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STOCHASTIC FRONTIER MODELS BY COPULAS AND AN
APPLICATION

by Vadoud Najjari 1∗, Hasan Bal 2, Fikri Öztürk 3 and İhsan Alp2

The main endeavor in this study is to use copulas in the stochastic

frontier analysis (SFA) to estimate production frontier and also technical

efficiency of DMUs. After presenting theorical discussion using copulas in

SFA, we finalize our study by providing an application on real data set.

We compare the yielded efficiency scores by using copulas with results of

the standard SFA and also CCR and BCC models. We concentrate on

several Archimedean families and specially three families which were newly

presented to the literature. These new families have trigonometric and hy-

perbolic generators and they are more flexible in modeling dependence struc-

tures.

Keywords: Copulas, hyperbolic functions, MLE, stochastic frontier, tech-

nical efficiency

1. Introduction

Measuring efficiency of firms (DMUs) has an important role in economy

and managements. Usually Data Envelopment Analysis (DEA), Free Disposal

Hull (FDH) and also SFA are the main instruments to obtain the efficiency

of firms. DEA and FDH are nonparametric frontier models and so require

minimal assumptions respect to structure of production and also they do not

impose restrictions on the functional forms relating inputs and outputs. On

the other hand they don’t include noises in the model and assume that every

deviation from the frontier is carried out by the inefficiency. While in the SFA,

error term is composed of two types of error (ε = u+ v). Common choices for

u include the Exponential, the Half-Normal, the Truncated Normal and the
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Gamma distributions, and for v it is typically the Normal distribution (Aigner

et al. (1977); Richmond (1974); Amsler et al. (2014)).

In estimating the SFA models researchers assume that error terms u and v

are independent. Smith (2008) was one of the first peoples which proposed the

potential dependence between u and v. Also he proposed copulas on modeling

this dependence and then estimating the SFA models by using copulas. This

method followed by others such as Carta and Steel (2012), El Mehdi and

Hafner (2013), Amsler et al. (2014) and etc. Of course theorical and also

computationally of using copulas in SFA are somewhat complicated and also

this subject recently is in challenging.

The main aim of this study is to prepare an overview on the stochastic

frontier analysis (SFA), estimating production frontier and technical efficiency

of DMUs. Also providing theorical discussion about using copulas in SFA

and their advantage in estimating SFA parameters by modeling error terms.

With relying on twelve Japanese professional baseball teams data, and using

several Archimedean families, technical efficiency of the mentioned teams will

be compared with CCR, BCC and also standard SFA models. We concentrate

on seven Archimedean families which three families were newly presented to the

literature. These new families have trigonometric and hyperbolic generators

and they are more flexible in modeling dependence structures.

The rest of the paper is organized as follows. Section 2 reviews stochastic

frontier analysis and copulas. Section 3 describes using copulas in the stochas-

tic frontier models. Applications of the discussed models are in Section 4.

Finally, conclusions are given in Section 5.

2. Preliminaries

In this section we plan to review stochastic frontier analysis (SFA) and

also copulas functions. For interested readers which are looking for deeper

results we will refer to several origins.

2.1. Stochastic frontier analysis. Stochastic frontier analysis (SFA) is a

method of economic modeling and firstly presented by Aigner et al. (1977)

and Meeusen & Van den Broeck (1977). This method can be formulated both

in parametric and nonparametric framework. Nevertheless, in the literature

and applications parametric SFA is preferred (El Mehdi and Hafner, 2013).

The production frontier model without random component can be written as,

yi = f(xi; β).TEi, i = 1, ..., I (2.1)

where yi is the observed scalar output of the producer i, xi is a vector of N

inputs used by the producer i, f(xi, β) is the production frontier and β is a
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vector of technology parameters to be estimated. TEi denotes the technical

efficiency and it is defined as the ratio of observed output to maximum feasible

output. Let TEi is a stochastic variable, so we can write it as TEi = exp(−ui),

where ui ≥ 0. By adding a component of random shocks (which may come

from weather changes, economic adversities or plain luck and it is assumed to

be as exp(vi)) to (2.1) we get

yi = f(xi; β).exp(−ui).exp(vi). (2.2)

Now, if we also assume that f(xi; β) takes the log-linear Cobb-Douglas form,

the model (2.2) can be written as the following,

ln yi = β0 +
∑
n

βnlnxni + vi − ui. (2.3)

In this study we use the log-linear Cobb-Douglas form. The interested readers

are referred to Meeusen & Van Den Broeck (1977) and Aigner et al. (1977).

2.2. Copulas and their properties. A copula is a function C : [0, 1]2 →
[0, 1] which satisfies:

(a) for every u, v in [0,1], C(u, 0) = 0 = C(0, v), and C(u, 1) = u and C(1, v) =

v;

(b) for every u1, u2, v1, v2 in [0,1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (2.4)

Copulas functions are powerful technique in modeling dependence struc-

tures. Copulas allow us to combine univariate distributions to obtain a joint

distribution with a particular dependence structure, in the famous Sklar The-

orem: Let X and Y be random variables with joint distribution function H

and marginal distribution functions F and G, respectively. Then there exists

a copula C such that, H(x, y) = C(F (x), G(y)), for all x, y in R. If F and

G are continuous, then C is unique. Otherwise, the copula C is uniquely de-

termined on Ran(F ) × Ran(G). Conversely, if C is a copula and F and G

are distribution functions, then the function H is a joint distribution func-

tion with margins F and G. As a result of the Sklar Theorem, copulas link

joint distribution functions to their one-dimensional margins, see Sklar (1959),

Kimberling (1974).

One of important classes of copulas is Archimedean copulas. Archimedean

copulas originally appeared in the study of probabilistic metric spaces, where

they were studied as part of the development of a probabilistic version of the

triangle inequality. The interested readers are referred to Schweizer (1991)

and Nelsen (2006). These copulas are very easy to construct, many paramet-

ric families belong to this class and have great variety of different dependence
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structures, hence there are wide efforts on this class of copulas in the litera-

ture and applications. For details see, Bacigál et al.(2015a, 2015b), Schweizer

(1991), Genest and MacKay (1986a, 1986b) and Nelsen (2006).

Basic properties of AC are presented below and more information could

be found in Nelsen (2006). Let φ be a continuous, strictly decreasing function

from [0, 1] to [0,∞] such that φ(1) = 0. The pseudo-inverse of φ is the function

φ[−1] given by

φ[−1](t) =

{
φ(−1)(t), 0 ≤ t ≤ φ(0)

0, φ(0) ≤ t ≤ ∞.
(2.5)

Copulas of the form

C(u, v) = φ[−1](φ(u) + φ(v)), (2.6)

for every u, v in [0, 1] are called AC and the function φ is called a generator of

the copula. If φ(0) = ∞ we say that φ is a strict generator. In this case,

φ[−1] = φ(−1), (2.7)

and

C(u, v) = φ(−1)(φ(u) + φ(v)) (2.8)

is said a strict Archimedean copula.

3. Stochastic frontier models and copulas

There are rare studies in stochastic frontier models which are related

with copulas in the literature. Smith (2008) was one of the first peoples which

proposed copula technique in SFA. Recently Carta and Steel (2012) introduced

a new methodology for multi-output production frontiers which is based on

copulas, also there are another related studies by El Mehdi and Hafner (2013)

and Amsler et al. (2014). In this section we aim to explain main relation

between copulas and SFA.

Let consider the traditional stochastic frontier model proposed by Aigner

et al. (1977) and Meeusen and Van Den Broeck (1977),

ln yi = β0 +
∑
n

βnlnxni + εi. (3.1)

where εi = vi − ui and i = 1, ..., I denotes firms. We assume that vi (and ui)

are independent over i, also there is potential dependence between v and u.

Let u ∼ G1 and v ∼ G2 and H be the joint distribution function of v

and u. Then by the Sklar Theorem there is copula Cθ which satisfies in the

following relation,

H(u, v) = Cθ(G1(u), G2(v)) (3.2)
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and so its joint density function is as follows,

h(u, v) = g1(u)g2(v)cθ(G1(u), G2(v)). (3.3)

As ε = v − u, by the marginal distribution of h we get

h(ε) =

∫ +∞

0

g1(u)g2(u+ ε)cθ(G1(u), G2(u+ ε))du. (3.4)

Replacing ε = lny − f(x; β) in the (3.4) gives the density of y. Using the

maximum likelihood estimator (MLE) is a way to obtain a more efficient esti-

mator of stochastic frontier models. Clearly, copulas allow to model marginal

distributions separately from their dependence structure, so we have a flexible

joint distribution function, whose marginals are specified by the researcher.

After estimating stochastic frontier models we desire to calculate techni-

cal efficiency of DMUs. This technical efficiency is defined as follows

TE = E(exp{−u}|ε) (3.5)

by using (3.3) and (3.4) we get

TE =
1

h(ε)

∫
R+

exp{−u}h(u, ε)du (3.6)

see also Smith (2008), El Mehdi and Hafner (2013). In this study we assume

that u ∼ N+(0, σ2
u), u ≥ 0 and v ∼ N(0, σ2

v). Clearly E(u) = σu

√
2/π

and V ar(u) = ((π − 2)/π)σ2
u. If we assume that MLE of parameters ϑ =

(σu, σv, θ, β) in (3.4) are ϑML = (σ̂u, σ̂v, θ̂, β̂) then by replacing these estimates

in (3.6) we get to TEML which is the MLE of TE.

Note that ε = v − u and so

V ar(ε) = V ar(v) + V ar(u)− 2Cov(u, v). (3.7)

This means that a positive correlation between u and v reduces the variance

of ε and a negative correlation between u and v increase the variance of ε.

4. Application

The main aim in this section is to provide SFA model for baseball teams.

These data consist of twelve Japanese professional baseball teams and are

available in Cooper et al. (2006). There are 2 inputs and 1 outputs for this

evaluation as follows,

Input 1: average annual salary of managers, including those of coaching.

Input 2: average annual salary of players: the top ranked 9 fielders and 6

pitchers.

Output: ”attendance” which is measured as the ratio of total annual atten-

dance vs. annual maximum capacity of the team’s home stadium and is ex-

pressed as a percentage. Hence this number cannot exceed 100%. Table 1
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Table 1. Twelve Japanese professional baseball teams

Teams Manager Player Attendance

Swallows 5220 6183 80.87

Dragons 2250 5733 93.76

Giants 6375 8502 100

Tigers 3125 4780 76.53

Bay Stars 3500 4042 79.12

Carp 3125 5623 51.95

Lions 5500 10180 56.37

Fighters 3625 5362 57.44

Blue Wave 2715 4405 58.78

Buffalos 3175 6193 53

Marines 2263 5013 43.47

Hawks 3875 3945 82.78

exhibits these data for 12 teams. Salaries of managers and players, as inputs,

are in tens of thousands of Japanese yen.

In calculations, estimating technical efficiency and SFA models, Matlab

software had been used. ”fminsearchbnd” command in Matlab had an impor-

tant role in the calculating.

Table 2. Details of the selected copula families in this study

Family Generator Kendall’s tau λL λU θ interval

Clayton 1
θ (

1
tθ

− 1) θ
θ+2 2

−1
θ 0 (0,∞)

Gumbel (−lnt)θ θ−1
θ 0 2− 2

1
θ [1,∞)

A12 ( 1t − 1)θ 1− 2
3θ 2

−1
θ 2− 2

1
θ [1,∞)

cot-copula cotθ(πt2 ) 1− 8
π2θ 2

−1
θ 2− 2

1
θ [1,∞)

coth-copula coth(θt)− coth(θ) 1 + 2
θ2 − 2

θ coth(θ)
1
2 0 [1,∞)

csch-copula csch(tθ)− csch(1) θ
θ+2 2

−1
θ 0 (0,∞)

Note: A12 family is numbered as 4.2.12 in Table 4.1 Nelsen’s book [13]

To provide SFA model for the mentioned baseball teams, beside standard

SFA model, several copula families also are used in this study. Details of

these families are summarized in Table 2. As it is seen, there are three new

Archimedean families which are recently presented to the literature. cot-copula

family has trigonometric generator and proposed by Pirmoradian and Hamzah

(2011). Also csch-copula and coth-copula families have hyperbolic generators

and were proposed by Bal and Najjari (2013), Najjari et al. (2014) respectively.

Moreover, technical efficiency of CCR and BCC models are provided for these

data to compare their results by the other SFA models.

Table 3 exhibits SFA model parameters which are estimated by using

copulas and also standard SFA model. In the rest of paper, standard SFA
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Table 3. The estimated parameters of the SFA models

Family σu σv θ β0 β1 β2 τ

Clayton 0.1516 0.0695 8.2052 4.1232 0.283 -0.2042 0.8040

Gumbel 0.1517 0.0257 8.6872 4.2636 0.0951 -0.0528 0.8849

A12 0.1683 0.0669 9.1186 4.2712 0.278 -0.2148 0.9269

cot-copula 0.1563 0.0685 8.5636 4.1924 0.2762 -0.2061 0.9053

coth-copula 0.1881 0.0301 7.7433 4.7314 0.0787 -0.0902 0.7751

csch-copula 0.1418 0.0896 7.9721 3.8015 0.3936 -0.2647 0.7994

Product 0.1517 0.0257 - 4.2636 0.0951 -0.0528 -

Frontier 0.1652 0.0421 - 4.1352 0.0499 -0.0834 -

model is called as ”Frontier” in Table 3, Table 4 and Table 5. As is it seen by

the Table 3, dependence parameter θ has different values for any families. This

value is an evidence on the dependence between u and v. As an example, for the

Clayton family, this parameter is θ = 8.2052 and so τ = θ
θ+2

= 0.8040. Namely

there is 80.4% dependence between u and v. Similarly for the Gumbel family

this parameter is θ = 8.6872 and τ = 0.8849. The maximum dependence is

shown by A12 family as τ = 0.9269 and the minimum dependence belongs to

the coth copula, τ = 0.7751. However, last column in the Table 3 shows that

all of the mentioned copula families have solidarity on the high dependence

between u and v. As discussed by (3.7), a positive correlation between u and v

reduces the variance of ε and a negative correlation between u and v increase

the variance of ε. It means that in the mentioned model by (3.1), the minimum

variance tends the model to the closest estimation.

Table 4 demonstrates efficiency scores and also ranks of the mentioned

baseball teams by the models which their estimated parameters are given in

the Table 3. Technical efficiency of CCR and BCC models also are provided

for the mentioned data to compare their results by the mentioned SFA models.

Table 5 consists of correlations between results of the mentioned models

in Table 4. These correlations are based on ranks of the baseball teams in

every model.

Gumbel and Product copulas have resulted same ranks for the baseball

teams as correlation between them is one, namely, standard SFA model and

SFA by usnig the Gumbel copula have calculated same ranks for baseball

teams. Also cot and Clayton copulas have clarified same ranks for the baseball

teams. Maximum correlation in results of the CCR model is linked by the

Clayton and cot copulas which is 0.804, and the minimum correlation of the

CCR model is with the results of coth copula and it is 0.720. Related with

BBC model, maximum correlation is with the Clayton and cot copulas which
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Table 4. Efficiency scores (ES) and ranks of twelve Japanese

professional baseball teams

CCR CCR BCC BCC Clayton Clayton Gumbel Gumbel A12 A12

Teams ES Rank ES Rank ES Rank ES Rank ES Rank

Swallows 0.6572 6 0.6691 11 0.6903 6 0.7994 4 0.6819 5

Dragons 1 1 1 2 1 1 1 1 0.9829 1

Giants 0.6139 7 1 1 0.8608 2 0.9863 2 0.8542 2

Tigers 0.8699 4 0.9514 7 0.7167 3 0.7836 6 0.7042 3

Bay Stars 0.9753 3 1 6 0.6934 5 0.7944 5 0.6805 6

Carp 0.5239 9 0.8199 8 0.5029 11 0.5365 11 0.495 11

Lions 0.3162 12 0.4612 12 0.5249 9 0.5692 9 0.5215 8

Fighters 0.5765 8 0.8042 9 0.528 8 0.5834 8 0.5199 9

Blue Wave 0.7368 5 1 5 0.5633 7 0.6073 7 0.5527 7

Buffalos 0.4947 11 0.7739 10 0.5209 10 0.5493 10 0.5133 10

Marines 0.5156 10 1 4 0.4504 12 0.4601 12 0.4421 12

Hawks 1 2 1 3 0.7014 4 0.822 3 0.6886 4

cot cot coth coth csch csch Product Product Frontier Frontier

Teams ES Rank ES Rank ES Rank ES Rank ES Rank

Swallows 0.6943 6 0.7983 4 0.6267 6 0.7994 4 0.7734 3

Dragons 1 1 0.9822 2 0.9919 1 1 1 0.9993 2

Giants 0.8676 2 1 1 0.7793 2 0.9863 2 1 1

Tigers 0.718 3 0.7685 6 0.678 3 0.7836 6 0.7441 5

Bay Stars 0.695 5 0.7757 5 0.6412 4 0.7944 5 0.7272 6

Carp 0.504 11 0.5294 11 0.4804 11 0.5365 11 0.5247 11

Lions 0.5287 9 0.5796 8 0.4883 10 0.5692 9 0.6012 7

Fighters 0.5297 8 0.5761 9 0.4948 9 0.5834 8 0.5611 9

Blue Wave 0.5638 7 0.5925 7 0.5386 7 0.6073 7 0.5726 8

Buffalos 0.5222 10 0.5441 10 0.4997 8 0.5493 10 0.5463 10

Marines 0.4503 12 0.4497 12 0.4428 12 0.4601 12 0.4486 12

Hawks 0.7035 4 0.8033 3 0.6404 5 0.822 3 0.7450 4

Table 5. Correlation between several models by ranks of the

baseball teams

CCR BCC Clayton Gumbel A12 cot coth csch Product Frontier

CCR 1.0000 0.5800 0.8040 0.7900 0.7550 0.8040 0.7200 0.7830 0.7900 0.6364

BCC 0.5800 1.0000 0.5380 0.5100 0.4830 0.5380 0.4970 0.5240 0.5100 0.3846

Clayton 0.8040 0.5380 1.0000 0.9510 0.9860 1.0000 0.9370 0.9720 0.9510 0.9231

Gumbel 0.7900 0.5100 0.9510 1.0000 0.9510 0.9510 0.9860 0.9160 1.0000 0.9580

A12 0.7550 0.4830 0.9860 0.9510 1.0000 0.9860 0.9510 0.9510 0.9510 0.9580

cot 0.8040 0.5380 1.0000 0.9510 0.9860 1.0000 0.9370 0.9720 0.9510 0.9231

coth 0.7200 0.4970 0.9370 0.9860 0.9510 0.9370 1.0000 0.9020 0.9860 0.9790

csch 0.7830 0.5240 0.9720 0.9160 0.9510 0.9720 0.9020 1.0000 0.9160 0.8811

Product 0.7900 0.5100 0.9510 1.0000 0.9510 0.9510 0.9860 0.9160 1.0000 0.9580

Frontier 0.6364 0.3846 0.9231 0.9580 0.9580 0.9231 0.9790 0.8811 0.9580 1.0000

is 0.538, and the minimum correlation is with the results of A12 copula and

it is 0.483. It is notable that standard SFA model (Frontier) has the mini-

mum correlation with CCR and also BBC models. Between copulas models,

the model which uses coth copula has the highest correlation 0.9790 by the
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standard SFA model. Gumbel, cot and Product copulas are in the second rate

as they have high correlation 0.9580 with the standard SFA. BCC model has

the lowest correlation 0.3846 with the standard SFA in this test.

It is remarkable that in the situation which ranks of DMUs are avail-

able, clearly a model is the best which the estimated ranks of DMUs (by the

model) are closest to the real ranks of DMUs. Meanwhile we recall that the

CCR model evaluates both technical and scale efficiency (so named as overall

technical efficiency), combining both measures in a single efficiency score. The

BCC model evaluates pure technical efficiency (PTE) of DMUs (so named as

local technical efficiency), for details see Sözen and Alp (2009). Based on this

information, solutions which have high correlation with the results of CCR

model, can be said to be relatively good models. By the Table 5, results of the

standard SFA has the minimum correlation with results of the CCR model,

but results of the models with copula technique in SFA, have higher correlation

with results of the CCR model. Results of SFA models by Clayton and cot

copula families have the maximum correlation with results of the CCR model

and it is 0.804. For this reason SFA models by Clayton and cot copula families

can be said relatively good models in this test.

5. Conclusion

In the aim of satisfying efficiency scores and ranks of the twelve Japanese

professional baseball teams, we have relied on copula technique in SFA models.

Calculations summarize that Gumbel and Product copulas have resulted same

ranks for the baseball teams as correlation between them is one. The same

story is about cot and Clayton copulas. It is notable that standard SFA

model has the minimum correlation with CCR and also BBC models. Between

copulas models, the model which uses coth copula has the highest correlation

0.9790 by the standard SFA model. Gumbel, cot and Product copulas are in

the second rate which have high correlation 0.9580 with the standard SFA.

BCC model has the lowest correlation 0.3846 with the standard SFA in this

test. As the CCR model evaluates both technical and scale efficiency solutions

which have high correlation with the results of CCR model, can be said to

be relatively good models. By the Table 5, results of SFA models by Clayton

and cot copula families have the maximum correlation with results of the CCR

model and it is 0.804. For this reason SFA models by Clayton and cot copula

families can be said relatively good models in this test.
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Acknowledgements

The authors are grateful to the anonymous referees and editors whose

deep comments helped to improve the original version of this contribution.

REFERENCES

[1] D. J. Aigner, C. A. K. Lovell, P. Schmidt, Formulation and estimation of stochastic

frontier production functions, Journal of Econometrics, 6 (1977) 21–37.

[2] C. Amsler, A. Prokhorov, P. Schmidt, Using copulas to model time dependence in

stochastic frontier models, Econometric Reviews, 33 (5-6) (2014) 497–522.

[3] T. Bacigál, R. Mesiar, V. Najjari, Generators of copulas and aggregation, Information

Sciences, 306 (2015) 81-87.

[4] T. Bacigál, V. Najjari, R. Mesiar, H. Bal, Additive generators of copulas, Fuzzy Sets

and Systems, 264 (2015) 42-50.

[5] H. Bal, V. Najjari, Archimedean copulas family via hyperbolic generator, GU J Sci,

26:(2) (2013) 195–200.

[6] A. Carta, M. F. J. Steel, Modelling multi-output stochastic frontiers using copulas,

Computational Statistics and Data Analysis, 56 (2012) 3757–3773.

[7] W. W. Cooper, L. M. Seiford, K. Tone, Introduction to Data Envelopment Analysis

and Its Uses, Springer Science and Business Media, Inc, 2006.

[8] R. El Mehdi, C. M. Hafner, Inferences in stochastic frontier analysis with dependent

error terms, Mathematics and computers in simulation, (2013).

[9] C. Genest, J. MacKay, Copules archimdienneset familles de loisbi dimensionnelles dont

les margessontdonnées, Canad. J. Stat., 14 (1986a) 145–159.

[10] C. Genest, J. MacKay, The joy of copula, Bivariate distributions with uniform-

marginals, Amer. Stat., 40 (1986b) 280–285.

[11] W. C. Horrace, P. Schmidt, Multiple Comparisons with the Best, with Economic Ap-

plications, Journal of Applied Econometrics, 15 (2000) 1–26.

[12] C. Kimberling, A probabilistic interpretation of complete monotonicity, Aequationes

Math, 10 (1974) 152–164.

[13] R. B. Nelsen, An Introduction to copulas, Second Edition, Springer, New York, 2006.

[14] J. Richmond, Estimating the efficiency of production, International Economic Rewiev,

15 (1974), 515–521.

[15] W. Meeusen , J. Van Den Broeck, Efficiency estimation from Cobb-Douglas production

functions with composed error, International Economic Review, 18 (1977) 435–444.



STOCHASTIC FRONTIER MODELS BY COPULAS AND AN APPLICATION 41

[16] V. Najjari, T. Bacigál, H. Bal, An Archimedean copula family with hyperbolic cotan-

gent generator, International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 22(5) (2014) 761–768.

[17] A. Pirmoradian, A. Hamzah, Simulation of Tail Dependence in cot-copula, Proceedings

of the 58th WSC of the ISI, (2011).

[18] B. Schweizer, Thirty years of copulas. In: DallAglio G, Kotz S, Salinetti G (eds) Ad-

vances in Probability Distributions with Given Marginals, Kluwer, Dordrecht, (1991)

13–50.
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