusions

In this paper, we managed to theorize a solution for the ever-increasing
volume of data that people hold. All this data, by itself, is of little to no use,
but at the same time can be sensitive enough to not allow third-party actors
to see a clear text version of it. By using homomorphic encryption algorithms,
we can allow external actors to act upon our data and obtain useful results,
while at the same time making the result verifiable to the external checkers
without leaking any clear text information from the data in question. The
result is available on the blockchain and can be accessed at any time from any
of the nodes that take part in the network. Regarding the computation power
availability, the resources existent at the moment do not allow for a widespread
and secure functional implementation of the aforementioned solution, but the
constant lowering of prices for both storage and pure computation will make
the execution of the model doable and practical to the masses.
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