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THE INTERMEDIATE FERMIONIC SPECIES CREATED BY S0(3)
ROTATION IN THE REPRESENTATION OF THE DIRAC EQUATION

H. Moayeri', M. N. Najafi?

The question of how does the Dirac equation depend on the choice of the ~y
matrices has partially been addressed and explored in the literature. Since the discovery
of the Dirac equation, much research has been done on the construction of various sets
consisting of Dirac matrices that all of which follow the Cliford Algebra without referring
to the relationship between the elements of the matrices. In this paper we focus on this
question by considering a general form of v matrices, and we called the resulting spin
%fermions as intermediate fermion species (IFS). Our motivation for this study was
the lack of the general representation of these matrices despite the fact that more than
nine decades have been passed since the discovery of this well-known equation. Everyone
has used a specific representation of this equation according to their need; such as the
standard representation is known as Dirac-Pauli Representation, Weyl Representation
or Majorana representation. In this work,once and for all, the general form of Dirac and
Majorana representations in 2+1 dimensions is found . By inspecting the properties of
IF'S, we find that all species transform to each other by a SO(3) similarity transformation
in the space of parameters, that are the entities of the v matrices. It is worth mentioning
that the SO(3) symmetry found in this work (which is not space-time group symmetry)is
a new symmetry that is present for the elements of the general Dirac matrices. Many
properties, like eigenvalue problem and boost are tested for IFS.
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1. Introduction

The representations of fermions governed by the Dirac equation have vast applica-
tions in various fields in the fundamental and theoretical physics, ranging from elementary
particles [1] and quantum chromodynamics [2] to condensed matter [3], photonics [4], and
superconductivity [5]. Three important representations of the Dirac equation are the Dirac
fermions, the Weyl fermions and the Majorana fermions [6], depending on the choice of the
matrices in the Dirac equation (namely the v matrices), which show different properties in
some aspects [7].

Over the last decades, a lot of studies have focused on the representation of + matrices
and the corresponding governing algebra. However, up to author’s knowledge, there is no
comprehensive study with a focus on the possible relation of the elements as well as the
internal structure of these matrices, and the authors preferred to use standard forms which
fits most appropriately to the problem under investigation. As a generalization, the Cliford
algebra was developed, a subset of which is the Dirac algebra, that is employed to study
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various aspects of the Dirac matrices [8-13].

In the present paper we aim to uncover the essential properties of the elements and the
general form of 2 x 2 Dirac matrices defined by the algebra {v*,+*} = 2¢**. We will
demonstrate that the elements can be also fractional numbers. This can be appreciated
more in the Dirac equation. Since, the targeted particles are fermions with 1/2 spins and a
unique representation can be selected to highlight the nature of one type of these fermions.
For instance, the Majorana representation can lead to the real wave functions. However,
these spinors can be the wave functions of particles that are also the anti-particles of them-
selves. So, the general form of wave function in this representation is suggested to be the
Intermediate Fermion Species(IF'S).

The paper has been organized as follows: In the next section, we introduce the IFS particles
as the solution of the Dirac equation with general v matrices. Besides finding the wave
functions, we investigate the behavior of the IFS under boost transformation. In SEC. 3
we introduce SO(3) rotations which transform the IFS particles. Section 4 is devoted to
sub-representations of the SO(3) group, i.e. the U(1) group. In SEC. 5 we explain how to
find IF'S particles from the Dirac fermions. We close the paper by a conclusion.

2. General representation of linearized relativistic particles
In the natural units 7 = ¢ = 1 the Dirac equation in d + 1 dimensions is
(Y*Pu Fm) W (Z,t) =0 (1)

where p* is four- [or generally (d + 1)-] momentum (u = 0,1,...,d, in which 0 stands for
the time component, and the others for the spatial components), and v*s are the (even
dimensional) Dirac matrices that are not unique (the possible minimum dimension of which
depends on d) [7]. As a well-known fact, the above equation gives rise to the Klein-Gordon
equation, imposing some strong limitations on the choice (representation) of the v matrices.
Having chosen the representation of the v matrices, one may reach to the other represen-
tations by a simple similarity transformation. To be more precise, let us suppose that we
have

M =TypT (2)
where 7%, are the Dirac gamma matrices, and 7' is a general transformation. Then obvi-
ously the same Dirac equation is valid, i.e. (v/p, Fm)¥p (Z,t) = 0, where ¥ = TUp, is
the solution of the Dirac equation in the Dirac representation. It is the aim of the present
paper to study systematically this problem by considering an arbitrary form of vy matrices
and find the possible forms that T’s can have. We argue about some possible non-trivial
outcomes and consequences of this “generalization”, postponing any further investigations
and uncovering any possible consequences to the community and also our future works.

2.1. General s and wave functions

Let us start with the general expectation that the Klein-Gordon equation casts to a
product of two copies of Eq. 1 with the requirement [7]

VA PuPu = G0 Pupp = M, (3)
where gi\fy = diag (+1, -1, -+, —1) is the symmetric Minkowski metric, giving rise to {v*, "}

2g"” I, where [ is the d + 1 dimensional identity matrix. Throughout this paper we use the
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following Hermitian matrices:

705,70 ) ’YJEZ’?J ; j:1527"'7d (4)
for which the following relations hold
(A =20, () =4 Tr(3#) =0 (5)

Here after, we consider the case d = 1, for which the gamma matrices are 2 x 2. The
generalization of the formalism to higher dimension is straightforward. For this case, one
can easily show that the 4 matrices have to be in the following form (see Eq. 31 Appendix):

— b
At = ( € A =1 ”) =a,0; +buoy +cuo 0 =0,1,(au, by, c,) €R, (6)

a, +1b, —Cu
where 1, and o, = (2 (1)>, oy = 2(2 _01), o, = ((1) _01> are Pauli matrices. For

later convenience, let us define 42 with the same definition as above, so that u = 0,1,2
in the above equation. Using the anti-commutation relation of 4 matrices, one can show
that the general relation a,a, + b,b, + c,c, = 9., holds. One easily retrieves the standard
representation (SR) limit by setting cg = b1 = as = 1, and zero for the others.

By constructing the general Dirac equation using this general v matrices one can readily
find the plane wave solutions to be (see Eq. 32)

Dipsth(E, k) = (°E — iv'k — mI) (B, k) = 0, (7)
where k is the momentum of particle, and the explicit form of Dirg is
D _ C()E — ’iClk —m (ao — Zbo)E — i(a1 - Zbl)]{} (8)
IFS = (a() —+ Zbo)E — i(al —+ Zbl)k —CQE =+ iClk —m

By setting the determinant of Dipg to zero, we recover the dispersion relation E? = k2 4+m?
(E = £Ey, where Ey = vVk? + m?) as expected. The eigenfunctions are then given by

we=c( ) w=c() )

+ _ i(boEo—aik)*(aoEo+bik) 2 (coBo+m)*+cik?
where f* = 0=t e, and (P = gt
Eq. 33, and gives the correct solution for the standard representation (SR), i.e. Eq. 34 as

the SR limit is taken. The other approach to get the above result is going to the moving
reference (in which the particle is at rest, i.e. k = 0), see Egs. 35 and 36, which leads
consistently to a same result as Eq. 9 after the appropriate boost.

This is a compact form of

In the moving reference the eigenstates have to be simultaneously the eigenstates of the
spin operator S, through which its shape can be found in this general representation. By
requiring that S,v4 = j:%z/)i, it is not hard to find out that S, = %’yo = %’_yo. By going to
the SR limit, one easily finds that S, has no chance but following the relation S, = %’71.

Then using the fundamental commutation relation [S;, S;] = i€;jx Sk, we can find S, as
Eq. 37, which casts to
_ —iby
S,=132=1 €2 @2 =102 10
27 2 as + ibsy —C2 ’ ( )

with the following definitions

az = cob1 — boc1 , ba = agc1 — cpar , c2 = bpar — apby, (11)
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using of which one can easily show that

nroz0. (12)

where e#*? is totally antisymmetric symbol, and u,v,0 = 0,1,2. It should be noted that it
is Hermitian and traceless, and satisfies the following relations

{9::7°} = {87} =0, S2 =141 (13)

A = —inylyt =1, MY = —ie

These all can be easily generalized to 2 + 1-dimensional space-time, using the same #s.
The other important question is concerning the spin representation of the particles. Based
on the above-mentioned generalizations, we find that the general form of the spin operator
is S, = %’_y“ with the following eigenstates

8,80 = i (0o ) (19)
2(1+cy) ay, + Zb/“

where g =0, =1, and pu = 2 represent S, Sy and S, respectively. This also helps to find

the helicity operator for the rest frame (k # 0), i.e. (h=S-p/|p|), which is h = S, when

the particle moves in the z direction. Consequently, the right-hand and the left-hand side

wave functions are + and — eigenstates of S, respectively.

One can easily prove that three independent matrices at most can be constructed for the

case d = 1, i.e. two dimensional v matrices.

Before finishing this section, let us summarize the relationships between the elements

apay +buby + cucy =0, apa, =buby =cuc, =1, apb, = aucy =bucy =0 (15)
which is eqivalent to
a, = —byceeuué , bu = —CuAp€urh , Cpy = _aubOGMVG (16)

where (u,v,0 = 0,1,2), and Einstein summation rule was used.
In the next section we re-shape the above equations in a single clean form, which is the main
achievement of the present paper.

2.2. Boost of IFSs

A crucial question for any fermion that is governed by the Dirac equation is its behav-
ior under the boost. Let us denote the space-time Lorentz transformation as :L’L = Az,
then the wave functions transform as ¢'(z’) = S(A)y(x), where S(A) is a representation
of the Lorentz transformation. Here the prime means inertial system O’ that moves with
velocity v = tanh @ = f relative to the system O. Therefore one can easily verify that
AJ = A}l = cosh@ and A} = A} = sinh 6. In the 1+1-dimensional system we have just one

boost direction, so that

%:miﬂ:—smﬁhe =coshf =T (17)

so that coshg = \/% = \/% and sinhg = w/% = \/Egi;m. In analogy with the

boost of standard fermions, we examine the representation

S = exp(7y"7'0/2) = exp(—i7°7'6/2) = exp(—7°6/2)

(18)
= Icosh0/2 +4*sinh /2 = / Eotm 4 52, [Be—m
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which gives us the final result for the boost of the IFSs

G = \/Eg;m + ¢y \/E%T_nm (ag — iba)4/ Lg;m (19)
IFS = b FEo—m Eqg+m Ep—m
(a2 +1 2) 2m 2m C2 2m

The general Dirac equation can be obtained using the above formula for the boost of IFS,
see Appendix B for the details. To see if this formulation works, let us boost the solution in
the rest reference (¢grrg), for which we use Eq. 9. The result is abbreviated as follows (see
Eq. 36)

+
+m _ _ 1 "/Jl
sre=0 - o= (). (20)
where vjzf =Yy, =1+ co, w; = ap + tbg, and Y] = —ag + tbg. It should be taken into

account that g (k) = S(A)¥i (k = 0) which is exactly the Eq. 9. Now let us find a
matrix which satisfies DSIstﬁF’g(k = 0) = 0 which is the Dirac equation. To this end, we
notice that

Mmooy coEo + m —ic1k . _ _[(+cg)(Bg+m)—(eg—icy)k]\/Eg
SIFs¥ipg(k =0) =¢ ((ag + ibg)Eg — (a1 + iblk)) 10 = am(ite) (B tm)(BgTeom —coh) (1)

Then, by requiring that det D = E? — k? — m? one readily finds D = Drps. This shows that
one can reach to the wave function in general frame by a boost from the rest frame.

3. SO(3) symmetry in the representation of v matrices

In this section we aim to find the structure of the parameters that were obtained in
the previous section, i.e. the relation between a,,b, and c,, p = 0,1,2. To this end, let us
put the parameters into a 3 x 3 matrix O as follows.

as a1 Qo
O=|by b b (22)
C2 C1 C

Note that Og = I. At the first glance, it may seem ad hoc, but as will become clear soon, it
helps much to view the transformation between IFS (representations of the Dirac equation)
as a matrix operation. The interesting fact is that the conditions depicted in Eq. 15 can
actually be written in the form OOT = OTO = I, i.e. the matrix O is orthogonal and
reversible. As a result, the matrix O is a member of SO(3) group, so that various IFSs can
be reached via rotation in this space. Let us show a rotation matrix with the angle ¢ around
the unit vector n = nzi + nyj + nzlAc as follows:

o cosnp+n§(17cosnp) ngnqy(l —cosp) — nysing ngny (1 — cosp) + ny sin
Rp(p) =e "™ "% = | nyng (1 — cosp) + n.sing coscp—&-ni(l—cos«p) nynz(l — cos @) — ng sin ¢ (23)
nzng (1l — cos ) — ny sin @ nzNy (1l — cos ) + ng sin ¢ cosap+n§(1 — cos @)

so that J-7 = ideniy’)b:O. By matching elements of O matrix with R,,(¢) we obtain
2cos¢ = as + by + ¢g — 1 in such a way that if as = by = ¢y = 1 then ¢ = 0, and if the
other parameters are set to zero, then R,(p) = I as expected. In general 2n, sin(y) =
by — a1 , 2nysin(e) = ag —c2 , 2n,sin(p) = ¢1 — by and also nyn, = 3_;’2%7511_00 ,
% %. The above equations give us the full correspondence
between the space of representation of the Dirac equation (shown by O matrices) and the
general representation of SO(3) group. Using the correspondence between SO(3) and SU(2)
groups, one can associate the representation of the IFSs with SU(2) group. We make this cor-

respondence using the (.S,,) that we found in the previous section as the generators of SU(2).

NgNy =

y NMyNy =
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More precisely, let us define U = e~#S7¢ = (COS ©/2 —inye,sing/2  —n, (b, +ia,)sing/2 )

nu(by —ia,)sing/2  cosp/2 +iny,c, sing/2
where det(U) = 1. An example is n,, = a, for which U = ( o3 ©/2  —isin @/2)' Gen-
—ising/2  cosp/2
CyTy (ay —ib,)x,
(ay + by )z, —cyTy,
lex:/ (aV - ibl’)m:/ : / / / T
(ay + ib,)x!, e, > is such that (:C Yy oz ) = (as Y z) R, (p).

v

erally if we define M = ( > then the transformed matrix M’ =

UMUT = (

4. sub-representations of IFS

By “sub-representation”, we mean restricted 7 representations. For instance, let us
consider the Majorana representation for which fermions and antifermions are the same,
limiting strongly the range of the entities of 4 matrices. Fermions (¢) and antifermions
(1. obtained by charge conjugation) satisfy the Dirac equation in the presence of electro-
magnetic field (A,) [y (pp —eAy) —mlY = 0, [Y*(py +eA,) —m]. = 0. If there is
a transformation U such that U(y*)*U~! = —4#, then one can show by inspection that
Ut* is a solution of the second equation, giving us no chance but 1. = e**Uy* where a
is an arbitrary phase. These fermions are Majorana, in which, for the simple case U = [
(identity matrix), the wave function of fermions and antifermions are the same. Without
loss of generality, we set U = I in this paper (in other cases we always can transform v so
that it applies). Let us call the v matrices that satisfy this condition constitute the general
Majorana representation, which are

(0 -1 . ( sin — COoS . {cos sin N

My =+ (1 0 ) M =1 (—cogn —sinZ) e =1 <sin:7’ —cogn> were "M
stands for "Majorana”, and the "—7m < n < 7”. If ky = kcosf and ky = ksinf the
eigenstates are calculate to be

YM(E, k) = 1 (

B \/QE[E—i-k cos (6+n)]

kcos(0+n)+E>' (24)

ksin (6 +n) + £im

For Weyl-Majorana (WM) fermions, one sets m = 0, then "M will be

WM _ 1 cos (0 +n)+1
w B 2[14-cos (0+1)] ( sin (0 + 77) ’ (25)

Note that in the above equation E and k cancel out, so that it’s form is simpler than Eq. 24.
It is worth mentioning that we can reach the Majorana representation starting from the

“rotate” the v matrices in the Dirac

Dirac equation by a rotation. To be more precise, if we
representation about n by the angle ¢, which are

_ sin (n)+£1 o — cos (1) _ cos (n) 2
" = ammmarm Y T Yemm e @) - Vom0

. We notice here that all quantities depend on a single parameter,
i.e. 1, showing that the transformation is isomorphism to U(1) group, which is a subgroup
of SU(2), which itself is homomorphism to SO(3).

where ¢ = cos™? (%)

5. Transformation of Dirac to generalized particles

In this section we find the general transformations 7" using of which IFSs are ob-
tained from standard (Dirac) representation. For the definition of T see Eq. 2. Using the
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calculations presented in Appendix C one can show that

L+ qgee™  —(q1 — qoe™™)
T=/ . . 27
¢ ( g1 — e 14 qgee™® @7

where o = $E; ' \/(Eo +m) (Eo + com + cok) and o = tan ™! 2mtbel anq

agm+ask’

Eo— Eo—com—csk
0 =\ Bogm > 92 =\ BefegmTesk (28)
One can easily show that 77T = TTT = I and detT = 1, showing that they are unitary
transformations. These matrices are also represented by T = e~%"¢/2 were ¢ is a real

parameter, rotating W, to ¥, .., i.e. Ts = ¢pg. Using this notation, one can easily find
the rotation parameters, represented by # = (n,,n,,n,), satisfying the following identities

n,sinp/2 = %Sina\/(l + ) (1—co — k)

V=3 (et +eaf) - cosay/ (14 8) (1= - o)
n.sing/2 = -1 sina\/(l — Y (1—co — 2 k)

cos /2 = 1 W(l £ ) (140 +eak) +oosay/(1-2) (1—co — 025)}

from which one can show n2 —i—n%—i—nﬁ = 1. As an example, let us consider the transformation
Ts.m that converts a standard Dirac particle to a Majorana particle

Toni = o (1 + e —(q - q’z€“")> (30)

N[

ny sin /2 =
(29)

@ — e’ 1+ qighe

were o' = %Egl\/(Eo +m)(Ey + c2k), o/ =tan~ (—m/e1), ¢, = q1, and ¢} = ,/ggjrzg’]z

6. Conclusion

In this paper we considered a general form for the v matrices. Motivated by the fact
that the resulting fermions are “intermediate” in the sense of normal representation (i.e.
standard representation, Weyl representation, etc.) we call them the “intermediate fermion
species” (IFS). Many properties of the IFS were calculated and explored, like the eigenvalue
problem, boost and rotation, and transformation between species. We observed that the
latter (the transformation between species) corresponds to SO(3) rotations in the space of
the parameters of the problem (the entities of the v matrices). Therefore any arbitrary
representation of spin % fermions is obtained by a SO(3) rotation in the parameters of the v
matrices. Based on this, we calculated the sub-representations which admits the Majorana
fermions. Importantly, we clearly established that any IFS can be obtained from the Dirac
spinors by a SU(2) similarity transformation.
It is worth mentioning that this transformation does not change the transport properties
of particles. For instance, we measured the transport parameters of the Klein tunneling,
and noticed that none of these parameters (reflection and transmission coefficients) change
under the mentioned SO(3) transformation in normal incidence. This motivated us to call
it “the symmetry” of the Dirac equation.
According to the Noether theorem this symmetries leads to some conservations between IFS
particles. In our future research we intend to concentrate on this topic, and also finding the
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other aspects of this transformation, such as Andreev reflection, to see if we can design an
experiment which distinguish between these particles.

Appendix A. The properties of ¥ matrices

For interested readers a detailed description of first subsection in section two is pre-
sented in this Appendix. In 1+ 1, ¥ matrices should be of the following form
c a, —1ib
= s " )5 au,b eR 31
K (au + by —Cpu ) O 3D
for which p,v = 0,1. Using the anticommutation relation of 4 matrices (Eq. 3), one can

generally show that a,a, +b,b, + c,c, = 6,0 In the 141 dimension, according to the what
had been said, we only need 4° and !

(YE — 'k —mI) (B, k) ' **=5) = (3°E — ik — mI) (B, k) 'F*=F) =0 (32)

therefore, the non-differential form of intermediate fermionic species (IFS) Dirac equation
will be Eq. 8. We have non-trivial answer, if E? = k2 + m? = E = +Ey = £Vk2 + m?
, which we also expect it before. General shape of free particle’s wave function in 1 + 1
dimensions is:

B 1 5 i(boEo—alk)—(a_oEo-‘rblk)
U1rs” = C | i(bo Bo—ark)+(aoEo+bik) | » Yrrs’ =€ COE“J”{”””“ (33)

coEo+m—icik

(coEo+m)2+cfk:2
2E¢(Eo—cok+com)*
0) they Turns into:

where ( = For Standard Representation limit (co = by =ay =1, etc =

m 1 m _—k_
Ye, = @<M> , Yy = \/% (E{nl) (34)
E+4+m
The non-differential Dirac equation in k£ = 0 reduces as follows:
coE —m  (ap —ibo)E
=0=FE=4= 35
((ao +ibg)E  —coE—m Yorrs = m = ( )

c 1 c _(ao—zbo)
’l/)()IFSJr (E+ = +m) = 1; 0 <a0+ibg> 711[}UIFS— (E— = 7m) = HTO ( 11+ 0 ) . (36)

14+co
We know the answers of Dirac equation in the case k=0, namely ., must also be the
eigenstates of the operator S,. So, we look for the matrix form of operator S, such that
S,y = :t%wi are its eigenstates. Then S, = %70 = %’?0. By respecting that 7' in the limit
SR, becomes similar to Sy, we can assume that S, = %ﬁl. Now, by using the fundamental
commutation relation [S;, S;] =i €, Sk, we can also obtain S,:

(b0a1 — aobl) (Cobl — bQC1) — i(a001 — Coa1)>
29, = ) ) 37
<(Cob1 - boC1) + z(aocl — Coal) —(boa1 — aobl) ( )

It is clear that the matrix S, is Hermitian and traceless. By performing the respected
calculations, we can see that:

{5:,7°} = {807} = 0,8.7° # 0 # S, 7,52 = 11 (38)

According to (4) condition, it can be say that 25, has the all conditions of a ¥ (Eq. 10)
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Appendix B. Obtaining Standard Dirac equation by Lorentz operator

In this Appendix we want to obtain the non-differential form of Dirac equation in
Standard Representation by acting of Lorentz operator on wave function in rest framework

1 0
ie. g, = <0) W = (1) Lorentz operator in (141) dimension in Standard Represen-

tation is

E%er V ngm | E Ey+m
Ss = Fo—m \/m , = S wso+ 0¢s+ < ) . (39)
2m 2m
If we introduce Dirac equation with Dy then D S 1., = Db, = 0. By requiring that
det(D,) = E — k* — m? = 0 one readily find

D, - (E;km (E‘fm)> by =0 (40)

that is exactly the Dirac equation known in (1+1).

Appendix C. Transformation matrix of various spinors

Standard Dirac Hamiltonian and Intermediate Fermionic Species Dirac Hamiltonian
are

(™ k o com + cok (ag — ib2)k + (ag — ibg)m
“\k —m) TS \(ag +iby)k + (ag 4 ibg)m —(com + cok) ’

(41)

We know that eigenvalues of both Hamiltonians are the same (+FEp). Then in according to
eigenstates of those, one can obtain nonsingular matrices ©, and®,, . as follows

Eo+m _ Eo—m Eg-i—com—i-czk —e— —ia [ Eg—com—cak
C"‘) _ 2E0 2E0 _ 2E0

s \/ngm \/Eo+m ’ IFS B Eg—com—cak FEo+comtcak (42)
2, 3E, \/ 28, \/ 2B,
where o = tan ™! (%), then
Ey 0
@LHs@ = 9 HIFS‘@IFS = ( 0 _EO) : (43)

This suggest that ®1Fs@ H, 0 @erps =H, ..

that Ty = 1,4, so that

With definition @s@JIfFS = T one can see

14+ q1g2e™  —(q1 — g™
T = Ql ( _ (1o 1( —ioc) (44)
Q1 — q2¢€ + q192¢

where

\/(Eo+m)(Eo+com+czk) o = tan—"1 (bomtbak Fo— Bo—com—cok
Q 2FE, apm—+ask E0+77L » 42 = E’0+com+02k
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