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TWO DIMENSIONAL PHOTONIC CRYSTALS WITH
DIFFERENT SYMMETRIES FOR WAVEGUIDES AND
RESONANT CAVITIES APPLICATIONS

Dana Georgeta POPESCU'

In this paper we investigate the properties of two-dimensional photonic
crystals (2D PhCs) with both hexagonal and square symmetry for applications in
optoelectronics and telecommunication. An efficient way of manipulating the light
is to make use of the defects introduced within the periodic structure, which
consequently break the symmetry of the crystal, resulting in linear waveguides or
resonant cavities. We calculate using finite-difference time-domain and finite-
difference frequency-domain methods the properties associated with several kinds of
defects, conveniently selected, performed in 2D PhCs with square and hexagonal
symmetry.
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1. Introduction

Photonic crystals (PhCs) are artificially fabricated periodic dielectric
structures for controlling the propagation of light [1-3,13]. The existence of
photonic band gaps (PBGs) plays a crucial role for the design of photonic
integrated circuits. These optical materials can find various applications in the
design of optoelectronic devices such as resonant cavities for optical light, optical
logic gates, optical switches, beam splitters, demultiplexers, ring resonators [4-
11]. By introducing certain defects within the PhC, localized modes can appear. If
they sustain a radiation with well-defined frequency, the defect can further be
used for guiding or amplification of light along the defect.

In this paper we investigate the properties of 2D PhCs. We have
considered hexagonal and square symmetry in analyzing the features of these
materials that can be wused for applications in optoelectronics and
telecommunication. We have studied the behavior of defects introduced in these
periodical systems, especially focusing our attention over the ones created by the
removal of a row of elements (W1) and resonant cavities. Thus, at well-defined
frequencies supported by the defect, and subsequently calculated, the radiation
field may be confined along the waveguide or inside the resonant cavity. We
show how by tailoring the shape of the defect, and the lattice parameters, a broad
frequency range may be covered and the efficiency of optical devices may be
improved. All the calculations were performed using the finite-difference time-
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domain (FDTD) and finite-difference frequency-domain (FDFD) methods [2, 3, 9,
12].

2. FDTD method

The FDTD method is a direct discretization of Maxwell’s differential
equations, differential being replaced by finite differences [12,14-17]. It is used to
solve a vast area of problems regarding electromagnetic waves, such as scattering,
antenna analysis, wave propagation, electronic circuits, etc.

We can write the time-dependent Maxwell’s curl equations for a linear
isotropic material in a source-free region in the following form:
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where E is the electric field intensity, H is the magnetic field intensity and
e(r),u(r),o(r) are the position dependent permittivity, permeability and
conductivity of the material.

One can discretize in space and time Maxwell’s equations by so called
Yee-cell technique on a discrete 3D mesh. Figure 1 depicts the unit Yee cell of a
3D mesh. The (3)-(5) formulas constitute the discretization in space and time of
Maxwell’s equations on a discrete 3D mesh in a Cartesian xyz coordinate system
[18-21], which indicate that values of the magnetic field intensity are taken with
time shift as related to the electric field and its allow us to carry out the step by
step computation of the electric field. Solution of the Maxwell’s equations
require information about the permittivity and permeability in computation nodes
and the field distribution must be specified at least at one boundary so the
computation could start. Also, the (3)-(5) formulas have similar counterparts for
the magnetic field.
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Fig. 1. The illustration of a standard Cartesian Yee cell.
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In (3)-(5), c is the speed of light, &, is the dielectric permittivity in
and H'? are the
electric and magnetic fields components in the Yee computational cell, defined as
in Fig. 1.

For a fixed total number of time steps the computational time is
proportional to the number of discretization points in the computational domain
(FDTD algorithm is of order N).

Another technical point for FDTD method which should be mentioned is
that for achieving convergence results the maximum mesh size should be at least
10% of the interested minimum wavelength [12]. To keep the stability of the
method the time domain step should follow the Courant-Friedrichs-Levy
condition [21-23]:
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where Ax,Ay,Az is the space domain step and v is the speed of light in

the layout. Also we used the perfectly matched layer (PML) boundary condition
[12] to keep the outgoing waves from being reflected back.

In order to preserve the interaction between neighboring crystal pillars the
absorption in the PML’s should increase quite gradually toward outside.

The FDTD method is one of the most popular numerical methods making
no assumption about the direction of wave propagation or the time varying of the
fields. There are no plane wave assumption, no slowly varying envelope
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approximation and no modal expansions. It is capable of modeling the
geometrical complexities and material in-homogeneities of realistic micro scale
photonic and optoelectronic devices because of the rigorously enforces boundary
conditions at material interfaces. So, a complete FDTD analysis of the
electrodynamics of micro cavity lasers and resonators is computationally feasible
because of the advanced state of computing power of workstations [24-28].

3. Results and discussion

Bound states in waveguides, and especially in waveguide bends, have been
the subject of widespread theoretical and experimental investigation.

It was proved that bends always support bound states in constant cross-
section quantum waveguides under the condition that the wave function vanishes
on the boundary. Papers by Carini [22, 24] deal with calculating energies of single
and multiple bound states in bent quantum waveguides and comparing them to
results from microwave experiments.

Such research was stimulated by an interest in semiconductor device
miniaturization and development of optical circuits. Since electronic transport
properties through such quantum wires are influenced by the existence of
localized states [17, 18], a good understanding of bound states in bends is relevant
to building small-scale integrated circuits.

Our main goal was to understand and underline the basic mechanisms
which drive the light propagation in waveguides based on 2D PhCs. More
complex applications can be further designed, and the case of coupled optical
cavities is presented.

The field of photonics is by now a fully mature one, in the last two
decades significant progress being made in both theoretical aspects as well as
experimental issues. On the other hand, still the widest used material for various
applications concerning trapping the light in resonant cavities or its guiding in
linear or bent waveguides remains Si. Our paper presents comparatively the way
how Ge may be used as efficient alternative, since processing Ge surfaces is more
practical than Si ones. Silicon by itself is cheaper than Ge, but as far as various
heterostructures for microelectronics use are concerned, Ge can be more practical.
At least in ultra-high vacuum conditions, it requires a lower cleaning temperature,
which is prerequisite for its use as buffer layer for electronic circuits design [19-
21,29]. Also, Ge provides a higher refraction index contrast.

We analyzed the most common waveguide, W1. The dispersion relations
for the photonics bands were calculated in the (11) direction, corresponding to I'-
X direction for the square lattice and I'-M direction for the hexagonal one along
which the defect is oriented (see Fig. 2).

We considered the situation of a PhC designed by periodic cylinders of Si
(&~=11.8) and Ge (&~16), for structures having square and hexagonal symmetry,
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varying the radius of the cylinders from 0.25a to 0.4a, with a, the lattice constant
of our PhC.
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Fig. 2. The square lattice a) and the first Briliouin zone b); the triangular lattice ¢) and the
first Brillouin zone d).
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These relations for the PBG waveguides are calculated by solving
Maxwell’s equation in the frequency domain for a given dielectric configuration,
using the MPB software [30]. A supercell with periodic boundary conditions is
taken as the computational domain. The length of the cell corresponds to the
periodicity of the dielectric in the direction of the guide, whereas the width was
taken to be several lattice constants. The PhC simulated in this way contains
parallel, evenly spaced waveguides.

In every case, the calculations are firstly performed on the un-defective
structure, and the projected band-diagram is obtained for the pure crystal,
containing no defects. Subsequently calculating the band system for the structure
with an induced defect, and superimposing the two dispersion relations for the
photonic bands, it is easy to identify which are the modes supported by the defect
only.

Fig. 3 presents the dispersion lines for W1 waveguide designed in 2D
PhCs with square symmetry, calculated along the I'-X line, in order to capture the
effects introduced by the defect.

Overlapping the bands of the crystal with no defect and the ones of the
structure with linear waveguide, we observe that most of the features are common
to both Si and Ge. The bands depicted in blue (| |) are the bound states supported
by the linear defect. This is ideally the case when a radiation field incident on the
PhC having the frequency equal with the defect mode frequency can be guided
without losses.

As we can see, there is no gap for both TE and TM modes. In the case of
Si and Ge as well, there is only a gap for TM modes. The TM gaps are located
approximately in the same frequency region for both Si-PhC and Ge-PhC. For Ge
the first one (B1) in 0.18-0.33 and the second (B2) in 0.41-0.48, while for Si there
are three TM gaps, 0.2-0.35 (B1), 0.41-0.48 (B2). In both cases, in the upper
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frequency region (at ~0.63 for Ge and at ~0.82 for Si), there are some incomplete
gaps which could guide only radiation with wave vector fulfilling the condition
k~0 i.e around T" point. Here, like in all the other projected band-diagrams along
the paper the frequency is expressed in 2mc/a normalized units.
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Fig. 3. Projected band-diagrams of W1 waveguide designed in a 2D PhC with square
symmetry, using as materials Si and Ge and cylinder radius of 1=0.25a. With black dots (®) are
represented the bands of the pure crystal and with red lines ('), the ones of the defect. The blue

lines ([ 1), localized within the gap are associated with bound states supported by the defect.

For comparison, the structure based on a hexagonal lattice, with the radius
of the cylinders having the same value (0.25a) is presented in Fig. 4. Again, the
projected band-diagram was calculated only along the defect and the modes that
lie within the stop gaps defined by the common regions of defective and perfect
PhC are depicted in blue(' ).
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Fig. 4. Projected band-diagrams of W1 waveguide designed in a 2D PhC with
hexagonal symmetry, using as materials Si and Ge and cylinder radius of r=0.25a. With black

dots (@) are represented the bands of the pure crystal and with red lines ('), the ones of the

defect. The blue lines ([ 1), localized within the gap are associated with bound states supported by
the defect.

The first striking difference that can be notices from the square lattice case
is the appearance of a complete gap for both TE and TM modes in the 0.46-0.54
frequency interval for Ge, which supports rigorously a single mode and 0.44-0.55
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frequency range for Si, which is featured by a multimode signature. We can
speculate about the later one that besides the mode going “upwards” there are also
two additional ones, one of them almost un-dispersing, behaving as the effective
medium in which it travels is 0. A material with zero refractive index can be
imagined as one in which light propagates accumulating any phase, spreading
through the artificial medium as if the medium is completely missing in space.
Such an optical nanostructure or metamaterial, with a zero index of refraction and
fully controlled light dispersion has recently been engineered [23,29]. This is the
case of the modes that can be guided infinitely long in the waveguide due to their
vanishing group velocity.

Also, there are two TM-only gaps for each case, Si-PhC defect and for the
Ge-PhC defect, and the previous discussion applies to the mode in the upper TM
band with the mention that the variation of the supported mode changes suddenly,
and this corresponds to the case of a negative effective refraction index. As a
general remark about the case presented in Figure 4, we observe that the main
difference between Ge and Si is the signature of a single guided mode for the
material with higher refractive index, and an almost continuum of bands,
corresponding to at least five bound modes for the case of Si. This observation
could be useful depending on the kind of application desired: application based on
single, well collimated modes are best suited in Ge materials, while those based
on multimode devices are more efficiently realized using Si.

Now, returning to the case of guides designed in square-symmetry PhCs,
Figures 5 present the projected band-structure of a periodic system with a cylinder
radius r=0.3a. Neither this situation reveals any complete TE+TM gap, but only in
this case a brief inspection is enough for concluding that both Si and Ge generated
PhC are highly similar. It is worth mentioning that the TM gaps of the Ge PhC are
approximately 10% wider than of the Si. This observation is useful for other kinds
of defects or resonant cavities, with a pattern more complicated than W1, which
can induce a more complicated band structure. In this case, at least in theory Ge
seems more suitable, allowing a more flexible accommodation of defect-states,
bound within the wider forbidden TM gap.

On the other hand, the upper band of Si PhC (B3), lying from 0.61 to 0.64
is featured by a bound state which is completely included in the TM gap and
moreover, from k=0.35(2n/a) to k=0.5(2m/a), its dispersion mimics a material
with negative effective refraction index since the frequency lowers as the wave
vector values increases.

Its counterpart is presented in Fig. 6, where a hexagonal-based lattice
structure is presented. Unlike the r=0.30a case, the projected band-diagram is not
so rich in bound modes available for being guided and for further confinement.
Both Si and Ge structures are featured by a central complete gap with comparable
magnitudes, ranging in the 0.41-0.46 frequency window. Additionally, there are
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three more TM gaps for both the Si and Ge structure which could presumably
cover a wide branch of applications from microwave to near-IR and visible
domains, again with the precondition that such defects are engineered so that their
supported modes lie within those gaps.
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Fig. 5. Projected band-diagrams of W1 waveguide designed in a 2D PhC with square
symmetry, using as materials Si and Ge and cylinder radius of r=0.3a. With black dots (®) are
represented the bands of the pure crystal and with red lines (L), the ones of the defect. The blue
lines ([ 1), localized within the gap are associated with bound states supported by the defect.
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Fig. 6. Projected band-diagrams of W1 waveguide designed in a 2D PhC with hexagonal
symmetry, using as materials Si and Ge and cylinder radius of r=0.3a. With black dots (®) are
represented the bands of the pure crystal and with red lines (L), the ones of the defect. The blue
lines ([ 1), localized within the gap are associated with bound states supported by the defect.
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Figs. 7 and 8 shows respectively the variation of the gaps, the number and
the position of the defect states for linear defects designed in square lattice PhC
and hexagonal one, when the radius of the elements is r=0.4a.

We can observe that increasing the dimension of the cylinders result in
almost complete fading away of both the gaps and consequently of the bound
states.

We see that as the cylinder radius increases, the magnitude of the gaps
decreases. This fact can be understood based on the analogy with its “mirror”-
case, when the periodicity is generated by piercing a material with high dielectric
constant with holes infinitely high, filled with a low refraction index material (air
for example). It is well known the inverse behavior of the gaps magnitude,
compared with the dielectric cylinders situation: as the radius of the holes
decreases from r~0.4a-0.45a, the gap diminishes and finally falls into a
continuous structure of bands as the radius of the holes approaches values »<0.3a.
The difference is that for the pierced infinite layer, the major photonic gaps are for
the TE modes and only accidentally for TM ones. The appearance of TE modes in
PhCs with a high filling fraction, where f is defined as the ratio between the
volume of the high-index material and low index one is consistent with the
general behavior of the electromagnetic waves at the interface with an infinite
conductive material. The perpendicular magnetic component of the radiation field
vanishes and the only surviving component being the TE one.

In order to evidence the ability of Ge-based waveguides designed in PhCs
as alternative to Si, we theoretically calculated the modes of a set of coupled
resonant cavities designed in a hexagonal lattice, as depicted in Figure 9. The
radius of each element is r=0.3.

The modes represented correspond to two bound states, one located in the
second TM band (see Fig. 6) and the second one within the upper TM band,
which are highly confined within the cavities.
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Fig. 7. Projected band-diagrams of W1 waveguide designed in a 2D PhC with square
symmetry, using as materials Si and Ge and cylinder radius of 1=0.4a. With black dots (®) are
represented the bands of the pure crystal and with red lines (! |), the ones of the defect. The blue
lines ([ 1), localized within the gap are associated with bound states supported by the defect.
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Fig. 9. Coupled resonant cavities operating at two different frequencies (0.43 and 0.78)

Fig. 10 illustrates the propagation of the field along a W1 waveguide in a

PhC with square symmetry. We used a light source of 1.55um choosing a
rectangular shape of the incoming beam and a radius of the cylinders 0.3a. As a
result we observed a well collimated field within y coordinates which propagates
freely. There are also sketched the mode intensity profile along the waveguide
and a 3D image of the radiation.
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Fig. 10. On the left side is depicted a W1 waveguide; on the right side are illustrated a
field map and other results of the simulation.

4. Conclusions

Concluding, we studied comparatively the PhCs with both square and

hexagonal symmetry designed as cylinders with infinite height, with high
refractive index separated by a low refractive index material (air), for applications
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in guiding the radiation and confinement in resonant cavities. We varied the
radius of the cylinders from r=0.25a to r=0.4a, studying the dispersion of the
photonic bands in the Brillouin zone. The hexagonal structure is featured by
complete gaps when the radius of cylinders is 0.25a or 0.3a, but they disappear
when r=0.4a. This trend applies also in the case of square symmetry PhC, except
that in this case, no complete gaps could be observed, the only significant
downsize in the gap magnitude belongs to TM ones.

A design of a system with coupled cavities based on a hexagonal photonic
crystal was also given, and further simulations within FDTD framework
confirmed that when an incident radiation enters in a square waveguide with the
frequency of a bound mode, it propagates without losses.

However it is still difficult to decide which material is best for this type of
application, but we can assess that Ge can be used alternatively with Si in
photonics, depending on the desired frequency range and on the application type.
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