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AN INERTIAL ALGORITHM FOR SOLVING SPLIT
VARIATIONAL INCLUSION PROBLEM

Jin-Lin Guan∗1, Yan Tang2, Ye-Yu Zhang3

This paper aims to investigate a new inertial algorithm for solv-
ing a split variational inclusion problem in real Hilbert spaces. Under very
mild conditions, we prove a strong convergence theorem for the proposed al-
gorithm by using self-adaptive stepsizes and demiclosedness principle. Fur-
thermore, an application is given to illustrate the effectiveness of the algo-
rithm. The results improve and extend the corresponding ones announced
by some others in the earlier and recent literature.

Keywords: Inertial algorithm, Self-adaptive stepsizes, Split variational in-
clusion, Hilbert spaces.

MSC2020: 47H 05. 47H 09. 49J 53. 90C 25.

1. Introduction

Throughout this paper, let H be a real Hilbert spaces with inner product
〈·, ·〉. F (T ) is denoted as the set of fixed points of a nonlinear mapping T . We
use xn → x and xn ⇀ x to indicate the strong convergence and the weak
convergence of the sequence {xn} to x, respectively.

First, we recall some notations which are needed in sequel. A mapping
T : H → H is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H.
A mapping T : H → H is called firmly nonexpansive if

〈Sx− Sy, x− y〉 ≥ ‖Sx− Sy‖2, ∀x, y ∈ H.
A multi-valued mapping B : D(B) ⊆ H → 2H is called monotone if, for

all x, y ∈ D(B), u ∈ Bx and v ∈ By such that

〈x− y, u− v〉 ≥ 0.

A monotone mapping B is maximal if the graph G(B) is not properly
contained in the graph of any other monotone mapping. It is well known that
a monotone mapping B is maximal if and only if for (x, u) ∈ D(B)×H, 〈x−
y, u− v〉 ≥ 0 for every (y, v) ∈ G(B) implies that u ∈ Bx.
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Let B : D(B) ⊆ H → 2H be a multi-valued maximal monotone mapping.
The resolvent operator JBλ : H1 → D(B) associated with B is defined by

JBλ x := (I + λB)−1(x), ∀x ∈ H,

for some λ > 0, where I stands for the identity operator on H1. Observe that
for all λ > 0, the resolvent operator JBλ is single-valued, nonexpansive and
firmly nonexpansive.

Split monotone variational inclusion problem has already been used in
practice as a model in intensity-modulated radiation therapy treatment plan-
ning; see e.g., [1, 2, 3]. This formalism is also at the core of the modeling of
many inverse problems arising for phase retrieval and other real-world prob-
lems, further, in sensor networks in computerized tomography and data com-
pression; see e.g., [4, 5] and references therein.

In 2011, Moudafi [6] introduced the following split monotone variational
inclusion problem (in short, SMVIP): find x∗ ∈ H1 such that{

0 ∈ f1x
∗ +B1x

∗,
y∗ = Ax∗ ∈ H2 : 0 ∈ f2y

∗ +B2y
∗,

(1)

where f1 : H1 → H1 and f2 : H2 → H2 are two given single-valued mappings,
A : H1 → H2 is a bounded linear operator, B1 : H1 → 2H1 and B2 : H2 → 2H2

are two multi-valued maximal monotone mappings.
If f1 ≡ 0 and f2 ≡ 0, then the problem (1) reduces to the following split

variational inclusion problem (in short, SVIP): find x∗ ∈ H1 such that{
0 ∈ B1x

∗,
y∗ = Ax∗ ∈ H2 : 0 ∈ B2y

∗.
(2)

Subsequently, Byrne et al. [7] proved a weak and strong convergence of
the following iterative method for problem (2): for given x0 ∈ H1 and λ > 0,
compute the following iterative sequence:

xn+1 = JB1
λ [xn + εA∗(JB2

λ − I)Axn].

Very recently, Sumalai et al. [8] studied a new split monotone variational
inclusion problem: {

0 ∈ Kx∗,
Lαx

∗ ∈ Hα : 0 ∈ Kα(Lαx
∗),

where Lα : H → Hα is bounded linear operator for every α = 1, 2, · · · , N , K :
H → 2H and Kα : Hα → 2Hα are multi-valued maximal monotone mappings.
Moreover, they introduced the following scheme:

zn+1 = JKµn,α [ϑnv + (1− ϑn)
N∑
α=1

%n,α(zn − ηn,αL∗α(I − JKαµn,α)Lαzn)].

As a result, they proved a strong convergence of the algorithm above under
appropriate assumptions on the parameters.
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Motivated and inspired by the results above, we introduce an inertial
algorithm with adaptive stepsize that does not depend on the norms of the
bounded linear operators. Under some suitable assumptions, a strong con-
vergence of the proposed algorithm is proved for solving a split variational
inclusion problem. Finally, we apply the main results to solve a split feasibil-
ity problem.

2. Preliminaries

In this section, we first recall some lemmas which are needed in sequel.

Lemma 2.1. ([9]) Let a multivalued mapping K : D(K) ⊂ H → 2H be
monotone, then the following statements are satisfied:

(i) For positive numbers ρ ≤ µ and for any z ∈ R(I + µK)∩R(I + ρK),
we get

‖z − JKρ z‖ ≤ 2‖z − JKµ z‖,
where R(I + µK) and R(I + ρK) denote the range of the operators I + µK
and I + ρK, respectively.

(ii) For all z, z ∈ R(I + µK) with µ > 0, we have

‖JKµ z − JKµ z‖2 ≤ 〈z − z, JKµ z − JKµ z〉;

‖(I − JKµ )z − (I − JKµ )z‖2 ≤ 〈(I − JKµ )z − (I − JKµ )z, z − z〉;
‖JKµ z − s‖2 ≤ ‖z − s‖2 − ‖z − JKµ z‖2,

where s ∈ Γ = K−1(0) 6= ∅.

Lemma 2.2. ([10]) Let K be a nonexpansive mapping on a closed convex
subset C of a real Hilbert space H. The mapping I−K is said to be demiclosed
on C, if for any sequence zn in C, such that zn ⇀ s ∈ C and (I−K)(zn)→ s∗,
we have (I −K)(s) = s∗.

Lemma 2.3. ([11]) Let {rn} be a sequence of nonnegative numbers, {ϑn} be
a sequence in (0, 1), and {qn} be a sequence of real numbers. Let the following
conditions be satisfied:

rn+1 ≤ (1− ϑn)rn + ϑnqn,∑∞
n=0 ϑn = +∞ and lim supn→∞ qn ≤ 0. Then, limn→∞ rn = 0.

Lemma 2.4. ([12]) Let {rn} be a sequence of real numbers which does not
decrease at infinity; that is, there is a subsequence {rnj} of {rn} such that, for
some j0 ∈ N,

rnj ≤ rnj+1 for all j ≥ j0.

For some α0 large enough, define a sequence of integers {σ(n)} by

σ(n) := max{α0 ≤ j ≤ n : rj ≤ rj+1}.
Then, limn→∞ σ(n) =∞ and for all n > α0, max{rσ(n), rn} ≤ rσ(n)+1.
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3. Main results

In this section, we introduce a new inertial algorithm to approximating
a solution of the following split variational inclusion problem:{

0 ∈ Bx∗,
Aαx

∗ ∈ Hα : 0 ∈ Bα(Aαx
∗).

(3)

Let Γ denote the solution set of problem (3). Subsequently, we give the main
results about our algorithm.

Lemma 3.1. Let H,Hα, α = 1, 2, · · · , N be real Hilbert spaces. Assume that
B : H → 2H , Bα : Hα → 2Hα are maximal monotone operators, and Aα : H →
Hα is a bounded linear operator with adjoint operator A∗α. Define the following
algorithm :

Algorithm 1 Let u ∈ H be a fixed point and choose two arbitrary initial
guesses x0, x1 ∈ H. For n ∈ N, let {xn} be a sequence of H generated by:

yn = xn + θn(xn − xn−1),

xn+1 = JBµn,α [βnu+ (1− βn)
N∑
α=1

ρn,α(yn − ηn,αA∗α(I − JBαµn,α)Aαyn)],
(4)

where

θn :=

{
min{ ξn

‖xn−xn−1‖ , θ}, ‖xn − xn−1‖ 6= 0,

θ, otherwise;

ηn,α := ζn,α
‖(I − JBαµn,α)Aαyn‖2

‖A∗α(I − JBαµn,α)Aαyn‖2 + εn,α
and the parameters satisfy the following conditions:

(i) 0 < ξn < 1, θ > 0;

(ii) {ρn,α} ⊂ [a, b] ⊂ (0, 1),
N∑
α=1

ρn,α = 1;

(iii) {βn}, {µn,α} ⊂ (0, 1),min
α
{lim inf

n
µn,α} = µ > 0, {ζn,α} ⊂ [c, d] ⊂ (0, 2);

(iv) εn,α > 0,max
α
{lim sup

n
εn,α} = N1 <∞.

Then, for any p ∈ Γ, the following inequality holds:

‖ln − p‖2 ≤ ‖xn − p‖2 + θn(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2)

−
N∑
α=1

ρn,αζn,α(2− ζn,α)
‖(I − JBαµn,α)Aαyn‖4

‖A∗α(I − JBαµn,α)Aαyn‖2 + εn,α
,

where ln =
N∑
α=1

ρn,α(yn − ηn,αA∗α(I − JBαµn,α)Aαyn).

Proof. Take p = PΓu. From the conclusion studied in [6], we have x ∈ Γ ⇔
x ∈ F (JBµn,α) and Aαx ∈ F (JBαµn,α), which implies that JBµn,αp = p and (I −
JBαµn,α)Aαp = 0. By (4), we get

‖yn − p‖ = ‖xn + θn(xn − xn−1)− p‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖. (5)
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Setting ln =
N∑
α=1

ρn,α(yn−ηn,αA∗α(I−JBαµn,α)Aαyn). For each α = 1, 2, · · · , N ,

by the convexity of ‖ · ‖2, we obtain

‖ln − p‖2 = ‖
N∑
α=1

ρn,α(yn − ηn,αA∗α(I − JBαµn,α)Aαyn)− p‖2

≤
N∑
α=1

ρn,α‖yn − ηn,αA∗α(I − JBαµn,α)Aαyn − p‖2. (6)

From (ii) of Lemma 2.1, condition (iv), the definition of ηn,α and (5), we
estimate

‖yn − ηn,αA∗
α(I − JBαµn,α )Aαyn − p‖2

= ‖yn − p‖2 − 2ηn,α〈A∗
α(I − JBαµn,α )Aαyn, yn − p〉+ η2n,α‖A∗

α(I − JBαµn,α )Aαyn‖2

= ‖yn − p‖2 − 2ηn,α〈(I − JBαµn,α )Aαyn, Aαyn −Aαp〉+ η2n,α‖A∗
α(I − JBαµn,α )Aαyn‖2

= ‖yn − p‖2 − 2ηn,α〈(I − JBαµn,α )Aαyn − (I − JBαµn,α )Aαp,Aαyn −Aαp〉

+η2n,α‖A∗
α(I − JBαµn,α )Aαyn‖2

= ‖yn − p‖2 − 2ηn,α〈(I − JBαµn,α )Aαyn − (I − JBαµn,α )Aαp,Aαyn −Aαp〉

+η2n,α‖A∗
α(I − JBαµn,α )Aαyn‖2

≤ ‖yn − p‖2 − 2ηn,α‖(I − JBαµn,α )Aαyn‖2 + η2n,α(‖A∗
α(I − JBαµn,α )Aαyn‖2 + εn,α)

≤ ‖yn − p‖2 − 2ζn,α
‖(I − JBαµn,α )Aαyn‖4

‖A∗
α(I − JBαµn,α )Aαyn‖2 + εn,α

+ ζ2n,α
‖(I − JBαµn,α )Aαyn‖4

‖A∗
α(I − JBαµn,α )Aαyn‖2 + εn,α

≤ ‖yn − p‖2 − ζn,α(2− ζn,α)
‖(I − JBαµn,α )Aαyn‖4

‖A∗
α(I − JBαµn,α )Aαyn‖2 + εn,α

≤ ‖xn − p‖2 + θn(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2)

−ζn,α(2− ζn,α)
‖(I − JBαµn,α )Aαyn‖4

‖A∗
α(I − JBαµn,α )Aαyn‖2 + εn,α

. (7)

Combining (6) with (7) yields that

‖ln − p‖2 ≤ ‖xn − p‖2 + θn(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2)

−
N∑
α=1

ρn,αζn,α(2− ζn,α)
‖(I − JBαµn,α)Aαyn‖4

‖A∗α(I − JBαµn,α)Aαyn‖2 + εn,α
. (8)

�

Theorem 3.1. Let H,Hα, α = 1, 2, · · · , N be real Hilbert spaces. Assume
that B : H → 2H , Bα : Hα → 2Hα are two maximal monotone operators.
Let Aα : H → Hα be bounded linear operators with adjoint operators A∗α.
Assume that Γ 6= ∅, conditions (i)-(iv) hold and limn→∞ βn = limn→∞

θn
βn

=

0,
∑∞

n=1 βn = +∞. Then the sequence {xn} generated by algorithm 1 converges
strongly to the point p = PΓu.
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Proof. First, we claim that the sequence {xn} generated by (4) is bounded.
Indeed, take p = PΓu, from (4) and (5), we deduce

‖xn+1 − p‖ = ‖JBµn,α [βnu+ (1− βn)
N∑
α=1

ρn,α(yn − ηn,αA∗α(I − JBαµn,α)Aαyn)]− p‖

≤ ‖βnu+ (1− βn)ln − p‖
≤ βn‖u− p‖+ (1− βn)‖ln − p‖
≤ βn‖u− p‖+ (1− βn)‖xn − p‖+ (1− βn)θn‖xn − xn−1‖
≤ βn‖u− p‖+ (1− βn)‖xn − p‖+ θn‖xn − xn−1‖
≤ βn‖u− p‖+ (1− βn)‖xn − p‖+ ξn

≤ max{‖u− p‖, ‖xn − p‖}+ 1

...

≤ max{‖u− p‖, ‖x0 − p‖}+ 1,

which implies that {xn} is bounded, and so are {yn} and {ln}.
Next, we show that limn→∞ ‖xn−p‖ = 0, where p = PΓu. Indeed, setting

zn = βnu+ (1− βn)ln, we have

‖zn − ln‖ = βn‖u− ln‖ → 0 as n→∞, (9)

it follows that {zn} is bounded. From the definition of zn and (8), we estimate

‖zn − p‖2

= ‖βnu+ (1− βn)ln − p‖2

= ‖βn(u− p) + (1− βn)(ln − p)‖2

≤ (1− βn)‖ln − p‖2 + 2βn〈u− p, zn − p〉

≤ (1− βn)‖xn − p‖2 + θn(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2)

+2βn〈u− p, zn − p〉 − (1− βn)

N∑
α=1

ρn,αζn,α(2− ζn,α)
‖(I − JBαµn,α )Aαyn‖4

‖A∗
α(I − JBαµn,α )Aαyn‖2 + εn,α

. (10)

Due to (ii) of Lemma 2.1 and (10), one has

‖xn+1 − p‖2

= ‖JBµn,α [βnu+ (1− βn)

N∑
α=1

ρn,α(yn − ηn,αA∗
α(I − JBαµn,α )Aαyn)]− p‖2

= ‖JBµn,α (zn)− JBµn,αp‖
2

≤ ‖zn − p‖2 − ‖(I − JBµn,α )zn‖2

≤ (1− βn)‖xn − p‖2 + 2βn〈u− p, zn − p〉+ θn(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2)

−(1− βn)
N∑
α=1

ρn,αζn,α(2− ζn,α)
‖(I − JBαµn,α )Aαyn‖4

‖A∗
α(I − JBαµn,α )Aαyn‖2 + εn,α

− ‖(I − JBµn,α )zn‖2, (11)

and consequently

rn+1 ≤ (1− βn)rn + βnqn, (12)

where rn = ‖xn − p‖2 and qn = 2〈u− p, zn − p〉+ θn
βn

(2‖xn − p‖‖xn − xn−1‖+

θn‖xn − xn−1‖2).
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In addition, we note that

qn = 2〈u− p, zn − p〉+
θn
βn

(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2)

≤ 2‖u− p‖‖zn − p‖+
θn
βn

(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2),

by limn→∞
θn
βn

= 0 and the boundedness of {xn} and {zn}, it follows that qn is

bounded.
We divide the rest of the proof into two cases.
Case 1. If the sequence {rn} is decreasing, i.e., for an integer number

n0, the sequence {rn} is decreasing for all n ≥ n0. Thus, the sequence {rn}
eventually must converges. Moreover, from (11), we have

(1− βn)
N∑
α=1

ρn,αζn,α(2− ζn,α)
‖(I − JBαµn,α )Aαyn‖4

‖A∗
α(I − JBαµn,α )Aαyn‖2 + εn,α

+ ‖(I − JBµn,α )zn‖2

≤ (1− βn)‖xn − p‖2 − ‖xn+1 − p‖2 + 2βn〈u− p, zn − p〉+ θn(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2)

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2βn〈u− p, zn − p〉+ θn(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2)

≤ rn − rn+1 + 2βn〈u− p, zn − p〉+ θn(2‖xn − p‖‖xn − xn−1‖+ θn‖xn − xn−1‖2). (13)

From conditions (ii), (iii), the boundedness of {xn}, {zn} and limn→∞ βn =
limn→∞

θn
βn

= 0, we infer that

lim
n→∞

‖(I − JBαµn,α)Aαyn‖ = lim
n→∞

‖(I − JBµn,α)zn‖ = 0,∀α = 1, 2, · · · , N. (14)

Furthermore, for every α = 1, 2, · · · , N , from (i) of Lemma 2.1 and condition
(iii), we obtain

‖(I − JBαµ )Aαyn‖ ≤ 2‖(I − JBαµn,α)Aαyn‖ → 0 as n→∞ (15)

and
‖(I − JBµ )zn‖ ≤ 2‖(I − JBµn,α)yn‖ → 0 as n→∞.

By the definition of {ln} and (14), we deduce that

‖ln − yn‖ = ‖
N∑
α=1

ρn,αηn,αA
∗
α(I − JBαµn,α)Aαyn‖

≤
N∑
α=1

ρn,α‖ηn,αA∗α(I − JBαµn,α)Aαyn‖ → 0 as n→∞.

In view of (9) and (15), it turns out that

‖zn − yn‖ ≤ ‖zn − ln‖+ ‖ln − yn‖ → 0 as n→∞. (16)

Meanwhile, since the sequence {zn} is bounded, there is a subsequence
{znj} of {zn}, such that znj ⇀ p∗ (without loss of generality, we may denote
zn ⇀ p∗). It follows from (14) and Lemma 2.2 that p∗ ∈ F (JBµn,α). On the other

hand, since Aα is bounded linear operator, we obtain from (16) and zn ⇀ p∗

that Ayn ⇀ Ap∗. By (14) and Lemma 2.2, it follows that Aαp
∗ ∈ F (JBαµn,α).

Thus p∗ ∈ Γ.
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Now, since p = PΓu, utilizing the characterization of metric projection,
we deduce

lim sup
n→∞

〈u− p, zn − p〉 = 〈u− p, p∗ − p〉 = 〈u− PΓu, p
∗ − PΓu〉 ≤ 0,

this together with limn→∞
θn
βn

= 0, implies that lim supn→∞ qn ≤ 0. Applying

Lemma 2.3 to (12), we obtain limn→∞ rn = 0, i.e., limn→∞ ‖xn − p‖ = 0.
Case 2. If the sequence {rn} does not decrease at infinity. Then, using

Lemma 2.4, for large enough n ≥ α0, we defined a integer sequence {σn} by

σn := max{α0 ≤ j ≤ n : rj ≤ rj+1}.

It is easily seen that {σn} is increasing and limn→∞ σn = +∞. Moreover, for
all n ≥ α0, rσn ≤ rσn+1. From (12), we have

0 ≤ rσn+1 − rσn ≤ βσnqσn .

We obtain from limn→∞ βσn = 0 and the boundedness of qσn that

lim
n→∞

(rσn+1 − rσn) = 0. (17)

By using the similar arguments as case 1 above, we obtain

rσn+1 ≤ (1− βσn)rσn + βσnqσn ,

‖(I − JBαµ )Aαyσn‖ → 0 and ‖(I − JBµ )zσn‖ → 0 as n→∞,

and lim supn→∞ qσn ≤ 0, this together with rσn ≤ rσn+1 and limn→∞ βσn = 0,
we infer that

rσn ≤ βσnqσn → 0 as n→∞. (18)

It follows from (17), (18) and Lemma 2.4 that

0 ≤ rn ≤ max{rσn , rn} ≤ rσn+1 → 0 as n→∞.

That is, limn→∞ ‖xn − p‖ = 0. This completes the proof.
�

Remark 3.1. Compared with Theorem 3.2 of Sumalai et al. [8], our Theorem
3.1 extends, improves and develops it in the following aspects:
(i) Our iterative scheme is more general than it in [8]. Especially, a self-
adaptive inertial scheme is added to construct our iteration process, which is
not applied in [8].
(ii) There is a gap in the proof of Theorem 3.2 in [8]. That is, after (26) in
[8], from the boundedness of the sequences {zn} and {ln}, we can not obtain
that ‖znj+1 − lnj‖ = ϑnj‖v − lnj‖. So we modify the proof, which makes the
results more applicable and valid.
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4. Application

In this section, by applying Lemma 3.1 and Theorem 3.1, we prove a
strong convergence theorem for solving a split feasibility problem.

Let H,Hα, α = 1, 2, · · · , N be Hilbert spaces and C, Qα be nonempty
closed convex subsets of H and Hα respectively. Suppose that Aα : H → Hα

is a bounded linear operator and A∗α is the adjoint of Aα. The split feasibility
problem (SFP) is the problem of finding a point with the property:

x ∈ C and Aαx ∈ Qα. (19)

We denote the solution of SFP (19) by Γ.

Theorem 4.1. Let PC be the metric projection from H onto C and PQα be
the metric projection from Hα onto Qα. Choose u ∈ H and arbitrary initial
guesses x0, x1 ∈ H. For n ∈ N, let {xn} be a sequence of H generated by:

yn = xn + θn(xn − xn−1),

xn+1 = PC [βnu+ (1− βn)
N∑
α=1

ρn,α(yn − ηn,αA∗α(I − PQα)Aαyn)], n ∈ N,

where

θn :=

{
min{ ξn

‖xn−xn−1‖ , θ}, ‖xn − xn−1‖ 6= 0,

θ, otherwise;

ηn,α := ζn,α
‖(I − PQα)Aαyn‖2

‖A∗α(I − PQα)Aαyn‖2 + εn,α
and the following conditions hold:

(i) 0 < ξn < 1, θ > 0, {ζn,α} ⊂ [c, d] ⊂ (0, 2);

(ii) {ρn,α} ⊂ [a, b] ⊂ (0, 1),
N∑
α=1

ρn,α = 1;

(iii) {βn} ⊂ (0, 1), limn→∞ βn = limn→∞
θn
βn

= 0,
∑∞

n=1 βn = +∞;

(iv) εn,α > 0,max
α
{lim sup

n
εn,α} = N1 <∞.

Assume that Γ 6= ∅, then the sequence {xn} generated above converges strongly
to the point p = PΓu.

Proof. Taking JBµn,α = PC and JBαµn,α = PQα in (4), by using the same method
of Lemma 3.1 and Theorem 3.1, we obtain the desired conclusion directly. �

5. Conclusions

We not only extend the iterative algorithm of [8] by adding a self-adaptive
inertial scheme to construct our iteration process but also modify the proof
of Theorem 3.2 in [8], which makes our results more applicable and valid. At
last, we give an application of the modified algorithm.
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