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THE INTERMEDIATE FERMIONIC SPECIES CREATED BY SO(3)

ROTATION IN THE REPRESENTATION OF THE DIRAC EQUATION

H. Moayeri1, M. N. Najafi2

The question of how does the Dirac equation depend on the choice of the γ

matrices has partially been addressed and explored in the literature. Since the discovery

of the Dirac equation, much research has been done on the construction of various sets

consisting of Dirac matrices that all of which follow the Cliford Algebra without referring

to the relationship between the elements of the matrices. In this paper we focus on this

question by considering a general form of γ matrices, and we called the resulting spin
1
2

fermions as intermediate fermion species (IFS). Our motivation for this study was

the lack of the general representation of these matrices despite the fact that more than

nine decades have been passed since the discovery of this well-known equation. Everyone

has used a specific representation of this equation according to their need; such as the

standard representation is known as Dirac-Pauli Representation, Weyl Representation

or Majorana representation. In this work,once and for all, the general form of Dirac and

Majorana representations in 2+1 dimensions is found . By inspecting the properties of

IFS, we find that all species transform to each other by a SO(3) similarity transformation

in the space of parameters, that are the entities of the γ matrices. It is worth mentioning

that the SO(3) symmetry found in this work (which is not space-time group symmetry)is

a new symmetry that is present for the elements of the general Dirac matrices. Many

properties, like eigenvalue problem and boost are tested for IFS.
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1. Introduction

The representations of fermions governed by the Dirac equation have vast applica-

tions in various fields in the fundamental and theoretical physics, ranging from elementary

particles [1] and quantum chromodynamics [2] to condensed matter [3], photonics [4], and

superconductivity [5]. Three important representations of the Dirac equation are the Dirac

fermions, the Weyl fermions and the Majorana fermions [6], depending on the choice of the

matrices in the Dirac equation (namely the γ matrices), which show different properties in

some aspects [7].

Over the last decades, a lot of studies have focused on the representation of γ matrices

and the corresponding governing algebra. However, up to author’s knowledge, there is no

comprehensive study with a focus on the possible relation of the elements as well as the

internal structure of these matrices, and the authors preferred to use standard forms which

fits most appropriately to the problem under investigation. As a generalization, the Cliford

algebra was developed, a subset of which is the Dirac algebra, that is employed to study
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various aspects of the Dirac matrices [8-13].

In the present paper we aim to uncover the essential properties of the elements and the

general form of 2 × 2 Dirac matrices defined by the algebra {γµ, γν} = 2gµν . We will

demonstrate that the elements can be also fractional numbers. This can be appreciated

more in the Dirac equation. Since, the targeted particles are fermions with 1/2 spins and a

unique representation can be selected to highlight the nature of one type of these fermions.

For instance, the Majorana representation can lead to the real wave functions. However,

these spinors can be the wave functions of particles that are also the anti-particles of them-

selves. So, the general form of wave function in this representation is suggested to be the

Intermediate Fermion Species(IFS).

The paper has been organized as follows: In the next section, we introduce the IFS particles

as the solution of the Dirac equation with general γ matrices. Besides finding the wave

functions, we investigate the behavior of the IFS under boost transformation. In SEC. 3

we introduce SO(3) rotations which transform the IFS particles. Section 4 is devoted to

sub-representations of the SO(3) group, i.e. the U(1) group. In SEC. 5 we explain how to

find IFS particles from the Dirac fermions. We close the paper by a conclusion.

2. General representation of linearized relativistic particles

In the natural units ~ = c = 1 the Dirac equation in d+ 1 dimensions is

(γµpµ ∓m) Ψ (~x, t) = 0 (1)

where pµ is four- [or generally (d + 1)-] momentum (µ = 0, 1, ..., d, in which 0 stands for

the time component, and the others for the spatial components), and γµs are the (even

dimensional) Dirac matrices that are not unique (the possible minimum dimension of which

depends on d) [7]. As a well-known fact, the above equation gives rise to the Klein-Gordon

equation, imposing some strong limitations on the choice (representation) of the γ matrices.

Having chosen the representation of the γ matrices, one may reach to the other represen-

tations by a simple similarity transformation. To be more precise, let us suppose that we

have

γµ = TγµDT
−1 (2)

where γµD are the Dirac gamma matrices, and T is a general transformation. Then obvi-

ously the same Dirac equation is valid, i.e. (γµDpµ ∓m) ΨD (~x, t) = 0, where Ψ ≡ TΨD is

the solution of the Dirac equation in the Dirac representation. It is the aim of the present

paper to study systematically this problem by considering an arbitrary form of γ matrices

and find the possible forms that T ’s can have. We argue about some possible non-trivial

outcomes and consequences of this “generalization”, postponing any further investigations

and uncovering any possible consequences to the community and also our future works.

2.1. General γs and wave functions

Let us start with the general expectation that the Klein-Gordon equation casts to a

product of two copies of Eq. 1 with the requirement [7]

γνγµpνpµ = gµνM pνpµ = m2, (3)

where gM
µν = diag (+1,−1, · · · ,−1) is the symmetric Minkowski metric, giving rise to {γµ, γν} =

2gµνI, where I is the d+ 1 dimensional identity matrix. Throughout this paper we use the
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following Hermitian matrices:

γ0 ≡ γ̄0 , γj ≡ iγ̄j ; j = 1, 2, · · · , d (4)

for which the following relations hold

{γ̄µ, γ̄ν} = 2δµν , (γ̄µ)
†

= γ̄µ , Tr (γ̄µ) = 0 (5)

Here after, we consider the case d = 1, for which the gamma matrices are 2 × 2. The

generalization of the formalism to higher dimension is straightforward. For this case, one

can easily show that the γ̄ matrices have to be in the following form (see Eq. 31 Appendix):

γ̄µ =

(
cµ aµ − ibµ

aµ + ibµ −cµ

)
= aµσx + bµσy + cµσz;µ = 0, 1, (aµ, bµ, cµ) ∈ <, (6)

where 1, and σx =

(
0 1

1 0

)
, σy = i

(
0 −1

1 0

)
, σz =

(
1 0

0 −1

)
are Pauli matrices. For

later convenience, let us define γ̄2 with the same definition as above, so that µ = 0, 1, 2

in the above equation. Using the anti-commutation relation of γ̄ matrices, one can show

that the general relation aµaν + bµbν + cµcν = δµν holds. One easily retrieves the standard

representation (SR) limit by setting c0 = b1 = a2 = 1, and zero for the others.

By constructing the general Dirac equation using this general γ matrices one can readily

find the plane wave solutions to be (see Eq. 32)

DIFSψ(E, k) ≡
(
γ̄0E − iγ̄1k −mI

)
ψ(E, k) = 0, (7)

where k is the momentum of particle, and the explicit form of DIFS is

DIFS ≡
(

c0E − ic1k −m (a0 − ib0)E − i(a1 − ib1)k

(a0 + ib0)E − i(a1 + ib1)k −c0E + ic1k −m

)
(8)

By setting the determinant of DIFS to zero, we recover the dispersion relation E2 = k2 +m2

(E = ±E0, where E0 =
√
k2 +m2) as expected. The eigenfunctions are then given by

ψ+E0

IFS = ζ

(
1

f+

)
, ψ−E0

IFS = ζ

(
f−

1

)
(9)

where f± = i(b0E0−a1k)±(a0E0+b1k)
c0E0+m∓ic1k , and ζ2 =

(c0E0+m)2+c21k
2

2E0(E0−c2k+c0m) . This is a compact form of

Eq. 33, and gives the correct solution for the standard representation (SR), i.e. Eq. 34 as

the SR limit is taken. The other approach to get the above result is going to the moving

reference (in which the particle is at rest, i.e. k = 0), see Eqs. 35 and 36, which leads

consistently to a same result as Eq. 9 after the appropriate boost.

In the moving reference the eigenstates have to be simultaneously the eigenstates of the

spin operator Sz, through which its shape can be found in this general representation. By

requiring that Szψ± = ± 1
2ψ±, it is not hard to find out that Sz = 1

2γ
0 = 1

2 γ̄
0. By going to

the SR limit, one easily finds that Sy has no chance but following the relation Sy = 1
2 γ̄

1.

Then using the fundamental commutation relation [Si, Sj ] = iεijkSk, we can find Sx as

Eq. 37, which casts to

Sx ≡ 1
2 γ̄

2 = 1
2

(
c2 a2 − ib2

a2 + ib2 −c2

)
; (10)

with the following definitions

a2 = c0b1 − b0c1 , b2 = a0c1 − c0a1 , c2 = b0a1 − a0b1, (11)
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using of which one can easily show that

iγ̄0γ̄1γ̄2 = −iγ0γ1γ2 = I , γ̄µγ̄ν = −iεµνθγ̄θ. (12)

where εµνθ is totally antisymmetric symbol, and µ, ν, θ = 0, 1, 2. It should be noted that it

is Hermitian and traceless, and satisfies the following relations{
Sx, γ̄

0
}

=
{
Sx, γ̄

1
}

= 0 , S2
x = 1

4I (13)

These all can be easily generalized to 2 + 1-dimensional space-time, using the same γ̄s.

The other important question is concerning the spin representation of the particles. Based

on the above-mentioned generalizations, we find that the general form of the spin operator

is Sµ = 1
2 γ̄

µ with the following eigenstates

|Sµ±〉 = 1√
2(1±cµ)

(
1± cµ
aµ + ibµ,

)
(14)

where µ = 0, µ = 1, and µ = 2 represent Sz, Sy and Sx respectively. This also helps to find

the helicity operator for the rest frame (k 6= 0), i.e. (h = S · p/ | p |), which is h = Sz when

the particle moves in the z direction. Consequently, the right-hand and the left-hand side

wave functions are + and − eigenstates of Sz respectively.

One can easily prove that three independent matrices at most can be constructed for the

case d = 1, i.e. two dimensional γ matrices.

Before finishing this section, let us summarize the relationships between the elements

aµaν + bµbν + cµcν = δµν , aµaµ = bµbµ = cµcµ = 1 , aµbµ = aµcµ = bµcµ = 0 (15)

which is eqivalent to

aµ = −bνcθεµνθ , bµ = −cνaθεµνθ , cµ = −aνbθεµνθ (16)

where (µ, ν, θ = 0, 1, 2), and Einstein summation rule was used.

In the next section we re-shape the above equations in a single clean form, which is the main

achievement of the present paper.

2.2. Boost of IFSs

A crucial question for any fermion that is governed by the Dirac equation is its behav-

ior under the boost. Let us denote the space-time Lorentz transformation as x′µ = Λµνxν ,

then the wave functions transform as ψ′(x′) = S(Λ)ψ(x), where S(Λ) is a representation

of the Lorentz transformation. Here the prime means inertial system O′ that moves with

velocity v = tanh θ ≡ β relative to the system O. Therefore one can easily verify that

Λ0
0 = Λ1

1 = cosh θ and Λ1
0 = Λ0

1 = sinh θ. In the 1+1-dimensional system we have just one

boost direction, so that
E
m = k

mβ = sinh θ
β = cosh θ ≡ Γ (17)

so that cosh θ
2 =

√
Γ+1

2 =
√

E0+m
2m and sinh θ

2 =
√

Γ−1
2 =

√
E0−m

2m . In analogy with the

boost of standard fermions, we examine the representation

S = exp(γ0γ1θ/2) = exp(−iγ̄0γ̄1θ/2) = exp(−γ̄2θ/2)

= I cosh θ/2 + γ̄2 sinh θ/2 =
√

E0+m
2m + γ̄2

√
E0−m

2m

(18)
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which gives us the final result for the boost of the IFSs

SIFS =

√E0+m
2m + c2

√
E0−m

2m (a2 − ib2)
√

E0−m
2m

(a2 + ib2)
√

E0−m
2m

√
E0+m

2m − c2
√

E0−m
2m

 (19)

The general Dirac equation can be obtained using the above formula for the boost of IFS,

see Appendix B for the details. To see if this formulation works, let us boost the solution in

the rest reference (ψ0IFS), for which we use Eq. 9. The result is abbreviated as follows (see

Eq. 36)

ψ±mIFS (k = 0) = 1√
2(1+c0)

(
ψ±1
ψ±2

)
. (20)

where ψ+
1 = ψ−2 = 1 + c0, ψ+

2 = a0 + ib0, and ψ−1 = −a0 + ib0. It should be taken into

account that ψ±IFS(k) = S(Λ)ψ±mIFS (k = 0) which is exactly the Eq. 9. Now let us find a

matrix which satisfies DSIFSψ
+m
IFS (k = 0) = 0 which is the Dirac equation. To this end, we

notice that

SIFSψ
+m

IFS
(k = 0) = %

(
c0E0 +m− ic1k

(a0 + ib0)E0 − i(a1 + ib1k)

)
; % =

[(1+c0)(E0+m)−(c2−ic1)k]
√
E0√

2m(1+c0)(E0+m)(E0+c0m−c2k)
. (21)

Then, by requiring that detD = E2− k2−m2 one readily finds D = DIFS. This shows that

one can reach to the wave function in general frame by a boost from the rest frame.

3. SO(3) symmetry in the representation of γ matrices

In this section we aim to find the structure of the parameters that were obtained in

the previous section, i.e. the relation between aµ, bµ and cµ, µ = 0, 1, 2. To this end, let us

put the parameters into a 3× 3 matrix O as follows.

O ≡

a2 a1 a0

b2 b1 b0
c2 c1 c0

 (22)

Note that OS = I. At the first glance, it may seem ad hoc, but as will become clear soon, it

helps much to view the transformation between IFS (representations of the Dirac equation)

as a matrix operation. The interesting fact is that the conditions depicted in Eq. 15 can

actually be written in the form OOT = OTO = I, i.e. the matrix O is orthogonal and

reversible. As a result, the matrix O is a member of SO(3) group, so that various IFSs can

be reached via rotation in this space. Let us show a rotation matrix with the angle ϕ around

the unit vector n̂ = nxî+ ny ĵ + nz k̂ as follows:

Rn(ϕ) = e
−iJ·n̂ϕ

=

 cosϕ + n2
x(1− cosϕ) nxny(1− cosϕ)− nz sinϕ nxnz(1− cosϕ) + ny sinϕ

nynx(1− cosϕ) + nz sinϕ cosϕ + n2
y(1− cosϕ) nynz(1− cosϕ)− nx sinϕ

nznx(1− cosϕ)− ny sinϕ nzny(1− cosϕ) + nx sinϕ cosϕ + n2
z(1− cosϕ)

 (23)

so that J· n̂ = idRn(ϕ)
dϕ |ϕ=0. By matching elements of O matrix with Rn(ϕ) we obtain

2 cosϕ = a2 + b1 + c0 − 1 in such a way that if a2 = b1 = c0 = 1 then ϕ = 0, and if the

other parameters are set to zero, then Rn(ϕ) = I as expected. In general 2nz sin(ϕ) =

b2 − a1 , 2ny sin(ϕ) = a0 − c2 , 2nx sin(ϕ) = c1 − b0 and also nxny = b2+a1
3−a2−b1−c0 , nxnz =

a0+c2
3−a2−b1−c0 , nynz = c1+b0

3−a2−b1−c0 . The above equations give us the full correspondence

between the space of representation of the Dirac equation (shown by O matrices) and the

general representation of SO(3) group. Using the correspondence between SO(3) and SU(2)

groups, one can associate the representation of the IFSs with SU(2) group. We make this cor-

respondence using the (Sµ) that we found in the previous section as the generators of SU(2).
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More precisely, let us define U = e−iS·n̂ϕ =

(
cosϕ/2− inµcµ sinϕ/2 −nµ(bµ + iaµ) sinϕ/2

nµ(bµ − iaµ) sinϕ/2 cosϕ/2 + inµcµ sinϕ/2

)
where det(U) = 1. An example is nµ = aµ for which U =

(
cosϕ/2 −i sinϕ/2

−i sinϕ/2 cosϕ/2

)
. Gen-

erally if we define M =

(
cνxν (aν − ibν)xν

(aν + ibν)xν −cνxν

)
then the transformed matrix M ′ =

UMU† =

(
cνx
′
ν (aν − ibν)x′ν

(aν + ibν)x′ν −cνx′ν

)
is such that

(
x′ y′ z′

)
=
(
x y z

)
R>n (ϕ).

4. sub-representations of IFS

By “sub-representation”, we mean restricted γ representations. For instance, let us

consider the Majorana representation for which fermions and antifermions are the same,

limiting strongly the range of the entities of γ matrices. Fermions (ψ) and antifermions

(ψc obtained by charge conjugation) satisfy the Dirac equation in the presence of electro-

magnetic field (Aµ) [γµ(pµ − eAµ)−m]ψ = 0 , [γµ(pµ + eAµ)−m]ψc = 0. If there is

a transformation U such that U(γµ)∗U−1 = −γµ, then one can show by inspection that

Uψ∗ is a solution of the second equation, giving us no chance but ψc = eiαUψ∗ where α

is an arbitrary phase. These fermions are Majorana, in which, for the simple case U = I

(identity matrix), the wave function of fermions and antifermions are the same. Without

loss of generality, we set U = I in this paper (in other cases we always can transform γ so

that it applies). Let us call the γ matrices that satisfy this condition constitute the general

Majorana representation, which are

γ0
M = ±i

(
0 −1

1 0

)
, γ1

M = i

(
sin η − cos η

− cos η − sin η

)
, γ1

M = i

(
cos η sin η

sin η − cos η

)
were ”M”

stands for ”Majorana”, and the ”−π 6 η 6 π”. If k1 = k cos θ and k2 = k sin θ the

eigenstates are calculate to be

ψM(E, k) = 1√
2E[E+k cos (θ+η)]

(
k cos (θ + η) + E

k sin (θ + η) +±im

)
. (24)

For Weyl-Majorana (WM) fermions, one sets m = 0, then ψWM will be

ψWM = 1√
2[1+cos (θ+η)]

(
cos (θ + η) + 1

sin (θ + η)

)
. (25)

Note that in the above equation E and k cancel out, so that it’s form is simpler than Eq. 24.

It is worth mentioning that we can reach the Majorana representation starting from the

Dirac equation by a rotation. To be more precise, if we “rotate” the γ matrices in the Dirac

representation about n̂ by the angle ϕ, which are

nx = sin (η)±1√
(3−sin (η))(1+sin (η))

, ny = − cos (η)√
(3−sin (η))(1+sin (η))

, nz = cos (η)√
(3−sin (η))(1+sin (η))

, (26)

where ϕ = cos−1 ( sin (η)−1
2 ). We notice here that all quantities depend on a single parameter,

i.e. η, showing that the transformation is isomorphism to U(1) group, which is a subgroup

of SU(2), which itself is homomorphism to SO(3).

5. Transformation of Dirac to generalized particles

In this section we find the general transformations T using of which IFSs are ob-

tained from standard (Dirac) representation. For the definition of T see Eq. 2. Using the
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calculations presented in Appendix C one can show that

T = %′
(

1 + q1q2e
iα −(q1 − q2e

−iα)

q1 − q2e
iα 1 + q1q2e

−iα

)
(27)

where %′ ≡ 1
2E
−1
0

√
(E0 +m) (E0 + c0m+ c2k) and α = tan−1 b0m+b2k

a0m+a2k
, and

q1 =
√

E0−m
E0+m , q2 =

√
E0−c0m−c2k
E0+c0m+c2k

(28)

One can easily show that TT † = T †T = I and detT = 1, showing that they are unitary

transformations. These matrices are also represented by T = e−iσ·n̂ϕ/2, were ϕ is a real

parameter, rotating Ψ
S

to Ψ
IFS

, i.e. TψS = ψIFS. Using this notation, one can easily find

the rotation parameters, represented by n̂ = (nx, ny, nz), satisfying the following identities

nx sinϕ/2 = 1
2 sinα

√(
1 + m

E

) (
1− c0mE − c2

k
E

)
ny sinϕ/2 = 1

2

[√(
1− m

E

) (
1 + c0

m
E + c2

k
E

)
− cosα

√(
1 + m

E

) (
1− c0mE − c2

k
E

)]
nz sinϕ/2 = − 1

2 sinα
√(

1− m
E

) (
1− c0mE − c2

k
E

)
cosϕ/2 = 1

2

[√(
1 + m

E

) (
1 + c0

m
E + c2

k
E

)
+ cosα

√(
1− m

E

) (
1− c0mE − c2

k
E

)]
(29)

from which one can show n2
x+n2

y+n2
z = 1. As an example, let us consider the transformation

TS-M that converts a standard Dirac particle to a Majorana particle

TS-M = %′′

(
1 + q′1q

′
2e
iα′ −(q′1 − q′2e−iα

′
)

q′1 − q′2eiα
′

1 + q′1q
′
2e
−iα′

)
(30)

were %′′ = 1
2E
−1
0

√
(E0 +m)(E0 + c2k), α′ = tan−1(−m/c1), q′1 = q1, and q′2 =

√
E0−c2k
E0+c2k

.

6. Conclusion

In this paper we considered a general form for the γ matrices. Motivated by the fact

that the resulting fermions are “intermediate” in the sense of normal representation (i.e.

standard representation, Weyl representation, etc.) we call them the “intermediate fermion

species” (IFS). Many properties of the IFS were calculated and explored, like the eigenvalue

problem, boost and rotation, and transformation between species. We observed that the

latter (the transformation between species) corresponds to SO(3) rotations in the space of

the parameters of the problem (the entities of the γ matrices). Therefore any arbitrary

representation of spin 1
2 fermions is obtained by a SO(3) rotation in the parameters of the γ

matrices. Based on this, we calculated the sub-representations which admits the Majorana

fermions. Importantly, we clearly established that any IFS can be obtained from the Dirac

spinors by a SU(2) similarity transformation.

It is worth mentioning that this transformation does not change the transport properties

of particles. For instance, we measured the transport parameters of the Klein tunneling,

and noticed that none of these parameters (reflection and transmission coefficients) change

under the mentioned SO(3) transformation in normal incidence. This motivated us to call

it “the symmetry” of the Dirac equation.

According to the Noether theorem this symmetries leads to some conservations between IFS

particles. In our future research we intend to concentrate on this topic, and also finding the
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other aspects of this transformation, such as Andreev reflection, to see if we can design an

experiment which distinguish between these particles.

Appendix A. The properties of γ̄ matrices

For interested readers a detailed description of first subsection in section two is pre-

sented in this Appendix. In 1 + 1, γ̄ matrices should be of the following form

γ̄µ =

(
cµ aµ − ibµ

aµ + ibµ −cµ

)
; aµ, bµ, cµ ∈ < (31)

for which µ, ν = 0, 1. Using the anticommutation relation of γ̄ matrices (Eq. 3), one can

generally show that aµaν + bµbν + cµcν = δµν . In the 1+1 dimension, according to the what

had been said, we only need γ0 and γ1(
γ0E − γ1k −mI

)
ψ(E, k) ei(kx−Et) =

(
γ̄0E − iγ̄1k −mI

)
ψ(E, k) ei(kx−Et) = 0 (32)

therefore, the non-differential form of intermediate fermionic species (IFS) Dirac equation

will be Eq. 8. We have non-trivial answer, if E2 = k2 + m2 ⇒ E = ±E0 = ±
√
k2 +m2

, which we also expect it before. General shape of free particle’s wave function in 1 + 1

dimensions is:

ψ+E0

IFS = ζ

(
1

i(b0E0−a1k)+(a0E0+b1k)
c0E0+m−ic1k

)
, ψ−E0

IFS = ζ

(
i(b0E0−a1k)−(a0E0+b1k)

c0E0+m+ic1k

1

)
(33)

where ζ =
√

(c0E0+m)2+c21k
2

2E0(E0−c2k+c0m) . For Standard Representation limit (c0 = b1 = a2 = 1 , etc =

0) they Turns into:

ψ
S+

=
√

E0+m
2E0

(
1

+k
E+m

)
, ψ

S− =
√

E0+m
2E0

(
−k
E+m

1

)
(34)

The non-differential Dirac equation in k = 0 reduces as follows:(
c0E −m (a0 − ib0)E

(a0 + ib0)E −c0E −m

)
ψ

0IFS
= 0⇒ E = ±m ⇒ (35)

ψ
0IFS+

(E+ = +m) =
√

1+c0
2

(
1

a0+ib0
1+c0

)
, ψ

0IFS−(E− = −m) =
√

1+c0
2

(
−(a0−ib01+c0

)

1

)
. (36)

We know the answers of Dirac equation in the case k=0, namely ψ±, must also be the

eigenstates of the operator Sz. So, we look for the matrix form of operator Sz such that

Szψ± = ± 1
2ψ± are its eigenstates. Then Sz = 1

2γ
0 = 1

2 γ̄
0. By respecting that γ̄1 in the limit

SR, becomes similar to Sy, we can assume that Sy = 1
2 γ̄

1. Now, by using the fundamental

commutation relation [Si, Sj ] = i ∈ijk Sk, we can also obtain Sx:

2Sx =

(
(b0a1 − a0b1) (c0b1 − b0c1)− i(a0c1 − c0a1)

(c0b1 − b0c1) + i(a0c1 − c0a1) −(b0a1 − a0b1)

)
. (37)

It is clear that the matrix Sx is Hermitian and traceless. By performing the respected

calculations, we can see that:{
Sx, γ̄

0
}

=
{
Sx, γ̄

1
}

= 0, Sxγ̄
0 6= 0 6= Sxγ̄

1, S2
x = 1

4I (38)

According to (4) condition, it can be say that 2Sx has the all conditions of a γ̄ (Eq. 10)
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Appendix B. Obtaining Standard Dirac equation by Lorentz operator

In this Appendix we want to obtain the non-differential form of Dirac equation in

Standard Representation by acting of Lorentz operator on wave function in rest framework

i.e. ψ
S0+

=

(
1

0

)
, ψ

S0− =

(
0

1

)
. Lorentz operator in (1+1) dimension in Standard Represen-

tation is

S
S

=

√E0+m
2m

√
E0−m

2m√
E0−m

2m

√
E0+m

2m

 , ⇒ S
S
ψ
S0+

=
√

E0

m ψ
S+
∼
(
E0 +m

k

)
. (39)

If we introduce Dirac equation with D
S

then D
S
S
S
ψ
S0+

= D
S
ψ
S+

= 0. By requiring that

det(D
S
) = E2

0 − k2 −m2 = 0 one readily find

D
S

=

(
E −m −k

+k −(E +m)

)
ψ
S

= 0 (40)

that is exactly the Dirac equation known in (1+1).

Appendix C. Transformation matrix of various spinors

Standard Dirac Hamiltonian and Intermediate Fermionic Species Dirac Hamiltonian

are

H
S

=

(
m k

k −m

)
, H

IFS
=

(
c0m+ c2k (a2 − ib2)k + (a0 − ib0)m

(a2 + ib2)k + (a0 + ib0)m −(c0m+ c2k)

)
.

(41)

We know that eigenvalues of both Hamiltonians are the same (±E0). Then in according to

eigenstates of those, one can obtain nonsingular matrices Θ
S

andΘ
IFS

as follows

Θ
S

=

√E0+m
2E0

−
√

E0−m
2E0√

E0−m
2E0

√
E0+m

2E0

 , Θ
IFS

=

 √
E0+c0m+c2k

2E0
−e−iα

√
E0−c0m−c2k

2E0

eiα
√

E0−c0m−c2k
2E0

√
E0+c0m+c2k

2E0

 (42)

where α = tan−1
(
b0m+b2k
a0m+a2k

)
, then

Θ†
S
H
S
Θ
S

= Θ†
IFS

H
IFS

Θ
IFS

=

(
E0 0

0 −E0

)
. (43)

This suggest that Θ
IFS

Θ†
S
H
S
Θ
S
Θ†
IFS

= H
IFS

. With definition Θ
S
Θ†
IFS
≡ T one can see

that Tψ
S

= ψ
IFS

, so that

T = %′
(

1 + q1q2e
iα −(q1 − q2e

−iα)

q1 − q2e
iα 1 + q1q2e

−iα

)
(44)

where

%′ =

√
(E0+m)(E0+c0m+c2k)

2E0
, α = tan−1

(
b0m+b2k
a0m+a2k

)
, q1 =

√
E0−m
E0+m , q2 =

√
E0−c0m−c2k
E0+c0m+c2k

(45)
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