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RUTHENIUM-BASED DSSC EFFICIENCY OPTIMIZATION BY GRAPHENE
QUANTUM DOT DOPING

Ana Birar! and Doina Maniili-Maximean?

This paper presents a novel method for ruthenium-based dye-sensitized so-
lar cell (DSSC) power-conversion efficiency o ptimization, w hich c onsists of T iO; active
layer sensitization with graphene quantum dots. Under proper excitation illumination,
graphene quantum-dots emit photons of wavelengths which are absorbed by the ruthenium
molecules in the active layer, thus enhancing free electron generation in the DSSC structure.
A power-conversion efficiency of 11.27%, under halogen lamp illumination, is reported for
ruthenium-based DSSC samples doped with graphene quantum-dots. This result represents
a difference of 9.57%, compared to a reference ruthenium-based DSSC sample with 1.70%
power-conversion efficiency, under halogen lamp illumination.
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1. Introduction

Dye-sensitized solar cells (DSSC) have been investigated as an alternative to inor-
ganic photovoltaic devices, due to their simple and cost-effective fabrication method [1],
environmental-friendly materials [2,3], and good performance under diffuse light conditions
[4]. Several theoretical and experimental studies have been carried out concerning DSSC
behaviour in extreme conditions, such as high temperature [5—7], in order to assess and op-
timize device performance. Other approaches to device power-conversion efficiency opti-
mization consisted of novel dye synthetisation [8§—13]. Ruthenium complexes are frequently
used in DSSC photosensitization, due to their long excited-state lifetime and high elec-
trochemical stability [14—16]. Among these compounds, di — tetrabutylammonium cis —
bis(isothiocyanato)bis(2,2' — bipyridyl — 4,4’ — dicarboxylato)ruthenium(II) (N719) is
particularly popular, due to its remarkable efficiency as a photosensitizer [17]. Previous
studies on inorganic composites subjected to electromagnetic fields have yielded promising
results in the control of the phase and polarization of the reflected and transmitted light [18,
19], coherent control of the scattered optical field by using electrically- and magnetically-
responsive colloids [20-22], and even the possibility of achieving quantum effects in certain
structures [23]. All these results can be successfully combined with the DSSC manufactur-
ing techniques in order to provide qualitatively-superior devices in terms of light concen-
tration, polarization control and guiding within the DSSC structure, and even nonlinear
conversion through desired magnetically-driven techniques.
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This work focuses on N719 dye enhancement with graphene quantum-dot (GQD)
doping, for DSSC performance optimization. The N719 dye absorption spectrum is shown
in Figure 1, where three absorption maxima are outlined: 313 nm, 390 nm and 512 nm,
respectively. By doping a N719-based DSSC sample with GQD particles, small photon
emitters are inserted in the proximity of the dye molecules, which, under proper illumination
(200-350 nm) [24, 25], will generate 400-500 nm photons close to ruthenium molecules,
where they will be easily absorbed, therefore contributing to free electron generation within
the active layer of the device, and further exploiting the 390 nm absorption peak of N719.
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Fig.1. Cross-reference between the AM1.5 solar emission spectrum [26]
and ruthenium (N719) absorption spectrum [27,28]

The work reported in this paper is an experimental demonstration of a theoretical
model presented in [29]. This model consists of a simulated DSSC structure, photosensi-
tized with N719, and doped with a variable concentration of GQD particles. The simulation
yields the structure’s incident photon-to-current conversion efficiency (IPCE) as a function
of GQD particle concentration (Cpp), where IPCE is defined as:

IPCE (L) = LHE (L) - @jn; - Neont (D

where LHE (A) is the light harvesting efficiency of the dye, ®;,; is the quantum of elec-
tron injection from the excited dye molecules into the 7iO; layer, and 1, is the electron
collection efficiency of the electrode from the 77O, layer. The simulated data shown in Fig-
ure 2 demonstrates an increase in photon-to-current conversion efficiency (IPCE), with an
increase in GQD concentration, compared to IPCE values obtained for the DSSC structure
untreated with GQD particles.

This paper reports a 11.27% power-conversion efficiency, under halogen lamp illumi-
nation, for ruthenium-based DSSC samples doped with graphene quantum-dots. This result
represents a difference of 9.57% , compared to a reference N719-based DSSC sample with
a 1.70% power-conversion efficiency, under halogen lamp illumination.
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Fig. 2. IPCE of the simulated DSSC structure, for different graphene
quantum-dot concentrations [29]

2. Fabrication method

The DSSC samples reported in this paper follow the standard architecture [4,14], with
the TiO, being photosensitized with a N719-based dye containing graphene quantum-dot
suspensions, which emit photons of 445 nm wavelength, under 350 nm excitation. Graphene
quantum dots were extracted from an aqueous solution with 1 mg/ml concentration (pur-
chased from Sigma-Aldrich), through evaporation at 70°C, for 24 hours, and suspended in
2 ml ethanol. The fluorescence of GQDs suspended in ethanol was verified under ultra-
violet illumination, as shown in Figure 3. Ruthenium N719 powder (Solaronix Ruthenizer
535-bisTBA) was mixed with ethanol and the GQD solution. Ready-made TiO, cathodes
(purchased from Solaronix) were photosensitized by being immersed for 5 hours in the
mixture. Once the the photosensitization step is complete, the cathode is cleaned of excess
solution with ethanol, and dried at 40°C, for 15 minutes. Ready-made platinum anodes
(purchased from Solaronix) were sintered at 300°C for 45 minutes, in order to eliminate
impurities, and the DSSC samples were assembled and filled with an iodide/triiodide elec-
trolytic solution (Solaronix Iodolyte AN-50), by following the standard procedure [4, 30].
For this work, two cathodes were photosensitized with mixtures containing 0.5 mg GQD
(QD0.5B),and 1 mg GQD (QD1B), respectively. An additional reference sample was photo-
sensitized using a simple ruthenium N719 dye solution, with no added GQD, and assembled
according to the standard procedure. The photosensitization and sample assembly steps, as
well as the resulting DSSC samples are presented in Figure 4.
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Fig. 3. Fluorescence emitted graphene quantum dot solutions, where a) 1
ml water with 1 mg of GQD suspensions, b) 2 ml ethanol with 0.5 mg
GQD suspensions, and ¢) 2 ml ethanol with 1 mg GQD suspensions

Fig. 4. DSSC sample fabrication steps, where 1 - QDO0.5B and QDIB
cathodes after photosensitization, 2 - QD0.5B and QD1B electrode assem-
bly, after N719 photosensitization
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3. Experimental characterization

The experimental current-voltage (IV) and power-voltage (PV) characteristics of the
resulting DSSC samples are measured using a standard setup, where a halogen lamp was
used as a light source. The emission spectrum of the halogen lamp is presented in Figure 5.
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Fig. 5. Emission spectra of the halogen lamp used as light source in the
experimental setup for DSSC sample characterization

DSSC samples internal parameter values were extracted from the experimental IV
curve, using an algorithm we developed in earlier work [31,32], which involves the asymp-
totic approximation method, followed by the W Lambert function [33,34]. The main device
internal parameters extracted are: open-circuit voltage, short-circuit current, cell shunt resis-
tance, cell series resistance, cell ideality factor, P, - cell maximum power yield, fill-factor,
and power-conversion efficiency.

4. Results and discussions

The experimental IV and PV curves obtained for DSSC samples QD0.5B and QD1B,
as well as the reference sample, are shown in Figure 6, and the device parameters extracted
from the experimental curves for all three samples are presented in Table 1.

The numerical values of device parameters obtained for the GQD doped samples in-
dicate a substantial performance improvement, compared to the reference sample. For 1
mg GQD sample doping, open-circuit voltage is increased with 100 mV, compared to the
reference value, and the short-circuit current increases to 50 HA. The shunt resistance is
increased by an order of magnitude for an added 1 mg of GQD, which indicates that GQD
particles do not create bulk defects within the TiO; layer. The series resistance remains to
the same order of magnitude (z 1073 ) which indicates that GQD doping does not intro-
duce interface defects within the cell. The ideality factor y remains in the [1;2] range for
GQD doped samples, which means that QD-DSSC devices still exhibit diode behavior. Fur-
thermore, the fill-factor FF is increased with 0.17 for the sample doped with 1 mg GQD,
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Fig. 6. IV and PV curves obtained for DSSC samples QDO0.5A and
QD1A, respectively, under halogen lamp illumination

Sample code | Uye (mV) | Ic (LA) | R, (kQ) | Rs (Q) Y | Puax (UW) | FF | 1 (%)
Reference 328 6.13 150 1.35-107° | 1.56 0.85 042 1.70
QDO0.5B 269 24.6 20 8.44-107° | 1.19 2.68 0.40 | 5.36
QDIB 434 50 7500 | 2.95-107° | 2.00 12.40 0.57 | 11.27

TABLE 1. Numerical values of device parameters for the studied DSSC-
QD samples, where U, - open-circuit voltage, ;. - short-circuit current,
R, - cell shunt resistance, R; - cell series resistance, y - cell ideality factor,
Pax - cell maximum power yield, FF - fill-factor, 1 - power-conversion
efficiency

which indicates that GQD doping improves device IV curve form. Most importantly, power-
conversion efficiency 7 reaches 11.27% for the sample doped with 1 mg GQD, compared
to the 1.70% efficiency yielded by the reference sample. These preliminary results indicate
a potential of DSSC performance optimization through quantum dot doping, without the
danger of introducing device defects, and by preserving the device’s diode behavior.

5. Conclusions

This paper presents a novel method for ruthenium DSSC device optimization through
graphene quantum-dot doping. The TiO; cathodes are doped with various masses of graphene
quantum dots, by treatment with a water-based solution containing graphene quantum dot
suspensions. A DSSC sample doped with 1 mg graphene quantum dots yielded a 11.27%
power-conversion efficiency, which represents a difference of 9.57%, compared to a 1.70%
efficiency obtained with a undoped reference ruthenium DSSC sample. Device parameter
values obtained for the quantum-dot treated sample also indicate that the process of dop-
ing does not insert bulk or interface defects within the device, and preserves its diode-like
behavior.
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