
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 2, 2024 ISSN 2286-3540

COMPARATIVE ANALYSIS OF AGENT-BASED MODELING
FRAMEWORKS FOR SIGNAL PROPAGATION IN COMPLEX

NETWORKS: NETLOGO AND PYTHON MESA

Cristian Berceanu1 and Monica Patrascu1,2,3

Signal propagation is a prevalent research topic for an abound-
ing number of complex network applications. The nonlinear characteristics
of complex networks determined by complex interactions and topology re-
quire suitable agent-based modeling and simulation frameworks. This paper
presents a comparison of two such frameworks in terms of usability and per-
formance for studying signal propagation in complex networks. Our findings
are based on two use cases that we implemented in both frameworks.
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1. Introduction

The science of complex systems has registered increased interest in the
past decades, as our technological universe continues to expand and interact
with the sociological and human component, leading to the appearance of
socio-technical systems [1] as a field of study. Complex systems are currently
defined as comprised of connected entities which exhibit an emergent behav-
ior at whole-system [2] level without the guidance of a central authority, but
resulting from local interactions [3]. These component entities can be other
systems, agents, humans, etc. with various levels of autonomy and/or intelli-
gence. Due to the focus on interactions, complex networks are currently the
prevalent form of organization and modeling of complex systems.

A complex network is a network formed of nodes (vertices) which connect
through links (edges) with special properties [4]: non-trivial topology, small
world effect, scale free node rank distribution, etc. All these are reflected in
complex patterns of interaction, which makes communication between nodes
critically important. In complex networks, communication between compo-
nents is either direct and indirect [5]. Direct communication requires nodes to
be linked, and thus remains localized within vicinities. Indirect communication
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is either node-to-node or stigmergic. The latter implies that information is de-
posited and collected in and from the environment [6], whereas node-to-node
indirect communication is a propagation phenomenon through which informa-
tion travels on paths comprised of at least three nodes. This is known as signal
propagation in complex networks and it models phenomena of diffusion, viral
spread and epidemics, infodemics, cascading effects, social behavior, etc. A
recent review [7] situates signal propagation as a key element to understand-
ing emergent phenomena, while our recent survey [8] lists the current issues
on routing, load, and protocols regarding the management of communication
in networks in the absence of central authorities or controllers. In system
science, signals can be either information, energy or matter [9]. In particle
based systems, signal propagation is performed through the transfer of energy
[10, 11, 12]. When particle based system are modeled as complex networks,
the topology of the complex network is shifting to correlate with the state of
the system [13, 14, 15].

Agent based modeling (ABM) [16] falls under the larger umbrella of
multi-agent systems (MAS) and provides useful tools for simulating and un-
derstanding complex networks. ABM and MAS have also generated the agent-
oriented programming (AOP) paradigm [17]. The resulting models are often
accompanied by visualizations which showcase the interactions between agents.
A wide range of application fields have benefited from ABM: social phenomena
[18, 19, 20, 21], urban traffic simulation [22, 23, 24, 25, 26], financial market
analysis [27, 28, 29, 30, 31], nonlinear biosystems dynamics [32, 33, 34, 35, 36].

An agent is an entity capable of sensing the environment or other agents,
making decisions (either deliberatively or reactively), and performing actions
upon the environment other agents [37]. This definition is not unique to the
study of agents in general, but it does contain the main elements of an agent.
Of note is that communication between agents is not explicit, but implied
by their capabilities to interact with each other. An agent network is a set of
interdependent agents A = {a1, ..., an}, and a compatible relationR, R ⊆ A×A
[38]. In this definition, R is reflexive and symmetric which means that the
connection between two agents is bidirectional, so ⟨ai, aj⟩ ∈ R if and only if aj
is a neighbor of ai [38].

Several frameworks have been proposed for ABM simulation since their
early emergence in the ’70s (e.g., Schelling’s segregation model [39]) with var-
ious specifications and requirements for computational resources [40].

The belief–desire–intention (BDI) model is a representation of agent in-
ternal mental attitudes [41] that support the composition of reactive and de-
liberative agent behaviors [42]. FIPA is an organization established in 1996
dedicated to the standardisation of agent-based modelling that later became an
IEEE Computer Society organization. One of the standards defined by FIPA
is FIPA-ACL (Agent Communications Language) which facilitates the mod-
elling and interoperability between different agent-based modeling software.
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However, most ABM frameworks are not compliant with the FIPA-ACL pro-
tocol because it would increase the performance overhead and without a real
benefit in the context of small-scale simulations. While BDI-based and FIPA-
compliant agent platforms produce conceptually heavy models [43], researchers
outside computer science (e.g., sociology, epidemiology, etc.) often turn toward
lightweight simulation frameworks. This is because models of agent behaviors
are often abstracted to the essentials specific to each studied phenomenon, e.g.,
humans in a crowd are reduced to particles with direction and speed. While
this practice has its limitations [44], a plethora of other emergent processes
can still benefit from abstraction and ABM simulation [45].

This paper aims to perform a comparative analysis of two widely-used
simulation frameworks to study emergent behaviors of simple agents, NetLogo
[46] and Mesa Python library [47], investigating the user interface, friendliness,
dependencies, and performance, by creating two models in both frameworks.

The rest of this paper is organized as follows. Section 2 presents an
overview of the two frameworks. Section 3 presents an information diffusion
model and its results. Section 4 presents a particle collision model imple-
mented in both frameworks and the usability and performance results. Section
5 presents a comparative analysis between the two ABM frameworks based on
the two case studies. Section 6 concludes the paper.

2. NetLogo and Mesa Python Library

NetLogo inherited the turtle-patch-observer (fig. 1) model [48] from Star-
LogoT, a blend of Logo (a member of the Lisp family) and StarLisp [49]. There
are three types of agents in NetLogo: turtles are agents that move around the
simulated world and comprise the agent network, patches are cells of the grid
over which turtles move and comprise the environment, and a single observer
agent that allows the model designer to observe the model outcomes [49]. Net-
Logo is a popular and well documented multi-agent programmable modeling
environment [46]. NetLogo is well suited for prototyping multi-agent systems
and instructions may be assigned to hundreds of independent agents that op-
erate concurrently [43].

Fig. 1. NetLogo turtle-patch-observer exemplification
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Mesa [47] is an open-source Python 3 library and ABM framework pro-
viding a web interface that may be enhanced using javascript. Python has
become in recent years an increasingly popular language and it is a general
purpose programming language, unlike NetLogo’s custom scripting language
[50]. The architecture of the Mesa library may be divided into three categories
(fig. 2 [50]): modeling, analysis and visualization. The Model class is a con-
tainer for model level parameters; the Agent classes describe the model agents;
the Scheduler controls the agent activation regime and handles the model time
in general while the Space class describes the network and/or space the agents
are situated in.

Fig. 2. Mesa (simplified) architecture [50]

3. Case Study: Information Diffusion Model

To compare NetLogo and Mesa Python library, we implement a classic
signal propagation as information diffusion scenario. In this scenario we eval-
uate the accessibility and usability of the frameworks. The agent environment
consists of a square 2D map. Each agent in the network may have one of two
states: red or blue. All agents are initialized with the color blue at the first
step of simulation, excepting a single agent which is red. At each simulation
step, red agents send a message to each of their neighbouring agents to change
their state from blue to red. Blue agents react to the message and change
their state; they keep their blue state if no message arrives. Thus, the red
state propagates through the map until all agents become red. In this model,
neighboring agents are defined as agents with a predefined radius around the
message sender. Algorithm 1 shows the behavior of agents, where r is the
radius of signal propagation. This model is a basic version of a gossiping al-
gorithm [51], in which all communication is one-to-one and only one piece of
information is transmitted through the network. This type of information dif-
fusion is often used instead of one-to-all broadcast, to avoid the overload of
the communication network. The same algorithm was implemented in both
NetLogo and Mesa. The radius of signal propagation r does not have the
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same value in both ABMS tools because the environment is not defined in the
same way. The Mesa environemnt is defined by the number of pixels while the
environment in NetLogo is defined by the number of patches.

Algorithm 1: Agent behavior

1 if agent-state is red then
2 send message to neighbor (in-radius r);
3 else
4 if message received from neighbor then
5 switch agent-state to red;
6 end
7 end

3.1. NetLogo

To simulate this scenario, we first define a new breed of agents which we
name ”particles”. Defining a breed of agents in NetLogo is the object oriented
programming (OOP) equivalent to inheriting from the turtle class. The syntax
for defining a new breed of agent is very simple:

breed [ p a r t i c l e s p a r t i c l e ]

After defining the breed of agents, we set up the environment of the
simulation. We only need a white plane where our particles (turtles) can
communicate with each other. To initialize the environment, we create a new
function called setup and map this function to a button with the same name in
the graphical user interface (GUI). The setup function first clears everything
from the simulation world, including variables, turtles, patches and drawings.
Then, setup resets the simulation step counter (ticks in NetLogo) and sets the
color of all patches to white. After this, the setup function generates a number
num-particles of blue particles with shape ”dot” at random positions:

to setup

c l ea r−a l l

r e s e t−t i c k s

ask patches [ s e t pco l o r white ]

c reate−p a r t i c l e s num−p a r t i c l e s

[ s e t c o l o r blue

setxy random−xcor random−ycor

s e t shape ”dot” ]

end

Now that the environment is formed and the blue particles are present
on the 2D simulation environment, we also initialize one agent with state color
red. Fig. 3a shows this initial network state and the NetLogo model GUI. For
this, we create a function called init that changes the color of a single random
particle to red:
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to i n i t

ask one−o f p a r t i c l e s [ s e t c o l o r red ]

end

(a) NetLogo (b) Mesa Python Library

Fig. 3. Initial states and GUIs

After initialization, we define and run the behavior of all agents at each
simulation step. NetLogo provides the standard go function:

to go

t i c k

ask p a r t i c l e s with [ c o l o r = red ] [

ask p a r t i c l e s in−rad iu s 3 [ s e t c o l o r red ] ]

end

At each simulation step, we iterate through the red particles, and for each
of the red particles we propagate the red color to the neighbouring particles
within a certain radius.

3.2. Mesa Python Library

To implement the signal propagation model, we extend the Agent and
Model classes. We name AgentModel the class extended fromModel and Turtle
the class extended from Agent :

class AgentModel (Model ) :

def i n i t ( s e l f ,N, width , he ight ) :

s e l f . num agents = N

s e l f . space = ContinuousSpace ( width , height , True , 0 , 0 )

g loba lSpace = s e l f . space

s e l f . s chedu le = RandomActivation ( s e l f )
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s e l f . running = True

for i in range ( s e l f . num agents ) :

a = Turt le ( i , s e l f )

i f ( i == 0 ) :

a . change co l o r ( ” red ” ) ;

else :

a . change co l o r ( ” blue ” ) ;

a . s e t s p a c e c on t e x t ( s e l f . space )

s e l f . s chedu le . add ( a )

x = random . randrange ( s e l f . space . x max )

y = random . randrange ( s e l f . space . y max )

ag en t po s i t i o n = np . array ( ( x , y ) )

s e l f . space . p l a c e agen t ( a , a g en t po s i t i o n )

Python Mesa does not provide an implementation for a continuous space
out of the box, but there is an example in the official repository for Craig
Reynolds’s Boids flocker model [47], where a custom visualization module for
drawing agents with continuous positions was implemented. We use this visu-
alization module to place the agents at random locations in the constructor of
the AgentModel class. Fig. 3b shows the initialization setup of the model and
the GUI.

A simulation step function in the AgentModel class tells the scheduler
when a new simulation step is triggered:

def s tep ( s e l f ) :

s e l f . s chedu le . s t ep ( )

After this, the scheduler triggers the step function defined in the Turtle
class for each agent, based on the scheduling rules. Python Mesa library uses
the Tornado Python package to launch a Tornado web server instance on the
current machine and automatically opens the main page in the default browser
when the instance is started.

3.3. Results

The output of the models in NetLogo and Python Mesa are illustrated
in figs. 4 and 5, which show the first 8 steps of the simulation.

4. Case Study: Particle Collision

Newton’s Third Law of motion states that ”to every action there is always
opposed an equal reaction” [52]. We thus build the second signal propagation
case study, in which particles do not exchange information, but energy. The
law of momentum conservation is closely related to Newton’s Third Law of
motion [53]. Kinetic energy is conserved in case of elastic collisions but not
for inelastic collisions [53]. For this case study, we consider that all collisions
between particles in both NetLogo and Mesa Python library are elastic.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. NetLogo simulation output, steps 1 (A) to 8 (F)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Mesa simulation output, steps 1 (A) to 8 (F)

Momentum and kinetic energy is conserved in case of elastic collisions
[54]. Therefore, if two particles collide (fig. 6), the resulting velocities of the
two particles V1 and V2 are calculated by solving a system of two equations
consisting of: the conservation of momentum and the conservation of kinetic
energy. Thus, we can write:
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Fig. 6. Elastic collision of 2 particles

{
m1

−→u1 +m2
−→u2 = m1

−→
V1 +m2

−→
V2

m1
−→u1

2 +m2
−→u2

2 = m1

−→
V1

2 +m2

−→
V2

2
⇒

{−→
V1 =

m1
−→u1−m2

−→u1+2m2
−→u2

m1+m2−→
V2 =

2m2
−→u2−m2

−→u1+m1
−→u1

m1+m2

(1)

4.1. NetLogo

One of the limitations of NetLogo is that it does not provide functions
for vector operations. However, we can define local variables using the let

keyword to store the modulus of two orthogonal vectors −→vx and −→vy , so that:{ −→v = −→vx +−→vy
θ = arctan

∥−→vy∥
∥−→vx∥

, (2)

where θ is the heading attribute of the agent. The heading θ is defined on the
interval [0; 360).

Let
−→
V1x and

−→
V1y be the orthogonal projections of

−→
V1, and let

−→
V2x and

−→
V2y

be the orthogonal projections of
−→
V2. The moduli of the orthogonal projections

are calculated using the solutions of equation 1. The arctangent function is
available out of the box in NetLogo and we use it to calculate the direction

(heading) of vectors
−→
V1 and

−→
V2, as per equation 2.

4.2. Mesa Python Library

The Mesa implementation of the elastic collisions is straightforward and
uses the numpy Python package for vector operations. In Mesa we do not have
to define the direction (heading) of the agent because the library is written in
Python and supports vector operations out of the box.

4.3. Results

Using Windows Performance Analyzer we ran the two models with 100
particles (fig. 7) and observed that the CPU utilization is slightly higher in
case of Mesa, but the Mesa ABM requires less RAM memory. An important
difference between the two frameworks is that Mesa is a web application and
some CPU and memory resources are also utilized by the web browser. The
CPU used in both cases to generate the results is an Intel Core i7-1370P.
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Fig. 7. Performance comparison: CPU and memory utilization
for NetLogo and Mesa Python library

5. Comparative analysis

Netlogo has an user-friendly interface (fig. 3a) and allows customizing the
interface of the simulation environment by adding buttons and slide controls.
Buttons may be mapped to environment functions and slide controls may be
assigned to environment parameters. Mesa library does not have GUI-related
features available out of the box, but Python and javascript may be used to
extend or modify the Mesa library code. The model implementation effort is
low for NetLogo and suitable for inexperienced users, whereas Mesa requires
a more advanced level of programming literacy.

Netlogo supports both 2D and 3D simulations out of the box. Mesa
library supports only 2D simulations but it is very easy to resize the simulation
environment. Mesa does not require any other dependency besides Python
and the GUI (fig. 3b) is displayed in the web browser, therefore it is easy to
transfer the code across different platforms. NetLogo does not require other
dependencies and is available as a downloadable program to run on a machine
without requiring internet connection, but also as a web app. NetLogo also
offers a community-populated model library.

In figs. 4 and 5 the signal propagation algorithm returns similar pat-
terns. This is because although the environment is defined differently (number
of patches for NetLogo and number of pixels for Mesa), we chose the signal
propagation radius so that signal propagates proportionally in both models.
It is possible to define the same initial conditions (position of agents in the
environment, number of agents, and position of the red agent) in both simu-
lators and thus obtain the same results since the behavior is the same in both
simulation scenarios.

In terms of performance, both models perform reasonably well (fig. 7).
While NetLogo is a stable, mature and reliable ABM framework, a considerable
effort has been devoted to further developing Mesa Python library over the last
two years. The BehaviorSpace feature in NetLogo allows simulating the same
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experiment multiple times with a certain degrees of randomness. A similar
feature is not available in Mesa.

Both are open source software: Mesa is Apache2 licensed and NetLogo
is GPL licensed. Neither is FIPA-compliant, using lightweight messages for
communication. For both of them there is documentation available online.
According to Abar et al. [55], NetLogo is suitable for medium scale to large
scale simulation while Mesa is suitable for small scale to medium scale sim-
ulations [55]. However, in the case of Mesa library, the architecture allows
optimizations by limiting agent activation function calls using a custom sched-
uler. Both Mesa and NetLogo are flexible enough to allow studying physical
dynamic phenomena because there are no restrictions for solving differential
equations in the agent model.

6. Conclusions

In this study we compared the features of NetLogo and Mesa Python
library and identified advantages and disadvantages for modeling signal prop-
agation in complex networks, by implementing and simulating the same two
agent models in both frameworks. Both NetLogo and Mesa are useful tools
for simulating agent interactions and non-trivial network structures. While
NetLogo is very easy to learn and has an intuitive syntax, Mesa library offers
the possibility to customize and extend its modules, making it a versatile sim-
ulation tool. This study serves as an argument for framework choice in a larger
context of modeling the co-evolution of infodemics and pandemics, as well as
information diffusion in complex social networks. Further work includes the
implementation of decision-making behavior in agents, preferential attachment
and changing states, and propagation of multiple pieces of information through
the network.
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