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AN ANALYTICAL SOLUTION TO TIME-SPACE
FRACTIONAL BLACK-SCHOLES OPTION PRICING MODEL

Donya Rezaei' and Mohammad Izadi'*

The subject of this manuscript is devoted to a novel combination of
the complex fractional transform (CFT) and residual power series method
(RPSM) to acquire a quick solution to a time-space fractional Black-Scholes
equation arising in the financial market. The fractional operator is consid-
ered as a local fractional derivative. By utilizing the initial conditions, the
presented CET-RPSM provides an accurate approzimation in an easy man-
ner and only with a few iterations. The applicability of the CFT-RPSM is
shown on a test example and numerical results are presented through tables
and figures. A comparison with an existing approximation method indicates
that our approach is not only accurate but is also more straightforward in
implementation. The current strategy can be easily applied to the other
fractional models in physical science and engineering.
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1. Introduction

Financial markets have attracted attention of many scholars in the field
of mathematics and economic over the ealier decades. In early 1970’s, the first
financial model to estimate the value of option pricing was given by M. Scholes,
and F. Black [7]. This celebrated model known as Black-Scholes model has
been generally adopted as an essential and standard instrument by finance
practitioner. This model as a continuous-time mathematical model provides
the basic methodology of option pricing.

Let (s, 7) denote the option value at time 7 and asset price s, the
Black-Scholes equation (BSE) is given by

oP(s, T oY(s,7) 1 (s, T

—wéT’ ) + 78 —wés’ ) + 50232 —w@i; ) _ ri(s,7) =0, (1)
where the coefficient parameter r represents the (risk-free) interest rate and o
denotes the volatility parameter. The related payoff functions for call and put
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options are
Ye(s,T) = max(s — E,0), ,(s,T) = max(E — s,0), (2)

where F is the exercise (strike) price and T' shows the maturity time or the
expiration date. Over the past decades, numerous research studies have been
conducted toward solving the classical Black-Scholes model (1), see [28] for
its applications [28]. Moreover, several research studies have been devoted to
proposing diverse analytical and computational approaches such as method
of line [29], Cauchy Euler scheme [24], (explicit) difference procedures [5, 34],
multivariate pade approximate approach [26], and Legendre wavelet scheme [9]
to attain the approximate solution of BSE.

It is known that the classical BSE (1) can be converted to a parabolic
PDE by the aid of following transformations

s=mne”, t=0*(T—-1)/2, Y(s,7)=nv(z,t).

It is not a difficult task to show that under the former change of variables the
resulting parabolic equation is obtained as
ov(z,t)  Pv(x,t) ov(z,t) 2r
= kE—1 —k t)=0, k=—
(% 6x2 +( ) ax U(.ﬁE, ) ) 0_27 (3)
v(x,0) = vo(x).

Over the past decades, lots of research papers have been devoted to
fractional calculus including fractional differential equations. In fact and in
particular PDEs are an essential tool for modelling many natural phenomena
in science and engineering. The concept of fractional derivatives helps us to
understand the nature of the models more deeply compared to the integer-
order counterparts. Their aids also simplify the controlling design without
any loss of hereditary behaviors of underlying events [20], see also [30, 31].
In this respect, many works have been conducted to solve diverse important
mathematical models in science and engineering. Among others, we mention
the previous works [6], [13]-[18], [27],[32, 33|, and [35].

In this work, our aim is to solve the generalized version of BSE (3). To
be more precise, we consider the space-time fractional BSE in the form [11, 25]

LEDey(z,t) = FED?*Pv(x,t) + (k — 1) vp(x,t) —kv(z,t) =0, 0<a,B<1,
v(x,0) = vo(x),

(4)
where L D2 and L¥' D2?? represent the local fractional derivative (LFD) with
respect to t and x respectively. When = 1 and the fractional derivative is
taken in the sense of Caputo, the model (4) reduces to a time fractional BSE. In
this case, this model has been considered in the literature and solved by some
developed methods such as Adomian decomposition method [37], homotopy
perturbation technique and homotopy analysis method [22], and power series
method [10], to name a few.
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In this research manuscript, we propose a combined analytical scheme
to find approximate solutions of (4). For this purpose, we first apply the
complex fractional transform (CFT) [23] to convert it to a integer-order PDE.
Hence, we employ an iterative analytical approach, i.e., the residual power
series method (RPSM) to gain the numerical solutions of (4). In fact, the
RPSM is a novel recently proposed iterative strategdy to find the (analyti-
cal) Taylor expansion series form of solutions to systems of linear as well as
nonlinear ODEs and PDEs. This technique was first propounded by O.A. Ar-
qub [1]. This approach has now been successfully applied to different other
problems. Among various solved model problems, let us mention the regular
initial value proplems, the Lane-Emden equation, the fractional-order BVP,
the non-composite and composite differential equations [2, 3, 4].

The RPSM approach actually utilizes the (generalized) Taylor series ex-
pansion together with residual error function to construct the power series
solutions to diverse linear and nonlinear differential equations without em-
ploying any linearization, discretization, and perturbation. Let say the the
solution of the transformed (integer-order) PDE is denoted by u(z,t) and the
associated initial condition is ug(x). The idea behind the underlying RPSM
is to write u(x,t) in terms of power series form about the initial point ¢ = t.
This implies that we have u(x,t) = >~ gn(2) (t — to)". Practically, we con-
fine ourselves to a truncated version with only ¢ terms. Thus, we seek for
approximate solutions in the forms

wi(z,t) = ug(x ~I—Zgn (t—t)", i=1,2,3,...,

where ug(z) = u(z,t = 0). Hence, we insert the truncated series solutions into
the PDE to get the residual error functions (REF) denoted by Res;(z,t). By
the fact that the REF belongs to C'*, we have
Resy(x,t) := lim Res;(x, t).
1—00
In addition, during the construction of the RPSM, we use the following prin-
cipal rules as

k k
pn —zResy(z,0) =0, P

For more details, we refer the readers to [1]-[4].

The plan of the remaining part of this study is as follows. In the next
Section 2, some fact on the fractional calculus and the complex fractional
transform are given. Section 3 as the main part of this work is devoted to the
implemention of RPSM to the transformed PDE via CFT. This approach is
called CF'T-RPSM. The application of CFT-RPSM to an example is illustrated
by numerical simulations. A comparison with an existing method is also carried
out afterwards. Some conclusions are given in the final Section 4.

—Res;i(x,0) =0, k=1,2,...,1.
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2. Preliminaries and notations

This section is devoted to review first some fundamental definitions of
fractional calculus and their properties. Hence, we give some facts on complex
fractional transform method used in the subsequent sections.

2.1. Local fractional derivative

Let us define the concept of local fractional derivative. In fact, the local
fractional derivative (LFD) is based on the definition of Riemann-Liouville
fractional derivative, see [21, 36] for more information.

Definition 2.1. A function g(t) is called fractional local continuous (FLC) at
t =tg if for each € > 0, there exists 6 > 0 such that if [t — to| < 0, then

lg(t) — g(to)] <€, 0<a<l,

and we write lim;_¢, g(t) = g(to).

If g(t) be FLC on the interval (¢, d), we denote is as ¢(t) € C,(c, d). Next,
we have:

Definition 2.2. Suppose that g(t) € Cy(c,d). The local fractional derivative
(LFD) of order a of function g(t) is defined by

LF pa Cdvg(t)  A%[g(t) — g(to)]
Dig(to) = — e T Gt

where A*[g(t) — g(to)] = I'(1 + «) [g(t) — g(to)]. Here, the function I'(-) rep-
resents the well-known Gamma function.

O<a<l,

The main properties of the LFD are summarized as follow
LEDe(C) =0, (C is a constant),
LD (C g(t)) = CHDig(t),

Fpe(te) = Mtf_a for £ > o >0,

a)
b)
c)
)

L
L (&'I:;—Oé) LF’ LF LF
d) LF Dl (g(t)) = 1 D L D L D L D (1)),
k times

e) “'DR((f o g)(t)] = Dyf - *"'Dig

2.2. The complex fractional transform

Let assume that we have the following general nonlinear fractional PDE
in the form

F(u, M De MEDS LEp2e LEp2ay — 0 0<a,fB<]1, (5)

where u = u(z,t) and X' D%, L D are the local fractional derivatives defined
in the previous section. The original complex fractional transform (CFT) was



An analytical solution to time-space fractional Black-Scholes option pricing model 133

first introduced in [23] in the form
at® ba?

u(x,t) = u((q), = + ,
(@0 =wQ: ¢ =Fara) T Ta+H
where a,b are two unknown constants to be specified later. Using this trans-

formation, the given equation (5) is converted to a PDE with integer-order
derivative. A modification of the former transformation is given by [19]

at® ax?

= = —\ 6
"TT1+a) XTTO+5) (6)
By utilizing properties ¢) and d) of LFD, we arrive at

LFDa *LFDa ( ( ))ZDl'LFDaT_aé‘u’
) ¢! (7)
YDl = " Dlu(x(x)) = Dy - "FDIx = bge.

3. The combined CFT-RPSM algorithm to solve the space-time
BSE

To proceed, we consider the generalized BSE (4). By using the modified
CFT (6) and related relations (7) with a,b = 1, this equation is converted to

v v v
—=—+(k-1)— -k R* T
where T is a given final time and with initial condition
v(x,0) = max(eX — 1,0). 9)

In according to the residual power series (RPS) algorithm, the solution of
the BSE (8) is assumed to be written in the form of a Taylor series expansion
about the initial point 7 = 7y given by [§]

Zgn (T—m)", 7=, (10)

where the unknown coefﬁments gn(x) to be determined. Here, we set 79 = 0
according to the initial condition. Obviously, v(x, 7) satisfies the given initial
condition and one can write it as

g0(x) = v(x,0) = max(eX - 1,0). (11)

Thus, with the initial approximation go(x) to v(x, 7), the series solution in (10)
can be rewritten as

v(x,7) = go(x) + Z 9n(X) T (12)

We now define the i-th truncated series related to v(x, ) in (12) as

(X, 7) = go(x Zgn ™ i=1,2,3,.... (13)
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The next goal is to define the residual function Res,(x, T) associated to the
transformed PDE (8). It is given by

Res,(x, 7) == Dyv(x, 7) — Dypv(x, 7) — (K — 1) Dyo(x, 7) + ko(x, 7), (14)

where Dyv := g—;’.

In this way, we introduce the i-th residual function by
Res,i(x, 7) := Drvi(x, 7) — Dyvi(x, 7) — (K — 1) Dyvi(x, 7) + kvi(x, 7). (15)
Now, our task is to determine the first unknown coefficient ¢;(x) in (13). In
this respect, we take i = 1 in equation (15) to get
Res, 1(x,7) = Dui(x, 7) — Dypvn (X, 7) — (K — 1) Dyvs (X, 7) + kvi(x, 7),

where

vi(X;7) = go(X) + g1 (x) 7.

After differentiation and substituting the resulting derivatives into the residual
function Res, 1(x, ) we get

Res,1(x; 7) = g1(x) — {90 (x) + 9/ (x) 7} — (k — 1) {go(x) + g1 (x) 7}
+Ek{go(x) + g1(x) T}

By setting 7 = 0, the residual function becomes

Res,1(x,0) = g1(x) — g6(x) — (k = 1) go(x) + k go(x)-

Now, from Res, 1(x,0) = 0, using definition of go(x) in (11), and after some
simplifications we immediately conclude that

g1(x) = k[e* — max(e — 1,0)]. (16)
Thus, in the first iteration, we get the RPS approximate solution as
v1(x, 7) = max(eX — 1,0) + k [eX — max(eX — 1,0)] 7. (17)

In order to find the second unknown coefficient go(x) in (15), let us insert
i = 2 into (15) to arrive at

ReSU,Q(X? 7—) = DT”Q(X? 7_) - D:cJ;UZ(Xa 7—) - (k - 1) DSCUQ(X7 7—) + kv2(X? 7—)7
where
-2
v2(X;T) = go(X) + 1 (X) T + 92(X)§-
After inserting vo(x, 7) into the 2-th residual function Res, »(x, 7) we render
2

Res,a(,7) = 000 + 2007~ {00 + 00 7 + 00 ;| (13)

2

— (k=1 {gé(x) + 00T+ gé(x)%} + k {go(x) +9100) T+ 92(X)%} :
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Now, from D,Res, 2(x,7) = 0 we deduce

Resua(x, 7) = g2(x) = {g1(x) + 9200 7} — (k = D) {g1 () + 9200) 7}
+k{g1(x) + 92(x) T}
By setting 7 = 0 in the former relation we obtain

92(x) = 91(x) = (k = 1)g1(x) + k g1(x) = 0.
By solving with respect to g, we get
g2(x) = —k* eX + k? max(eX — 1,0). (19)
Finally, the second approximate solution vy(, 7) is constituted as

va(x, 7) = max(eX — 1,0) + k [eX — max(eX — 1,0)] 7
2

+ k2 [max(eX — 1,0) — €] % (20)

In a similar way, we are able to find the third coefficient g5(x) in (13).
By putting ¢ = 3 in relation (15) we have

ReSU,3(X77—) = DTU3(X7 7-) - Dmazv?)(Xa 7_) - (k - 1) va?)(Xa 7—) + ka(Xa 7-)7
where
2 3

v3(X,7) = go(X) + 1 (x) T + gz(X)% + gg(x)%.

We then compute D, Res, 3(x, 7) = 0 followed by inserting 7 = 0. Solving the
resulting relation in terms of g3(x) we get

g3(x) = k* eX — k* max(eX — 1,0).
This implies that the third approximate RPS solution can be written as

v3(x, 7) = max(eX — 1,0) + k [eX — max(eX — 1,0)| 7
2

+ k? [max(eX — 1,0) — eX] %

3

a.
Analogously, by continuing this process we can determine the fourth and fifth
coefficients as

gs(x) = —k*eX + k* max(eX —1,0), gs5(x) = k° eX — k® max(eX — 1,0).

Hence, the corresponding fourth and fifth approximate solutions obtained via
RPS technique are given by

+ & [eX — max(eX — 1,0)]

v4(x, 7) = max(eX — 1,0) + k [eX — max(eX — 1,0)] 7

-2 -3
+ k? [max(eX — 1,0) — ] ot k? [eX — max(eX — 1,0)] 3

7_4

+ k* [max(eX — 1,0) — ] "k
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and

vs(x, 7) = max(eX — 1,0) + k [eX¥ — max(eX — 1,0)] 7

2 3
8 [max(eX = 1,0) = ] Iy + K* [eX — max(e¥ — 1,0)] ;
4 7_5
+ k* [max(eX — 1 0)_6X]Z+k5 [eX — max(eX — 1,0)] — Tk

Thus, we have proved the following results for the RPS solution of model (8):

Lemma 3.1. The coefficients and solutions of the truncated series (13) for
n =1 satisfy

gn(x) = (=)™ E™ [eX — max(eX — 1,0)], (21)
2 3 N
Un(Xa ) maX( —1 0) [1 — kT + ]{;2 k;?’? + . (_1)nkn7__':|
n!
X o T 3 7° nanT"
—€ _k7+k’§—k‘§+...~l—(—1)kﬁ , (22)
Proof. The proofs can be done straightforwardly by induction on n. O

It is an easy job to obtain the following result as the final solution of (8):

Corollary 3.1. In the limiting case as n — o we have

v(x,7) = lim v,(x,7) = e ¥ max(eX — 1,0) + eX — X7,
n—o0
Now, we use the aforementioned transformations (6) to recover the ap-
proximate solution of the original space-time BSE of fractional order (4). Thus,
we get

2P
v(z,t) = max(eT0+m — 1,0)

o P T Y (R L R
F(1+/3) — — F(1+ﬁ) _ —
—i—[max(e 1,0)— e ]Zn {mm)} . (23)

It should be emphasize that our approximate solution coincides with the solu-
tion obtained via the coupled transformed method (CTM) [11], which confirms
our results. However, our proposed technique is more straightforward than the
CTM.

Corollary 3.2. In view of Corollary 8.1 and the FCT (6), the exact solution
in the case of o, B = 1 takes the following form

v(z,t) = e Fmax(e” — 1,0) + e"(1 — e™*). (24)
To further validate our results, we make a comparison in the next experi-

ments. Table 1 shows the numerical results obtained by the proposed technique
via (24) with «, 8 = 1. In this respect, the outcomes of the CTM [11] are also
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TABLE 1. A comparison of numerical solutions with «, 5 = 1,
T =1,k =2, and various z,t € [0, 1]

x t Present Method ~ CTM [11] Exact [11]

0.00  0.329679953964361 0.3296799 0.3296799
0.25 0.613705370652102 0.6137053 0.6137053
0.2 0.50 0.978401224664489 0.9784012 0.9784012
0.75 1.446679970577035 1.4466799 1.4466799
1.00 2.047961782423406 2.0479617 2.0479617

0.00 0.550671035882778 0.5506710 0.5506710
0.25 0.834696452570520 0.8346964 0.8346964
0.24 0.50 1.199392306582907 1.1993923 1.1993923
0.75 1.667671052495453 1.6676710 1.6676710
1.00 2.268952864341824 2.2689528 2.2689528

0.00 0.698805788087798 0.6988057 0.6988057
0.25 0.982831204775539 0.9828312 0.9828312
0.6 0.50 1.347527058787926 1.3475270 1.3475270
0.75 1.815805804700473 1.8158058 1.8158058
1.00 2.417087616546843 2.4170876 2.4170876

tabulated in this table. Clearly, an excellent alignment between our results
and those obtained by the CTM are seen.

Now, we turn our attention to the fractional cases and take two values
of a =0.75,6=1and a = 1,5 = 0.75. The graphical picture of approximate
solutions for £ = 2 and with ¢ = 10 number of iterations are plotted in Fig. 1 on
the space-time (x,t) € [0,1] x [0, 1]. Finally, the convergence of the presented
combined technique is shown numerically through Table 2. In this experiments,
we set ¢ = 5,10,15,20, and ¢ = 25 and again k = 2. The numerical solutions
at various points x, = p/10 for p = 0,1,...,10 and the final ¢t = 7" = 1 are
reported in Table 2. Here, we used «, 3 = 0.75. Obviously, by increasing i,
the number of fixed digits are increased.

4. Conclusions

In this study, we have proposed a combined approach based on the com-
plex fractional transform (CFT) and the residual power series method (RPSM)
to provide an accurate estimation of solutions of a class of time-space fractional
Black-Scholes (BS) equation arising in the financial market. The presented
CFT-RPSM technique can be considred as a directly applicable approach,
which is free of any sort of discretization, linearization, or any other extra im-
posed assumptions. By utilizing the given initial conditions, the approximate
analytical solutions of the governing equations are straightforwardly evaluated.
The application of the CFT-RPSM to a test example indicates that one obtains
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FIGURE 1. Visualization of approximate solution using «

0.75,8 = 1 (left) and o =

7 = 10 number of iterations.

1,8 = 0.75 (right) with £ = 2 and

TABLE 2. A comparison of numerical solutions with o, 5 = 0.75,
T =1,k =2, and various x € [0,1],t = T.

T

1=9

1 =10

1=15

1 =20

1=125

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.99816599
1.21164130
1.38276062
1.55251712
1.72668996
1.90790668
2.09781142
2.29764056
2.50843807
2.73115323
2.96669116

0.88641051
1.09988583
1.27100514
1.44076165
1.61493449
1.79615121
1.98605594
2.18588508
2.39668259
2.61939775
2.85493568

0.886520218968664
1.099995533328814
1.271114847383046
1.440871352594751
1.615044190496329
1.796260911388124
1.986165647402933
2.185994784996265
2.396792295468982
2.619507454469871
2.855045384244428

0.886520208260417
1.099995522620567
1.271114836674800
1.440871341886504
1.615044179788082
1.796260900679877
1.986165636694686
2.185994774288018
2.396792284760735
2.619507443761624
2.855045373536181

0.886520208260637
1.099995522620786
1.271114836675019
1.440871341886724
1.615044179788302
1.796260900680097
1.986165636694906
2.185994774288238
2.396792284760955
2.619507443761844
2.855045373536401

a better approximation with only a few iterations. Numerical simulations and
MATLAB plots have been presented to demonstrate the main results derived
in this study. A comparison to other existing computational procedure, i.e., the
CTM [11] shows that our approach is easy to implement and computationally
efficient.
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