

MONOTONICITY PROPERTIES RELATED TO SOME GAMMA FUNCTION ESTIMATES

Cristinel MORTICI¹, Sorinel DUMITRESCU², Yue HU³

The aim of this paper is to establish some inequalities to some approximation formulas for gamma function that are stronger than other classical such as Ramanujan formula. The monotonicity and convexity of corresponding functions are demonstrated. However the proving of complete monotonicity of these functions is left as an open problem.

Keywords: Asymptotic approximation, asymptotic expansions, Gamma function, Digamma function

1. Introduction

The problem of approximating the gamma function defined (for $x > 0$) by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Is of great interest in many branches of science and consequently it was widely studied in the recent past. See [2]-[17] and all reference therein. Undoubtedly, the most known formula is Stirling's formula, *e.g.*, [1],[18]

$$\Gamma(x+1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x.$$

Burnside formula [2]

$$\Gamma(x+1) \sim \sqrt{2\pi} \left(\frac{x+\frac{1}{2}}{e}\right)^{x+\frac{1}{2}}$$

and Gosper's formula [5]

$$\Gamma(x+1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x \sqrt{1 + \frac{1}{6x}}$$

are slightly better. However, Ramanujan formula, *e.g.*, [17]

$$\Gamma(x+1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x \cdot \sqrt[6]{1 + \frac{1}{2x} + \frac{1}{8x^2} + \frac{1}{240x^3}}$$

are much accurate. In the recent past, Nemes [16] proposed the following two formulas:

$$\Gamma(x+1) \sim \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2}\right)^{\frac{5x}{4}} \quad (1)$$

and

¹ Valahia University of Târgoviște, Romania, email: cristinel.mortici@hotmail.com

² University POLITEHNICA of Bucharest, Romania, email: sorinel.dumitrescu@yahoo.com

³ Henan Polytechnic University, Jiaozuo, Henan, China, email: huu3y2@163.com

$$\Gamma(x+1) \sim \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right)^x \quad (2)$$

which give much better results than Ramanujan formula. The advantage of formula (1)-(2) is also that they are of a simple form.

2. The Results

Usually to an approximation of the form $f(x) \sim g(x)$ (in the sense that $\frac{f(x)}{g(x)}$ tends to 1, as x approaches infinity) the following function is associated:

$$\Phi(x) = \ln \frac{f(x)}{g(x)}$$

If Φ is (completely) monotone, then sharp inequalities related to the approximation $f(x) \sim g(x)$ can be established. In this sense, we present the following results.

Theorem 1. Let

$$F(x) = \ln \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right)^{\frac{5x}{4}}}$$

Then : a) F is strictly decreasing on $[2, \infty)$. b) F is strictly convex on $[2, \infty)$.

Theorem 2. Let

$$G(x) = \ln \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right)^x}$$

Then : a) G is strictly decreasing on $[2, \infty)$. b) G is strictly convex on $[2, \infty)$.

The following double inequality obtained by truncation the classical asymptotic series of the gamma function is valid for every $x > 0$:

$$u(x) < \ln \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x}} < v(x),$$

where

$$u(x) = \frac{1}{12x} - \frac{1}{360x^3} + \frac{1}{1260x^5} - \frac{1}{1680x^7} + \frac{1}{1188x^9} - \frac{691}{360360x^{11}} \quad (3)$$

and

$$v(x) = \frac{1}{12x} - \frac{1}{360x^3} + \frac{1}{1260x^5} - \frac{1}{1680x^7} + \frac{1}{1188x^9}. \quad (4)$$

The function $\psi(x) = \Gamma'(x)/\Gamma(x)$ is called digamma function, while its derivative ψ' is the trigamma function. The following inequality obtained by truncation the asymptotic series of the trigamma function is valid for every $x > 0$:

$$\psi'(x) > \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9}. \quad (5)$$

Proof of Theorem 1. By using the recurrence formula $(x+1) = \psi(x) + 1/x$, we deduce that

$$F'(x) = \psi(x) - \ln x + \frac{1}{2x} - \frac{5}{4} \ln \left(1 + \frac{1}{15x^2}\right) + \frac{5}{2(15x^2 + 1)}$$

and

$$F''(x) = \psi'(x) - \frac{1}{x} - \frac{1}{2x^2} + \frac{5}{2x(15x^2 + 1)} - \frac{75x}{(15x^2 + 1)^2}.$$

By (5), we deduce

$$\begin{aligned} F''(x) &> \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} + \frac{5}{2x(15x^2 + 1)} - \frac{75x}{(15x^2 + 1)^2} \\ &= \frac{1}{210x^9(15x^2 + 1)} \\ &\times [950(x-2)^6 + 11400(x-2)^5 + 55568(x-2)^4 \\ &+ 140544(x-2)^3 + 193427(x-2)^2 + 135756(x-2) + 37061] > 0. \end{aligned}$$

Hence $F'' > 0$ on $[2, \infty)$, so F is convex on $[2, \infty)$.

Now F' is strictly increasing, with $\lim_{x \rightarrow \infty} F'(x) = 0$. As a result, $F' < 0$, so F is strictly decreasing on $[2, \infty)$.

Proof of Theorem 2. By using the recurrence formula $(x+1) = \psi(x) + 1/x$, we deduce that

$$\begin{aligned} G'(x) &= \psi(x) - \ln x + \frac{1}{2x} - \ln \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right) \\ &+ \frac{24x^2}{\left(12x^2 + \frac{9}{10}\right)\left(12x^2 - \frac{1}{10}\right)} \end{aligned}$$

and

$$G''(x) = \psi'(x) - \frac{1}{x} - \frac{1}{2x^2} - \frac{18x(-320x^2 + 4800x^4 + 9)}{25\left(12x^2 + \frac{9}{10}\right)^2\left(12x^2 - \frac{1}{10}\right)^2}.$$

By (5), we get

$$\begin{aligned} G''(x) &> \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} - \frac{18x(-320x^2 + 4800x^4 + 9)}{25\left(12x^2 + \frac{9}{10}\right)^2\left(12x^2 - \frac{1}{10}\right)^2} \\ &= \frac{1}{210x^9(120x^2 - 1)^2(40x^2 + 3)^2} \end{aligned}$$

$$\begin{aligned}
& [94760000(x-2)^{10} + 1895200000(x-2)^9 + 16910297600(x-2)^8 \\
& \quad + 88625561600(x-2)^7 + \\
& 301964208955(x-2)^6 + 698258097860(x-2)^5 \\
& \quad + 1108223852437(x-2)^4 + 1189597541096(x-2)^3 \\
& \quad + 824020977173(x-2)^2 + 331080529684(x-2) \\
& \quad + 58169457989] > 0.
\end{aligned}$$

Hence $G'' > 0$ on $[2, \infty)$, so G is convex on $[2, \infty)$.

Now G' is strictly increasing, with $\lim_{x \rightarrow \infty} G'(x) = 0$. As a result, $G' < 0$, so G is strictly decreasing on $[2, \infty)$.

Corollary 3. *The following sharp inequalities are valid for every $x \geq 2$:*

$$\alpha \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2}\right)^{\frac{5x}{4}} < \Gamma(x+1) \leq \beta \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2}\right)^{\frac{5x}{4}}, \quad (6)$$

where the constants $\alpha = 1$ and

$$\beta = \frac{1800\sqrt{915}}{226981\sqrt{\pi}} e^2 = 1.000017441 \dots$$

are sharp.

Proof. As the function F is strictly decreasing, by exponentiating we deduce the following inequality for every $x \geq 2$:

$$\exp\{F(\infty)\} < \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2}\right)^{\frac{5x}{4}}} \leq \exp\{F(2)\}.$$

The conclusion follows from the fact that

$$F(2) = \ln\left(\frac{1800\sqrt{915}}{226981\sqrt{\pi}} e^2\right).$$

Corollary 4. *The following sharp inequalities are valid for every $x \geq 2$:*

$$\delta \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right)^x < \Gamma(x+1) \leq \eta \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right)^x, \quad (7)$$

where the constants $\delta = 1$ and

$$\eta = \frac{229441}{956484\sqrt{\pi}} e^2 = 1.000016912 \dots$$

are sharp.

Proof. As the function G is strictly decreasing, by exponentiating we deduce the following inequality for every $x \geq 2$:

$$\exp\{G(\infty)\} < \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right)^x} \leq \exp\{G(2)\}.$$

The conclusion follows from the fact that

$$G(2) = \ln\left(\frac{229441}{956484\sqrt{\pi}}e^2\right).$$

The strength of inequalities (6)-(7) follows also from the fact that the differences between sharp constants α, β , respectively δ, η are very small in absolute value.

Corollary 1-2 present constants bounds for

$$\frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2}\right)^{\frac{5x}{4}}} \quad (8)$$

and

$$\frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right)^{\frac{5x}{4}}} \quad (9)$$

In the sequel we resent new bounds of (8)-(9) which are expressions in x^{-k} that tends to zero as x approaches infinity.

Theorem 5. *The following inequalities are valid for every $x \geq 2$:*

$$\begin{aligned} \exp\left\{\frac{19}{28350x^5} - \frac{167}{283500x^7}\right\} &< \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2}\right)^{\frac{5x}{4}}} \\ &< \exp\left\{\frac{19}{28350x^5}\right\}. \end{aligned}$$

Proof. We have to proof that $a > 0$ and $b < 0$, where

$$a(x) = \ln \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x}} - \frac{5x}{4} \ln \left(1 + \frac{1}{15x^2}\right) - \left(\frac{19}{28350x^5} - \frac{167}{283500x^7}\right)$$

and

$$b(x) = \ln \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x}} - \frac{5x}{4} \ln \left(1 + \frac{1}{15x^2}\right) - \frac{19}{28350x^5}.$$

By using (3)-(4), we get $a(x) > p(x)$ and $b(x) < q(x)$, where

$$p(x) = u(x) - \frac{5x}{4} \ln \left(1 + \frac{1}{15x^2}\right) - \left(\frac{19}{28350x^5} - \frac{167}{283500x^7}\right)$$

and

$$q(x) = u(x) - \frac{5x}{4} \ln \left(1 + \frac{1}{15x^2}\right) - \frac{19}{28350x^5}.$$

Thus

$$\begin{aligned}
 p''(x) &= \frac{1}{20270250x^{13}(15x^2+1)} \\
 &\times [345380490(x-2)^6 + 4144565880(x-2)^5 \\
 &\quad + 19614489268(x-2)^4 \\
 &\quad + 46394157344(x-2)^3 + 56138769807(x-2)^2 + \\
 &\quad + 30236631356(x-2) + 3756240073] > 0.
 \end{aligned}$$

and

$$\begin{aligned}
 q''(x) &= -\frac{1}{2970x^{11}(15x^2+1)^2} \\
 &\times [22044(x-2)^6 + 264528(x-2)^5 + 1274974(x-2)^4 + 3145712(x-2)^3 \\
 &\quad + 4139925(x-2)^2 + 2680532(x-2) + 621331] < 0.
 \end{aligned}$$

Finally, p is strictly convex, q is strictly concave on $[2, \infty)$, with $p(\infty) = q(\infty) = 0$, so $p > 0$ and $q < 0$ on $[2, \infty)$. The proof is now completed.

Theorem 6. The following inequalities are valid for every $x \geq 2$:

$$\begin{aligned}
 \exp\left\{\frac{2369}{3628800x^5} - \frac{21313}{36288000x^7}\right\} &< \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right)} \\
 &< \exp\left\{\frac{2369}{3628800x^5}\right\}.
 \end{aligned}$$

Proof. We have to proof that $c > 0$ and $d < 0$, where

$$c(x) = \ln \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x}} - x \ln \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right) - \left(\frac{2369}{36328800x^5} - \frac{21313}{36288000x^7}\right)$$

and

$$d(x) = \ln \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x}} - x \ln \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right) - \frac{2369}{36328800x^5}.$$

By using (3)-(4), we get $c(x) > r(x)$ and $d(x) < s(x)$, where

$$r(x) = u(x) - x \ln \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right) - \left(\frac{2369}{36328800x^5} - \frac{21313}{36288000x^7}\right)$$

and

$$s(x) = v(x) - x \ln \left(1 + \frac{1}{12x^2 - \frac{1}{10}}\right) - \frac{2369}{36328800x^5}$$

Thus

$$r''(x) = \frac{R(x-2)}{12972960000x^{13}(120x^2-1)^2(40x^2+3)^2} > 0$$

and

$$s''(x) = -\frac{S(x-2)}{190080x^{11}(120x^2-1)^2(40x^2+3)^2} < 0,$$

where R and S are polynomials of degree 10 with all coefficients positive.

Finally, r is strictly convex, s is strictly concave on $[2, \infty)$, with $r(\infty) = s(\infty) = 0$, so $r > 0$ and $s < 0$ on $[2, \infty)$. The proof is now completed.

By a completely monotonic function z on $(0, \infty)$ we mean that z has derivatives of all orders and

$$(-1)^n z^n(x) \geq 0, \quad (10)$$

for every integer $n \geq 0$ and $x \in (0, \infty)$. Completely monotonic functions involving gamma function are of great interest in the problem of approximating gamma and polygamma functions. Sharp bounds for these functions can be established.

We proved in Theorem 1-2 that functions F and G satisfy (10) for $n = 0, 1$. However, we propose as an open problem that proof of the fact that F and G are completely monotonic.

3. Further possible extensions

In this final section we show how to above theoretical results can be extended. As a constant $\frac{1}{10}$ appears in (9), an idea is to consider a new term $\frac{b}{x^2}$ in (8) to obtain the approximation

$$\Gamma(x+1) \sim \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2 + \frac{b}{x^2}}\right)^{\frac{5x}{4}}. \quad (11)$$

In order to find the value of b that provides the most accurate approximation (11), we use the method first presented in [11]. This method was proven to be also a strong tool for constructing asymptotic expansions or to accelerating some convergences and it was highly used by other authors in the recent past. See, e.g., [3]-[4], [6]-[9]. The relative error sequence is

$$\omega_n = \ln \Gamma(n+1) - n \ln n + n - \frac{1}{2} \ln 2\pi n - \frac{5n}{4} \ln \left(1 + \frac{1}{15n^2 + \frac{b}{n^2}}\right).$$

We are interested in the case when ω_n is of higher possible speed of convergence. But ω_n is of convergence rate $n^{-(k-1)}$ when $\omega_n - \omega_{n+1}$ converges to zero as n^{-k} . As

$$\omega_n - \omega_{n+1} = \left(\frac{1}{36}b + \frac{19}{5670}\right) \frac{1}{n^6} - \left(\frac{1}{12}b + \frac{19}{1890}\right) \frac{1}{n^7} + O\left(\frac{1}{n^8}\right),$$

The fastest sequence ω_n is obtained when the coefficient of $\frac{1}{n^6}$ vanishes, that is $b = -\frac{38}{315}$. Now (11) becomes

$$\Gamma(x+1) \sim \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2 + \frac{38}{315x^2}}\right)^{\frac{5x}{4}}.$$

Then we prove the monotonicity and convexity of the function

$$H(x) = \ln \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2 - \frac{38}{315x^2}}\right)^{\frac{5x}{4}}}.$$

Using the method from the previous sections, we deduced that H is increasing and concave on $[2, \infty)$. From the monotonicity of H (more precisely $H(2) \leq H(x) \leq H(\infty)$) we got the following

Theorem 7. The following inequality is valid for every real $x \geq 2$:

$$\begin{aligned} v \cdot \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2 - \frac{38}{315x^2}}\right)^{\frac{5x}{4}} &\leq \Gamma(x+1) \\ &< \omega \cdot \left(\frac{x}{e}\right)^x \sqrt{2\pi x} \left(1 + \frac{1}{15x^2 - \frac{38}{315x^2}}\right)^{\frac{5x}{4}}, \end{aligned}$$

where the constants

$$v = \frac{1427403961}{226687113682124} \sqrt{37781} \frac{\sqrt{38411}}{\sqrt{\pi}} e^2 = 0.9999968306 \dots$$

and $\omega = 1.000000$ are sharp.

Personal computations we made lead us to the conclusion that $-H$ should be completely monotonic. However, the rigorous proof of the complete monotonicity of $-H$ we leave as an open problem.

The results stated in this paper are part of the problem of estimating the gamma function for large values of the argument. A possible subject of interest for the future is the behavior of functions F, G, H on intervals near origin. However, we are convinced that different method should be exploited, since the inequalities used in this paper give good results only for large values of the variable.

Acknowledgements

The work of the first author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0087. Some computations made in this paper were performed using Maple software.

The idea of writing this paper is a consequence of research discussions between the first and the third authors during the first author's visit at School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan, China.

R E F E R E N C E S

- [1] *M. Abramowitz and I. A. Stegun*, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, in : National Bureau of Standards, Applied Mathematical Series, vol. 55, Dover, New York, 1972.
- [2] *W. Burnside*, A rapidly convergent series for $\log N!$, Messenger Math. 46(1917), 157-159.
- [3] *Chao-Ping Chen*, Continued fraction estimates for the psi function, Appl. Math. Comp. 219(2013), 9865-9871.
- [4] *Chao-Ping Chen and C. Mortici*, New sequence converging towards the Euler-Mascheroni constant, Comp. Math. Appl., 64(2012), 391-398.
- [5] *R. W. Gosper*, Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75(1918), 40-42.
- [6] *L. Lin*, Asymptotic formulas associated with psi function with applications, J. Math. Anal. Appl., 405(2013), 52-56.
- [7] *Dawei Lu*, Some quicker classes of sequences convergent to Euler's constant, Appl. Math. Comp., 232(2014), 172-177.
- [8] *Dawei Lu*, A new quicker sequence convergent to Euler's constant, J. Number Theory 136(2014), 320-329.
- [9] *Dawei Lu*, A new sharp approximation for the Gamma function related to Burnside's formula, Ramanujan J. (2014), (DOI:10.1007/s11139-013-9534-7).
- [10] *C. Mortici*, Sharp inequalities related to Gosper's formula, C. R. Acad. Sci. Paris, Ser. I., 348(2010), 137-140.
- [11] *C. Mortici*, Product approximations via asymptotic integration, Amer. Math. Monthly, 117 (2010), No. 5, 434-441.
- [12] *C. Mortici*, New improvements of the Stirling formula, Appl. Math. Comp., 217 (2010), No. 2, 699-704.
- [13] *C. Mortici*, Ramanujan formula for the generalized Stirling approximation, Appl. Math. Comp., 217 (2010), No. 6, 2579-2585.
- [14] *C. Mortici*, New approximation formulas for evaluating the ratio of gamma functions, Math. Comp. Modell., 52 (2010), No. 1-2, 425-433.
- [15] *C. Mortici*, V. G. Cristea and D. Lu, Completely monotonic functions and inequalities associated to some ratio of gamma function, Appl. Math. Comp., 240 (2014), 168-174.
- [16] *G. Nemes*, New asymptotic expansion for the $\Gamma(z)$ function, (2007), available online at: http://www.ebyte.it/library/downloads/2007_MTH_Nemes_GammaFunction.pdf

- [17] *it S. Ramanujan*, The Lost Notebook and other Unpublished Papers, with an introduction by George E. Andrews, Narosa Publishing House, New Delhi, Madras, Bombay, 1988.
- [18] *J. Stirling*, Methodus Differentialis, Sive Tractatus de Summation of Interpolation Serierum Infinitarum, London, 1730. English translation by J. Holliday, The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series. James Stirling's Methodus Differentialis: An Annotated Translation of Stirling's text, Sources and Studies in the History of Mathematics and Physical Science, Springer - Verlag, London, 2003.