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A MODIFIED HYBRID ALGORITHM FOR SOLVING
PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

Raweerote Suparatulatorn’

This work modifies a hybrid algorithm that combines the subgradient ex-
tragradient algorithm with the inertial technique to solve a pseudomonotone equilibrium
problem with a Lipschitz-like condition in a real Hilbert space. A strong convergence
theorem 1is established under certain mild conditions for the bifunction and the control

parameters.
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1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H. Suppose
that f: C x C — R is a bifunction with f(z,z) =0 for all z € C. The equilibrium problem
is stated as follows: find an element z* in C such that

f@*y) =0, (1)

for all y € C. We denote by EP(f,C) the solution set of the problem (1).

The equilibrium problem (1) finds versatile applications in solving a myriad of real-
world problems, encompassing variational inequalities, split feasibility problems, minimiza-
tion problems, linear programming problems, saddle point problems, and Nash equilibrium
problems, among others, as extensively documented in references [1, 2, 16, 18].

In 2008, Tran et al. [12] introduced the two-step extragradient method (TSEM) as
a solution approach for equilibrium problem (1). This method drew inspiration from the
extragradient method [6], designed for solving variational inequalities. However, it is worth
noting that the TSEM demonstrates weak convergence when applied in Hilbert spaces.

Recently, Cholamjiak and Suparatulatorn [4] proposed the modified inertial viscosity
subgradient extragradient to obtain strong convergence for addressing the equilibrium prob-
lem (1) under the bifunction f is pseudomonotone and satisfies the Lipschit-type condition.
Furthermore, the algorithm finds applications in solving problems associated with diabetes
mellitus classification. Significant research has been undertaken in the domain of algorithm
development aimed at solving equilibrium problems, with notable exemplars documented in
references [10, 14, 17, 19].
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In 2003, Nakajo and Takahashi [8] demonstrated the strong convergence of the hybrid
projection method for nonexpansive mappings in Hilbert spaces. Various other methods to
address fixed point problems have been proposed by several authors, see also [3, 5, 11, 13, 15].

Inspired by the aforementioned studies, this paper introduces a novel extragradient-
type algorithm designed to solve the equilibrium problem (1) in a real Hilbert space. Our
proposed iterative approach takes into account the pseudo-monotonicity of the bifunction
associated with the problem (1). Furthermore, we establish the strong convergence of the
generated sequence under mild conditions and within a framework of appropriate iterative
control parameters.

2. Preliminaries

In what follows, recall that H is a real Hilbert space. Let C' be a nonempty, closed
and convex subset of H. We denote — and — as weak and strong convergence, respectively,
and the notation wy, (x,) is the weak w-limit set of the sequence {z,}. We next collect some
necessary definitions and lemmas for proving our main results. For v € 3, define the metric
projection Pg from H onto C by

Pou = arggléig lu—v].
A normal cone of C' at € C' is defined by
Ne(z) ={z€H:(z,y—z) <0, forall y € C}.
Let g : C — R be a convex function and subdifferential of g at x € C' is defined by
9g(x) ={z € H:g(y) — g(x) = (z,y — ), for all y € C}.

A bifunction f: H x H — R is said to be
(¢) pseudomonotone on C if for all u,v € C,

flu,v) 2 0= f(v,u) <0;

(i) to satisfy a Lipschitz-like condition on C' if there exist two positive
constants ¢1, ¢y such that for all u,v,w € C,

Flu,w) < fu,0) + fv,w) + erllu =] + eaflo — w]f*.

Lemma 2.1. [9] Let g : C — R be a subdifferentiable, convex and lower semi-continuous
function on C. Suppose C has nonempty interior, or g is continuous at a point x € C.

Then, x is a minimizer of g if and only if
0 € dg(x) + Ne(x).
Lemma 2.2. [8] Let x € H and y € C. Then the following inequality holds:
ly — Poz||* + [|lz — Pez||* < [|lz — y||*.

Lemma 2.3. [7] Let V be a closed and convex subset of H, {xp,} C H and v € H. If
wy () CV and ||z, —v|| < ||lv— Pyvl|| for alln € N. Then x,, — Pyv as n — co.
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3. Main result

To study the convergence analysis, consider the following conditions.
(€1) C has nonempty interior or f(z,-) is continuous at some point in C for every z € C, f
is pseudomonotone on C, and the solution set EP(f,C) is nonempty;
(€2) f meet the Lipschitz-like condition on H through ¢; > 0 and ¢o > 0;
(€3) f(z,-) is convex, subdifferentiable and lower semicontinuous function on H for each
fixed z € H;
(€4) limsup f(zn,y) < f(2",y) for each y € C and {z,} C C satisfies z, — z*.

n—oo

Algorithm 3.1

Initialization: Let Cy = H. Select arbitrary elements xg,z; € H and set n := 1.

Iterative Steps: Construct {x,} by using the following steps:
Step 1. Set p, = 2 + dp(xn — Tp—1), where {d,,} is a bounded sequence and compute

1
n — i )\n nsy SPn — 2 5
y argl;gg{ f(pn,y) + 2Hp yll }

where 0 < \,, < A < min {i i} If p,, = yn, then stop. Otherwise

261 ) 262

Step 2. Compute

1
n — i >\n n S HPn — 2 5
u argyrg;gl{ fWn,y) + 2||p yl| }

where w,, € Oaf(pn,yn) satisfying p,, — Apw,, — yn € No(yn) and construct a half-space
Hp={z€H: (pn — Mwp — Yn, 2z — yn) < 0}.
Step 3. Compute
Tni1 = Po, . 71,
where
Crt1 = {c € Gyt [lun —cf* + (1 = 210l — ya1?
+ (1= 222y — wnll® < llon — ¢l + ma}

and 7, € [0,00).
Replace n by n + 1 and then repeat Step 1.

Lemma 3.1. Let p,, =y, in Algorithm 3.1, then p, € EP(f,C).

Proof. By the definition of y,, with Lemma 2.1, we have

0€ 02 (Af (9 + 3l 1) () + N

Thus, we can write A, Wy, + Yn — pn + Wy, = 0, where W, € dof (pn, yn) and W, € N (yn)-
Due to p, = y, implies that \,w,, + w, = 0. Thus, we have
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for all y € C. By w,, € N¢(yn) implies (0,,y — yn) < 0 for all y € C and through above
expression, we obtain

A (Wn, Y — Yn) =0 (2)
for all y € C. Due to w,, € 92f(pn,yn) and using the subdifferential definition, we obtain

(Wn,y = Yn) < f(Pnsy) — F(PnsYn) (3)

for all y € C. From the inequalities (2) and (3) with 0 < A, < X implies that f(pn,y) >0
for all y € C, that is, p, € EP(f,C). O

Lemma 3.2. Suppose that f: H x H — R meet the items (C1) — (C3), we have
un = €17+ (1= 2e100) [0 = ynll* + (1 = 2c220) [yn — wnll® < lpn = €I + 10 (4)
for all € € EP(f,0).

Proof. Let € € EP(f,C), then by using Lemma 2.1, we have

0€ 0 () + 3llon =17 (0) + Noc, ()

Thus, we can write A, Wy, + Un — pp + Wy, = 0, where W, € Oaf (yn, un) and w, € Ny, (uy,).
This implies that

<pn — Un,Y — Un> = /\n<U~)nay - U7L> + <7Dmy - un>

for all y € H,,. Given that w,, € Ny¢, (uy,) then (w,,y — u,) <0 for all y € H,,. Therefore,
we have

<pn *Un;y*un> S >\n<u~7n7y7un> (5)

for all y € H,,. Since Wy, € O2f(Yn,un), we have

(Wnyy = un) < f(Ynsy) — [ (Ynsun) (6)
for all y € H. From (5) and (6), we get
<pn —Un,Y — un> S Anf(yny y) - Anf(yny un) (7)
for all y € 3,,. Substituting y = £ in (7), we obtain

<pn - Umé— un> < )\nf(ynvg) - )\nf(ynaun) (8)

Given £ € EP(f,C) imply that f(£,y,) > 0 and owing to the item (C1) gives that f(y,,&) <
0. Thus, we obtain

</~7n — Up, Up — €> > )\nf(ynaun) (9

Following the condition (€2), we have

~

f(ymun) > f(Pn,Un) - f(pmyn) - Caln - yn”2 - C2Hyn - unH2 (10)
Combining (9) and (10), we get

(P = Uns Un — &) = A f(Prs Un) — A f(Pns Yn) — 10|l pn — yn||2
_C2>\nHyn _UnH2~ (11)
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By using the half-space definition, we have (p, — Anwn — Yn, un — yn) < 0, which implies
that

<pn — Yn,Un — yn> < /\n<wna Up — yn>- (12)
Since wy, € 02f(pn,Yn), we obtain

(Wnsy = yn) < f(pnsy) = f(Pnsyn)
for all y € H. By replacing y = u,, we obtain

(Wn, un = Yn) < f(Pnsun) = f(Pns yn)- (13)
It follows from inequalities (12) and (13) that
</J’n — Yn, Un — yn> < Anf(pnaun) - /\nf(pnvyn)~ (14)

From (11) and (14), we have
<pn — Un, Un — g> > <Pn — Yn, Un — yn> - Cl)\n”pn - yn||2 - 02)\n||yn - un||2~ (15)
Now, we obtain the following equalities:
o0 = ElI* = llun = pull* = llun = &I* = 2{pn — wn, up — &)
and
lpn — ynH2 + [lun — ynH2 —llpn — unH2 = 2(pn = YnsUn — Yn)-
Combining the above equalities with expression (15), it can be implied that
[un = ElI* + (1 = 2e100)[lpn = yall* + (1 = 2c220) lyn — unl|* < o0 — €I
< llon = EI1* + -
|

Lemma 3.3. Assume that the items (C1) — (C4) hold. If there is a subsequence {pn,} of
{pn} such that p,, — z* € H and

khm Py = Ynill = Hm |[pn, — n, || = lm [Jun, —yn, || = 0. (16)

—00 k—o00 k—o00

Then z* € EP(f,C).

Proof. From y, € C, p,, — «* and klim lone — Ynell = 0, we get y,, — z* € C. This
—00

follows from klim lttn,, — Yn, || = O that the subsequence {u,, } is bounded. For any y € 3,
—00
using (7), (10) and (14), we have

A fUnis ) 2 A F(Ynis Unie) + (P = Unges Y = Uny)
> Ao f (s ) = A f (P i) = €10l Py — Y |12
= c2An [y = [P+ (o = U ¥ = Un,)
2 (Pri = Yo Uny, = Yni) + (Pryg = Unj, Y = Uny)
= cthn llone = ynil® = 22, [y, — 1%
This implies by (16) and the boundedness of {u,,} that the right hand side tends to zero.
Due to 0 < Ay, < A < min{ L }, the condition (€4), and y,, — z*, we obtain

261 ? 262
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0 < limsup f(yn,,y) < f(z*,y) for all y € H,,. Since C C H,, we get f(z*,y) > 0 for all
k—o0

y € C, that is, * € EP(f,C). a
With the above results we are now ready for the main convergence theorem.

Theorem 3.1. Suppose that lim n, = 0 and the items (C1) — (C4) are satisfied. Then, the
n— oo

sequence {x,} generated due to Algorithm 3.1 converges strongly to v = Pgp(f,cyT1.

Proof. For the beginning, we separate the proof into the claims listed below.

Claim 1. {z,} is well defined.

Lemma 3.2 then guarantees that EP(f,C) C C,, and thus C,, is nonempty for all n € N.
Indeed, one sees that C; = H is closed and convex. This follows from [7, Lemma 1.3
and mathematical induction that C,, is closed and convex for all n € N. Thus, Claim 1 is
attained.

Claim 2. ILm |Xnt1 — znl = 0.

Since f sat?sﬁzg the conditions (€1) — (€4), we have that the solution set EP(f,C) is closed
and convex, see [12]. Then, there is a unique v € EP(f,C) such that v = Pgp(scy21.
Applying EP(f,C) C C,, to the definition of {z,}, we obtain for every n € N,

[2n = 21| <l =, (17)

implying that {x,} is bounded. Since x,,+1 € C,,, we have that
len — 21]] < ||#nt1 — 21| for all n € N, which leads to lim ||a,, — 21]| exists. This implies by
n—oQ

Lemma 2.2 that ||zn41 — 0||* < |2ns1 — 21| = |2k — 21]|* and hence Claim 2 is attained.
Claim 3. lim ||pp — yn|l = lm |pn — unl = lim |ju, — ys| = 0.

n—00 n—00 n—00
From the boundedness of {d,}, there exists some 6 > 0 such that |d,| < ¢ for all n € N.
Using this to Claim 2 yields that

on = nll = [0n|[|n — 2nall < 6llen —anall — 0 as n— o0 (18)
and so
lpn = znsall < llon = 2nll + 20 — 2ngall — 0 as n— oo (19)
Meanwhile, since x,,4+1 € C,11, we have
[un = a1 |+ (1= 2e100) lpn = yn|* + (1 = 2c20) [y — unl|®
< lpn = 2oy [|* + 10

This implies by (19), 0 < A, < A < min{ L1 } and li_>m 7n, = 0 that

2c17 22
lim fJun = 2nall = Im [|pn —yall = lim |y, —un| = 0. (20)
n—o00 n—o00 n—00
Further, from the expressions (19) and (20), we have
[on = unll < llon = Tnga || + [Zn41 —unll — 0 as n— oo (21)

Therefore, Claim 3 is established from the expressions (20) and (21).

Claim 4. z,, — v as n — 00.

Let 7 € wy (). Then, the expression (18) gives that 7 € wy, (pn). In light of Claim
3, one can obtain by Lemma 3.3 that 7 € EP(f,C) and so w,y (z,) C EP(f,C) for all
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n € N. Finally, employing this to Lemma 2.3 with the inequality (17) delivers the desired

conclusion. O

4. Conclusions

We established the strong convergence theorem of the sequence generated by the mod-

ified algorithm under suitable conditions for solving pseudomonotone equilibrium problems.

In future research work, we intend to develop novel algorithms aimed at addressing the

aforementioned problem and its associated problems.
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