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SEVERAL SELF-ADAPTIVE ALGORITHMS FOR SOLVING SPLIT
COMMON FIXED POINT PROBLEMS WITH MULTIPLE OUTPUT
SETS

Wenlong Sun', Yuanfeng Jin?, Tzu-Chien Yin®

In this article, we study split common fixed point problems with multiple out-
put sets in real Hilbert spaces. In order to solve this problem, we present three new
self-adaptive algorithms. We establish weak and strong convergence theorems for them.
Using our methods, we can remove the assumptions imposed on the norms of the transfer
operators.
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1. Introduction

Let Hy and Hy be two real Hilbert spaces. Let C' and @ be nonempty closed convex
subsets of Hy and Hs, respectively. Let A : Hy — Hy be a bounded linear operator with
its adjoint A*. Let T': Hi — H; and S : Ho — Hy be two nonlinear operators. We
denote by Fix(T) and Fix(S) the sets of fixed points of T and S, respectively.

First, let us recall the split common fixed point problem:

find u such that v € Fix(T") and Az € Fix(5), (1)
which can be regarded as a generalization of the following split feasibility problem:
find v such that v € C' and Au € Q. (2)

Problem (2) introduced by Censor and Elfving [4] in order to model certain inverse problems
plays an important role in medical image reconstruction and signal processing (see [2, 3, 6,
8, 12, 14, 16]). In [5], Censor and Segal introduced Problem (1) which can be regarded as
a generalization of Problem (2). Since then, several iterative algorithms for solving split
problems have been studied extensively (see [7, 9, 10, 13, 15, 17-25]).

Very recently, in 2022, Reich et al. [11] presented and studied the split common fixed
point problem with multiple output sets in Hilbert spaces:

N Ly
find u' such that uf m Fix T; and Aju' € ﬂ Fix SJ]?, k=1,2,..., M. (3)
i=1 j=1

IDepartment of Mathematics, School of Science, ShenYang University of Technology, Shenyang 110870,
China; Department of Mathematics, Yanbian University, Yanji 133001, China; Liaoning Provincial Key Lab-
oratory of Composite Metal Nanomaterials and Magnetic Technology, Shenyang University of Technology,
Shenyang 110870, China, email: sun_math@sut.edu.cn

2Corresponding author. Department of Mathematics, Yanbian University, Yanji 133001, China, email:
yfkim@ybu.edu.cn

3Corresponding author. Research Center for Interneural Computing, China Medical University Hospital,
China Medical University, Taichung 40402, Taiwan, e-mail: yintzuchien@hotmail.com

3



4 Wenlong Sun, Yuanfeng Jin, Tzu-Chien Yin

After that, in 2023, Sun et al. [13] studied the Problem (3) and presented their algorithms
in which they handled more general quasinonexpansive operators.

Inspired by these works in the literature, the main purpose of this paper is to extend
Sun’s results from the quasinonexpansive operators to the demicontractive operators. Sub-
sequently, we construct three self-adaptive algorithms for solving the split common fixed
point problem with multiple output sets (3). Weak and strong convergence theorems are
given under some mild assumptions.

2. Preliminaries

In this section, we collect some definitions and lemmas which will be used to derive
our main results in the next section.
Definition 2.1. An operator T : C' — C' is said to be
(i) nonezpansive if |Tu — Tw| < ||lu —v|| for all u,v € C.
(i) quasinonezpansive if | Tu — uv*|| < |lu — uw*|| for all w € C and v* € Fix(T), or
equivalently,
1
(= Tuyu =) > o~ Tul?
for allu € C and u* € Fix(T).
(iii) o-demicontractive if there exists a constant o € [0,1) such that
|1Tw —w*||* < Jlu—w*||* + of| Tu — ulf?,

or equivalently,

(u—Tu,u—u*) >

1—op
= T, (4)

for alluw € C and u* € Fix(T).

Definition 2.2. An operator T is said to be demiclosed at v if, for any sequence {u,} which
weakly converges to u, and if Tu, — v, then Tu = v.

Definition 2.3. A sequence {u,} is called Fejér-monotone with respect to a given nonempty
set Q0 if for every u € Q, the inequality ||un+1 — ul| < ||un — u|| holds for all m > 0.

In this paper, we denote by Proj the projection from H onto C, and by w,,(uy) the
set of cluster points in the weak topology, that is, wy, (u,) = {u : Ju,, — u}.

Lemma 2.1 ([19]). Assume that {w,} is a sequence of nonnegative real numbers such that
Wnt1 < (1 — ap)wn + apdy,, n>1,
where {a,} is a sequence in (0,1) such that .- | a, = oo. Then limsup,, ., 0, > 0.

Lemma 2.2 ([1]). Let C be a nonempty closed convex subset in H. If the sequence {u,} is
Fejér-monotone with respect to €, then we have the following conclusions:
(1) up — u € Q iff wy(uy) CQ;
(ii) the sequence {Projquy} converges strongly;
(iii) if u, — u € Q, then u = lim, o Projous,.
Lemma 2.3 ([20]). Assume that {a,} is a sequence of nonnegative real numbers such that
ant1 < (1 —7yp)an +6n, neEN,
where {7y} is a sequence in (0,1) and {d,} is a sequence such that
() Doy = 005
.o . o0
(if) limsup,, o 5 <0 or 32,7 6] < oo

Then lim,,_, o y, = 0.
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3. Main results

Let H, Hy, k=1,2,..., M, be real Hilbert spaces. Let T; : H — H, i =1,..., N,
S;-“ c Hy — Hy, k=1,2,....M, j =1,2,..., L, be p-demicontractive operators. Let
Ap:H — Hy, k=1,..., M, be bounded linear operators with adjoints A;. Let I —T;, ¢ =
1,...,N, I — S;»“, k=1,2....M, j=1,2,...,Lg, be demiclosed at zero. We denote by
Q= {u e ﬂf\il Fix T; and Ayu € ﬂjL:’“l Fix S’j’?, k =1,2,..., M the solution set of the
problem (3).

Next, we propose several iterative algorithms for solving the problem (3).

Algorithm 3.1. Let u; € H and assume the current iterate {uy} is known.

1: Compute ¢, = max {||u, — Tiunl|l, i=1,2,...,N},
@, ={ie{,2,....,N}: |lzn — Tiun|| = én},
¥, = max {|| Agu, — S;»“AkunH ck=1,2,....M, j=1,2,..., Ly},
and W, = {(k,j) € {1,2,..., M} x {1,2,..., Ly} = [|Apun — SE, Apun || = ¥n}.
Compute Ty, = max {¢n, ¥n}. If Ty, =0, then stop else if ¢, =Ty, choose i, € Py,
and compute Up 1 = Up — Op(up, — T3, uy) else if b, =T, choose (kn, jn) € ¥p,

_gkn 2
it Syt G € [e,d] € (0,1 o),

145, (Ak, tn =S5 A un)|2”

set T, =

and compute Uup 11 = un — T A}, (Ak, un — Sf: Ag, un).
Setn:=n+1 and go back to 1.

Remark 3.1. Obviously, when T';, =0, x,, is the solution of the problem (3).

Theorem 3.1. If Algorithm 3.1 does not stop in a finite number of iterations, and 2 # (),
then the sequence {u,} generated by Algorithm 1 8.1 converges weakly to a solution z'(=
lim,,_, o, Projquy,) of the problem (3).

Proof. First, let z* € Q. If ¢,, = T, then owing to (4) and the g-demicontractivity of T
we obtain

[tn+1 — Z*”2 = [Juy — Z*H2 + H%HUn - TinunHz =200 (un — 2% un — Tj, un)
< lun — Z*HQ + 972L||un - TinunH2 — 0 (1 = 0)[lun — Tin“nH2 (5)
= Jlun — 2*[* = 00 (1 = 0 — 0n) || (un — T3, un)|1?
and therefore, according to Algorithm 3.1, we get
i1 = 2% < flun = 272 = 0 (1 — 0 = 0,)8% = [lun — 2*[1* = (1 — 0 — 6,)T7.

Then, we have

1
MmN« _—— -

Otherwise, if ¢,, = T';,, then we choose (ky, j,) € ¥,,. Similar to (5), we deduce

[un = 2*II” = Juns1 = 27[1%)- (6)

[ungr = 2% 17 = llun — 2* 1> + 72 AL (At — S5 Ag ) |12
— 27 (Ag, un — Ak, 2, Ag, un — SI7 Ag, )
< lun — 2|1 + 72l AF, (Ak, un — S5 Ag, un) |
— T(1 = 0| A, un — Sy7 A, un|?
| Ap, i — S Ag, un |[*
A7 (Ak,un — S5 Ap, w2

It follows from (5) and (7) that the sequence {u, } is Fejér-monotone with respect to {2 and
hence it is bounded. Let L := sup,, , {||A;(Arun — Sj’?Akun)H}, and we have L < +oo0. We

= |lun — Z*”2 —0,(1—0—0,)
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see from (7) that
| Ak, wn — Sj]‘i?Aknun”LL

145, (A, un — S5 Ag, u)|1?

[tnr1 = 2*[| < llun = 27[|* = 0n(1 — 0 = 6n)

. 0,(1—0—0,

S ||Un -z ||2 - %“Aknun - SJk:Aknun”4
; 0,(1—0—06,)
R 0.(1—0—10,)

= llun — 27 - 2=,

Consequently,

L2
e

By the Fejér-monotonicity of the sequence {u,}, we get

[un = 2|I” = Junsa — 27[1%).- (8)

ltun — 2°)|* = ||ttng1 — 2%]|> = 0, as n — oo
and thereby, T';, — 0, due to (6) and (8). By the definition of T',,, we get that lim,,_ o ||u, —
Tiuy||=0,i=1,2,..., N, lim,, ||AkunfS]’?Akun|| =0,k=1,2,....M,j=1,2,..., L.
Thanks to the hypothesis of the demiclosedness, we have w,,(u,) C . In the end,

applying Lemma 2.2, we obtain that u,, — 2% = lim,, o, Projqu,. The proof is completed.
|

Algorithm 3.2. Let u; € H and the current iterate u,, be known.

1: Compute yfn = A; (Apu, — Sj’?AkunL

2: ¢ = max {|Jun, — Tiun + 95, : i=1,2,...,Nk=1,2,..., M, j=1,2,..., L},

3: W, = {(i.kj) € {12, .., N} x {1,2,..., M} x {1,2,... L} : lun — Tyun + 5, || =
Un}.
If 1, = 0, then stop; else choose (in, kn,jn) € ¥p,

[t =T, wn ||+ A, e —SE™ A, ||
and let 7, = 6, - et , 0 €[c,d] C (0,1 —p).

k
[ttn— Ty n 4y |12

Compute tupi11 = Up — Tn(Un, — Ty, Un + yf:n)
Setn:=n+1 and go back to 1.

Remark 3.2. In Algorithm 3.2, the equality 1,, = 0 holds if and only if u, € .

It is obvious that if u, € ), then ¥, = 0 holds. In the sequel, we show that u, € €
if ¥, = 0. Ouwing to the p-demicontractivity of T, : H — H, i = 1,..., N, S’]’-C : Hy —
Hy, k=1,2,...,M, j=1,2,...,Lyg, for any z* € Q, we obtain

0= <un — Tiuy, + y;'cnvun - Z*>

= (up, — Tyuy, + Af(Aguy, — Sj’?Akun),un —z")
= (up, — Ty, Uy, — 2%) + (A} (Aguyn — S;?Akun),un —z") (9)
= (up, — Tjtp, Uy, — 2%) + (Apupn — SJ]?Akun, Aguy, — Agz")

1-0

%

T(”un - Tzunnz + [[Agun — SfAkunHQ)

foralll;:H — H, i=1,...,N, Sj’?:Hk—>Hk, k=1,2,....M, j=1,2,..., Ly, which
implies that

N
un € () Fiz T;

i=1
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and

Ly
Agup € (| Fiz S§, k=1,2,..., M.
j=1
So, u, € Q.

Theorem 3.2. Assume that Algorithm 3.2 does not stop in a finite number of iterations,
and Q # (. Then the sequence {u,} generated by Algorithm 3.2 converges weakly to a
solution z'(= lim,,_,o Projou,) of the problem (3).
Proof. Let z* € Q. In the light of (9), we derive
e = 2117 = ln = T = Tiun +957,) = 21
= llun = 2% + 72 llun = Tiyun + y57, 1>

=27 (up, — 2%, up — Tj, up + yfn>
= ||lu, — z*H2 — 27 (A} un — AL 2%, Ag, up — Sf:Aknun)

+ 72|ty — T, U + yf:n||2 =27 (up, — 2%, up — T, up,) (10)
<l = 2* |1 + mllun = T un + y57 17
= Ta(1 = 0)([[un = T unll® + | A, un — S57 Ap, unl|?)
(llun = Tiunll* + || Ak, un — S57 Ax, un?)?

Up + y;f:n||2

= |lun _p”2 —0n(1—0—0,)
llwn —

It follows from (10) that the sequence {uy} is Fejér-monotone with respect to . We also
see from (10) that

lJun — TinunHQ + (| Ak, un — S;‘C;:LAkyluvt||2

[wn — T, un + Y}, (11)
<y — 22 = [ty — 22
en(l_g_en)
Setting
Up — Tyt + y¥
F::sup{H U y-7"||: =1,2,...,N, k=1,2,...,M, j=1,2,..., L, ne N*t},

en(l —0— en)
by (11), we have
lttn = To a2 + A, tn — S Agy 2 < D/ Tt = 27 = [nss — =

Therefore,

lim ||up — Ti wn || + || Ag, wn — S]’i?AknunHQ -0
n—oo

which yields that

lim |lu, —T;, unl| =0 and lim ||Ag, un — S;“"Aknunﬂ =0. (12)
n— o0 n—o0 n
Observe that
ot =T 445 | < e =Tl |l < Nt =T wn |4 A, || 1Ak, = S5 A, .
Defining T = max{||Ax| : k=1,2,..., M}, it follows from the inequality above that

Yn = [Jun — Ti, un +y§€:nH < Mlun = i un || + Y| A, un — S]]?;AknunH'

Hence, by (12), we get that 1, — 0 as n — co. In virtue of the definition of 1),,, this implies
that

Wm [un — Tyun + 45, =0, i=1,2,... N, k=1,2,....M, j=1,2,... L. (13)

n—o0
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According to (9) and the boundedness of w,,, we deduce
D”Un — Tiup + y_?n” > <un = Tiup, + y;cn’ Up — Z*>
l-o

T(Hun - Tiun||2 + || Agtn — Sj]‘cAkunHz)y

where D = sup{||lu, — 2*|| : n € NT}. Therefore, we get from (13) that

Y

lim ||u, — Tjup|| =0 and lim ||Agu, — SJ]?AkunH =0

foralli =1,2,...,N, k=1,2,..., M, j=1,2,...,L;. Thanks to the hypothesis of the
demiclosedness, we have wy,(u,) C Q. In the end, applying Lemma 2.2, we obtain that
Up — 27 = limy,_y oo Projquy,. The proof is completed. O

Algorithm 3.3. Let u € H and uy € H. Let the current iterate {u,} be given.
1: Compute ¢, = max {||u, — Tyunl|l, i=1,2,...,N},
¢, ={ie{l,2,...,N}: ||zn — Tiupn| = én},
1/)n = max{||Akun - anAkunH k= 1,2,. . . ,M, j = 1,2,. .. ,Lk},
and U, = {(k,7) € {1,2,..., M} x {1,2,..., Ly} : || Agun, — anAkUnH =Yn}.
Compute T';, = max{¢n, Yn}. If (Case 1) T, = 0, then v, = u, else if (Case 2)
¢n =Ty, choose i, € @,
: and compute vy, = Uy — O (up —T;, uy) else if (Case 8) 1, = Ty, choose (kn,jn) € Uy,

0n € [Cvd} C (071* 9);

en”Akn un_s;'ankn Un H2
4%, (Aky, tn =S5 Ag, un)|2”

6
7: and set T, =
8

: and compute vy, = Uy — TR AL (Ag, upn — S]k: Ap, ).
9: Compute upy1 = anu + (1 — ay)v, where {a,} C (0,1).
10: Set n:=n+1 and go back to 1.

Theorem 3.3. Iflim, o o, =0 and >~ a, = +00, then the sequence {u,} generated
by Algorithm 8.3 converges strongly to the solution z'(= Projou) of the problem (3).

Proof. Set z' = Projqu. In the light of (5) and (7), we can see
lon = 2¥ < Jlun = 21]l.
Therefore, we obtain
s = 211 = lan(u = 1) + (1 = @) (0 — 21|
< anllu— 1+ (1 = an)lvn — #1]
< anllu = 21|+ (1= an)Jun — 2
< maxc{llu = 21, lun — 2}

By induction, we derive that ||u,.1 — 27| < max{|lu — 27|, |luo — 27|} and thereby, the
sequence {u,} is bounded. It follows that from (5) and (7) that (Case 1)

[tnsr = 27 1? =llan(u = 27 + (1 = an) (un — 21| (14)
<(1 = an)||un — 21* + 20, (u — 27, 1y — 21),
and (Case 2)
1 = 271? =llen(u = 2F) + (1 = an) (v — 2N
<(1 = an)||vn — 211? + 200 (u — 2t up g — 2F)
<(1 = an)lun — 212 + anf2(u — 21, wngr — =) (15)
. On (1 —an)(1 —0—0y)

o2

(= T3, un) 7],



split common fixed point problems

and (Case 3)
[unt1 = 2712 =llam(u = 21) + (1 = an) (v, = 21|
<1 = ap)|lvn — 27? + 200 (u — 21, Up g — 27)
<1 = ap)|lun — 2112 + an2(u — 27 upyq — 27)
0,(1— )1 —0—0,) Ak, un— S Ag, un*
- an A5 (A, — S5 Ag,ug) |12

Next, we rewrite our results in (14), (15) and (16):

lunt1 — ZTH2 <(1 = ap)[jun — ZT||2 + ap[2(u — ZT»“n+1 - ZT>
0,1 —ap)(1—0—06y)

D],
70

where

0, Case 1,

[[(un = Ty un)|1?, Case 2,

e | Ak, tn — S5 Ap,, |4
. T 5 Case 3,

HAkn (Ak, un — Sj:Aknun)H

Let

M = sup {|| A (Apup — SFAgun) 1P s k=1,2,...,M, j=1,2,...,Ly, n€ N},

and )
= min{l, —}.
J = min{ ,M}

Set
0, Case 1,

Dn = ||(un - TZ un)||27 Case 2,
| Ak, un — S]]‘C:Aknun||4, Case 3.

In fact, we can see

I',, Casel,
D, ={T2, Case?2,
r4 Case 3,

It is obvious that D,, > JD,,. This together with (17) implies that
tmss = 2112 <(1 = an)llin — 2112 + (200 — 2, gy — 21)
_ On(l —an)(1 —0— en)Dn]
an
<(1 = an)|un — 2"? + an2(u — 27, up g — 27)
_ 0n(1 —o)(1 —0— Hn)J

D,]
an
=(1—ap)l|un — 2"||* + anl2(u — 2", upy1 — 2") — 07]7
where
Fy = 0,1 — an)(1 — 0 — 0) x JD,.
Set xn = |lun, — 27[|? and

F,
bn = 2{u — zT,unH - zT> -

(18)

(19)
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Then, we can rewrite the above inequality (18) as

Xnt1 < (1 - an)Xn + an¢n~

In view of (19), we see
n < 2(u— 2" upgr — 27) < 2w — 27| x fJung — 2.
Hence, limsup,, ., ¢, < +oo. Furthermore, from Lemma 2.1, we have that

lim sup ¢, > 0.

n— oo
So, there exists a subsequence {n,} such that
F,

Ls

lim sup ¢, = lim ¢, = 2(u — ZT,Uns+1 — 2t -
n— 00 §—00 Qn,

Since (u — ZT,Un5+1 — ZT> is bounded, without loss of generality, assume limg ,oo(u —

. . F,
2t Un,+1 — zT) exists. Consequently, limg_, oo —

ng

exists. Hence,
Jim £, 0. @

So, by the definition of F,,_, we get that
=0

lim |Jun,, — Tiup, || =0 and lm [[Agu,, — SfAkunS
§—00 S— 00

forall:=1,2,...,N, k=1,2,...,M, j=1,2,...,L;. Thanks to the hypothesis of the
demiclosedness, we have wy,(u,,) C Q. Note that
[tuns1 — unl =llan(u —un) + (1 = an)(vn — u)||

<anllu = unll + (1 = an)|lvn — unl|.
In virtue of (20), we can duduce easily that

Slgrolo [un.+1 = un,|| = 0.

This implies that the weak cluster point set w.,(u,_) also belong to the set 2. Without loss
of generality, we can assume that {u,, } converges weakly to z* C . Hence, in view of
21 = Projqu, we get

limsup ¢, < 2(u — 21, up, 41 — 27) = 2(u — 27, 2" — 2Ty < 0.

n— oo

In the end, from Lemma 2.3, we obtain lim, . z, = 2. The proof is completed. O

4. Conclusion

In this paper, we study split common fixed point problems with multiple output
sets in real Hilbert spaces. In order to solve this problem, we present three new self-
adaptive algorithms. Weak and strong convergence theorems are established under some
mild assumptions.
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