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MONOTONICITY PROPERTIES RELATED TO SOME
GAMMA FUNCTION ESTIMATES

Cristinel MORTICI', Sorinel DUMITRESCU?, Yue HU?

The aim of this paper is to establish some inequalities to some approximation
formulas for gamma function that are stronger than other classical such as
Ramanujan formula. The monotonicity and convexity of corresponding functions are
demonstrated. However the proving of complete monotonicity of these functions is
left as an open problem.
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1. Introduction

The problem of approximating the gamma function defined (for x > 0) by

I'(x) = [t~ e tdt
Is of great interest in many branches of science and consequently it was widely
studied in the recent past. See [2]-[17] and all reference therein. Undoubtedly, the

most known formula is Stirling’s formula, e.g., [1],[18]
X X
I(x + 1D)~V2nx (g) .

Burnside formula [2]

oy
[(x +1)~V21 (72>

and Gosper’s formula [5]

ree+ D~vzmx (3) 1+

are slightly better. However, Ramanujan formula, e.g., [17]

x\* 6 1 1 1

F(x+1)~v27rx(;) \/1+;+@+240x3

are much accurate. In the recent past, Nemes [16] proposed the following two
formulas:

5x

I+ 1)~ (f)x\/%@ +—)* (1)

15x2

and
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I+ 1)~ (g)x VZmx (1 + ﬁ) 2)

which give much better results than Ramanujan formula. The advantage of
formula (1)-(2) is also that they are of a simple form.

2. The Results

Usually to an approximation of the form f(x)~g(x) (in the sense that % tends
to 1, as x approaches infinity) the following function is associated:
Fx®)
P(x) =In—=
@) =lngey
If @ is (completely) monotone, then sharp inequalities related to the
approximation f(x)~g(x) can be established. In this sense, we present the

following results.

Theorem 1. Let
F(x) —In r'(x+1) =
6 o (1)
Then : a) F is strictly decreasing on [2,2). b) F is strictly convex on [2,c0).

Theorem 2. Let
G(x) —In I'(x+1)

) Vo142
T
Then : a) G is strictly decreasing on [2,20). b) G is strictly convex on [2,0).

The following double inequality obtained by truncation the classical asymptotic
series of the gamma function is valid for every > 0 :

'x+1)

ulx) < ln—x — <wv(x),
(E) V2mx
where
1 1 1 1 1 691
u(x) = 12x  360x3 ' 1260x5  1680x7 ' 1188x%  360360x11 3)
and
1 1 1 1 1
v(x) = 12x  360x3 ' 1260x5  1680x7 @ 1188x° )

The function Y (x) = I'"(x)/I'(x) is called digamma function, while its derivative
Y’ is the trigamma function. The following inequality obtained by truncation the
asymptotic series of the trigamma function is valid for every x > 0:
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P>t b (5)

2x2 x3 T 30x5 | 42x7  30%°

Proof of Theorem 1. By using the recurrence formula (x + 1) = ¥ (x) + 1/x , we
deduce that

1 5 1 5
F') =90 —Inx +-——2In (1 + 15x2> )

and
1 5 75x

2 x5+ 1) (1522 + DZ

1
F0 = ') -~ =5
By (5), we deduce

1 1 1 5 75x
F”(X) >

6x3  30x> * 42x7  30x° * 2x(15x2 +1) (15x2 +1)?
1
T 210x°(15x2 + 1)

x [950(x — 2)® + 11400(x — 2)5 + 55568(x — 2)*

+140544(x — 2)3 +193427(x — 2)? + 135756(x — 2) + 37061] > 0.
Hence F'" > 0 on [2,%), so F is convex on [2,%).
Now F' is strictly increasing, with lim,_,, F'(x) = 0. As aresult, F' < 0, so F is
strictly decreasing on [2,w0).

Proof of Theorem 2. By using the recurrence formula (x + 1) = (x) + 1/x , we
deduce that

1
G'x)=yYx)—Inx+——-In[1+

2x 1
12X _E

24x?

(e ) (12— )

and
. , 1 1 18x(—320x2 + 4800x* + 9)
G"(x) =9 (x)———

xow (1202 + 190) (1242 - 110)2.

By (5), we get

} 1 1 1 18x(—320x2 + 4800x* + 9)
") > o3 7305 T 127 3000 92 172
2 2
25 (12x + 10) (12 10)

1
"~ 210x°(120x2 — 1)2(40x2 + 3)?2
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X
[94760000(x — 2)'° + 1895200000(x — 2)° + 16910297600(x — 2)®
+88625561600(x — 2)7 +
301964208955(x — 2)® + 698258097860 (x — 2)°
+1108223852437(x — 2)* + 1189597541096 (x — 2)3
+ 824020977173(x — 2)? + 331080529684 (x — 2)
+ 58169457989] > 0.
Hence G"' > 0 on [2,e2), so G is convex on [2,¢e).
Now G’ is strictly increasing, with lim,_,., G'(x) = 0. As a result, G’ < 0, so G is
strictly decreasing on [2,20).

Corollary 3. The following sharp inequalities are valid for every x > 2:
5x

a (g)"m(l +—) <rax+1)<p (f)x\/m(l + )5T (6)

where the constants ¢« = 1 and
1800v915

— O tVI o 2 _
B = e e? = 1000017441 ..

1
15x2

are sharp.

Proof. As the function F is strictly decreasing, by exponentiating we
deduce the following inequality for every x > 2:

exp{F ()} < Flx+1) 5 < exp{F(2)}.
() vam (14 q52)

The conclusion follows from the fact that
_ 1800V915
F(2)=In (226981\/56 )
Corollary 4. The following sharp inequalities are valid for every x > 2:

a(g)"m<1+ 11)x<r(x+1)sn(§)xx/m<1+ 1>x 7

2~ _
12x T 12x o

where the constants 6 = 1 and
229441

— 2
= sseamast = 1.000016912 ...

are sharp.

Proof. As the function G is strictly decreasing, by exponentiating we
deduce the following inequality for every x > 2:
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r'x+1)
exp{G ()} < + < exp{G(2)}.
X
12X2 - 1—0
The conclusion follows from the fact that
_ 229441
G(2) =In (956484\/E )

The strongness of inequalities (6)-(7) follows also from the fact that the
differences between sharp constants «,f5, respectively §,n are very small in
absolute value.

Corollary 1-2 present constants bounds for
Ir'(x+1)

- = ®)
(&) vemx(1+555) *
and
I'(x+1) (9)

@ vem(1 )

In the sequel we resent new bounds of (8)-(9) which are expressions in x ¥ that
tends to zero as x approaches infinity.

Theorem 5. The following inequalities are valid for every x > 2:
19 167 } r'x+1)

exp {28350x5 ~ 283500x7

19
< exp {—}

28350x>
Proof. We have to proof that a > 0 and b < 0, where
@) =1 'x+1) 5x1 14 1 19 167
a(x) =In————1In - -
x\* 4 ( 15x2> (28350x5 283500x7>
(E) V2mx

and

'x+1) 5x 1 19
X\ _Tln< 15 2)_28350 5
By v ")
By using (3)-(4), we get a(x) > p(x) and b(x) < q(x), where

P(x):u(X)—%xln(1+ 1 )_( 19 167 )

15x2 28350x5  283500x7

b(x) =1n

and
19

15x2) ~ 28350x5°

q(x) = ux) — %ln (1 +
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Thus

" _ 1
P"(¥) = 3037025053 (15x2 + 1)
x [345380490(x — 2)® + 4144565880 (x — 2)°
+19614489268(x — 2)*
446394157344 (x — 2)® +56138769807(x — 2)2 +
+30236631356(x — 2) + 3756240073] > 0.
and

1
9" =~ Jo70xTi (1522 1 12
X [22044(x — 2)® + 264528(x — 2)° + 1274974(x — 2)* + 3145712(x — 2)3
+ 4139925 (x — 2) + 2680532(x — 2) + 621331] < 0.
Finally, p is strictly convex, q is strictly concave on [2, ), with p(o0) = q() =
0,sop > 0and q < 0 on [2,0). The proof is now completed.

Theorem 6. The following inegalities are valid for every > 2 :

{ 2369 21313 } F(x+1)
P 13628800x5  36288000x7 x )
(g) 27X 1+—1
2 . _—_
12x 10
< { 2369 }
XP13628800x5)"

Proof. We have to proof that ¢ > 0 and d < 0, where

r(x+1) xInl1 + 1 ( 2369 21313 )
X - 1 - -
(g) \2mx 12x2—E 36328800x° 36288000x7

c(x)=In

and

d() = In I(x+1) —xln<1+ 1 ) 2369

(z)"m 1222 ~ 36328800x5°
By using (3)-(4), we get c(x) > r(x) and d(x) < s(x), where

1 2369 21313
r(x) =ulx) —xIn <1 + 12x2—% B (36328800x5 B 36288000x7)
and
2369
s(x)=v(x)—xIn| 1+ — 5

12x2 — 1_10 36328800x

Thus
' (x) = R(x=2) >0

12972960000x13(120x2-1)2(40x2+3)2
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and
" S(x-2
o (x) =T 190080x11(12(()x2—)1)2(40x2+3)2 <0,
where R and S are polynomials of degree 10 with all coefficients positive.
Finally, r is strictly convex, s is strictly concave on [2, ), with r(c0) = s(0) =
0,sor > 0and s < 0 on [2,00). The proof is now completed.
By a completely monotonic function z on(0, ©) we mean that z has derivatives of
all orders and

(=D"z"(x) =0, (10)
for every integer n > 0 and x € (0, ). Completely monotonic functions
involving gamma function are of great interest in the problem of approximating
gamma and polygamma functions. Sharp bounds for these functions can be
established.

We proved in Theorem 1-2 that functions F and G satisfy (10) for
n = 0, 1. However, we propose as an open problem that proof of the fact that F
and G are completely monotonic.

3. Further possible extensions

In this final section we show how to above theoreticals results can be
1 : S : b .
extended. As a constant T appears in (9), an idea is to consider a new term ~zin

(8) to obtain the approximation
5x

I+ 1)~ (f)x \/H<1 +—1t )T. (11)

15x2+£2
X

In order to find the value of b that provides the most accurate approximation (11),
we use the method first presented in [11]. This method was proven to be also a
strong tool for constructing asymptotic expansions or to accelerating some
convergences and it was highly used by other authors in the recent past. See, e.g.,
[3]-[4], [6]-[9]. The relative error sequence is

1 5n
w, =InT(n+1)—nlnn+n—=In2rn ——In| 1+ .
2 , ., b
15n% + -
n
We are interested in the case when w,, is of higher possible speed of convergence.
But w,, is of convergence rate n~ =1 when w,, — w,,; converges to zero as

nk. As

—(1b+ 19)1 (1b+ 19)1+0(1)
@n = Ont1 = \367 5670/ \12 " 1890)n7 © ~ \nd)
The fastest sequence w,, is obtained when the coefficient of % vanishes, that is

b =—=2 Now (11) becomes
315
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5x

I+ 1)~ (g)x V2rx (1 + ﬁ)r

X<+

315x2
Then we prove the monotonicity and convexity of the function
rx+1)
H(x) =1In =
2
X
(%) 2nx| 1+ S S 38
15x2

"~ 315x2

Using the method from the previous sections, we deduced that H is increasing and
concave on [2, 00). From the monotonicity of H (more precisely H(2) < H(x) <
H (o)) we got the following

Theorem 7. The following inequality is valid for every real x > 2 :

5x
X 1 4
X
v (—) 2mx| 1+ <T'(x+1)
e 15x2 — i
315x2
5x
X 1 4
X
<w:- (—) 2rnx| 1+ ,
e 15x2 — i
315x2
where the constants
1427403961 V38411
= 2 =
v 226687113682124\/37781 e e 0.9999968306 ...

and w = 1.000000 are sharp.

Personal computations we made lead us to the conclusion that —H should
be completely monotonic. However, the rigorous proof of the complete
monotonicity of —H we leave as an open problem.

The results stated in this paper are part of the problem of estimating the
gamma function for large values of the argument. A possible subject of interest
for the future is the behavior of functions F,G,H on intervals near origin.
However, we are convinced that different method should be exploited, since the
inequalities used in this paper give good results only for large values of the
variable.
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