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THERMODYNAMIC TRIPOLES: A FRAMEWORK FOR 
STUDYING AND OPTIMIZING IRREVERSIBLE MACHINES 

Vlad ENACHE1, Stoian PETRESCU2 

Inspired by dipoles from the Electrical Circuits Theory, the Thermodynamic 
Tripoles are an original approach providing a common conceptual framework to 
various branches of Irreversible Engineering Thermodynamics, thus allowing them 
to cooperate in evaluating various irreversibilities. We find that a generic thermal 
machine can be described with two characteristic functions, while certain special 
cases (brakes, heat exchangers and reversible machines) need only one function. As 
a proof of validity, a formula for the mechanical power is found and then used to 
recover the known Curzon-Ahlborn result regarding endoreversible machines. 

Keywords: Finite Speed Thermodynamics, Finite Time Thermodynamics,  
         Thermal Machines Optimization. 

1. Introduction 

Various branches of the Irreversible Engineering Thermodynamics 
developed independently, each focusing on certain types of irreversibilities. 
Examples include Finite Speed Thermodynamics (FST: [1], [2], [3], [4], [5]) and 
Finite Time Thermodynamics (FTT: [6], [7], [8], [9]). Each of them has its own 
concepts, tools and methods. The Thermodynamic Tripoles framework is an 
original approach in which concepts specific (at least) to FST and FTT can be 
easily expressed, allowing us to study their interaction and explore possible ways 
of integration into a single broader theory. Inspired by electrical dipoles,  a 
thermodynamic tripole describes a thermodynamic system through a number of 
functions relating the energy flows of the system to the thermodynamic forces 
acting upon it. We will find that in the general case two such functions are 
needed, while certain degenerate cases (brakes, heat exchangers and reversible 
machines) need only one. We will apply the thermodynamic tripoles theory to an 
endoreversible Carnot machine to recover the known Curzon-Ahlborn result [6]. 

 2. Definition 

We call thermodynamic tripole a thermodynamic system Ω which 
exchanges energy with its environment in at most three ways: 1) heat QH 
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exchanged at temperature TH, 2) heat QL exchanged at temperature TL, and 3) 
work W, so that after a time τ its internal energy U and entropy S are unchanged. 
We will call the time duration τ the cycle duration. 

A tripole is represented graphically as shown in Fig. 1. 

For a given tripole, we consider that the temperatures TH and TL and the 
cycle duration τ determine uniquely the three energy exchanges QH, QL and W. 
This dependency is expressed by the following three functions: 

 
QH =ϕH (TH ,TL ,τ )
QL =ϕL (TH ,TL ,τ )
W =ϕW (TH ,TL ,τ )

⎧

⎨
⎪

⎩
⎪

 (2.1) 

These functions characterize completely the tripole from a thermodynamic 
viewpoint. Based on these, we define the following functions: 

 

fH (TH ,TL ,τ ) = ϕH (TH ,TL ,τ )
THτ

fL (TH ,TL ,τ ) = −ϕL (TH ,TL ,τ )
TLτ

fW (TH ,TL ,τ ) = ϕW (TH ,TL ,τ )
TH −TL( )τ

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 (2.2) 

With these, the energies exchanged by the tripole are: 

 

QH = THτ ⋅ fH (TH ,TL ,τ )
QL = −TLτ ⋅ fL (TH ,TL ,τ )

W = TH −TL( )τ ⋅ fW (TH ,TL ,τ )

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (2.3) 

The average energy fluxes (averaged over the cycle duration) are: 

QH

TH W
Ω τ

QL

TL

Fig. 1. The schematic representation of a tripole 
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  (2.4) 

 

 3. The Thermodynamics Laws 

Let us apply the Thermodynamics Laws to the tripole. 
The tripole’s internal energy being the same at the beginning and at the 

end of the cycle, it follows that the internal energy variation is zero: 
 ΔU = 0 (3.1) 

From the First Law it follows that: 
 W = QH +QL , (3.2) 
which means: 

 fW (TH ,TL ,τ ) = TH

TH −TL

fH (TH ,TL ,τ )− TL

TH −TL

fL (TH ,TL ,τ )  (3.3) 

This equation shows that if we know the functions fH and fL, then the 
function fW is determined. This is the reason why we can characterize the tripole 
using only the two functions fH and fL, which we will call the tripole’s 
characteristic functions. 

The tripole’s entropy being the same at the beginning and at the end of the 
cycle, the entropy variation is zero: 

 ΔS =
QH

TH

+
QL

TL

+ Sgen = 0 (3.4) 

Sgen is the entropy generated inside the tripole, which is nonnegative (the 
Second Law guarantees this): 

 Sgen = −
QH

TH

+
QL

TL

⎛
⎝⎜

⎞
⎠⎟
≥ 0, (3.5) 

which means: 
 fH (TH ,TL ,τ ) ≤ fL (TH ,TL ,τ ) (3.6) 

We conclude that any thermodynamic tripole Ω (obeying the 
Thermodynamics Laws) can be completely described by two functions fH and fL 
which satisfy the inequality (3.6). We will consider that the tripole is such a pair 
of functions: 
 Ω = ( fH , fL ), fH :p+

3 →p, fL :p+
3 →p, fH ≤ fL  (3.7) 
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Knowing the characteristic functions, we can find the average energy 
fluxes exchanged by the tripole with the environment in any situation (i.e., for any 
given parameters TH, TL and τ): 

  (3.8) 

 4. Special cases 

4.1 Brake 
Let us suppose that one of the heat fluxes is zero – e.g. let’s take . 

From the definition of the tripole it follows that the function fL is zero. But in this 
case the inequality (3.6) says that: 
 fH (TH ,TL ,τ ) ≤ 0, (4.1) 

which means that the heat flux  is nonpositive: 

 , (4.2) 
and the average power will also be nonpositive: 
  (4.3) 

If the other heat flux ( ) is zero, from (3.6) it follows that fL is 

nonnegative, so the flux  is nonpositive: 

 , (4.4) 
which means the power will also be nonpositive: 
  (4.5) 

In conclusion, a monothermal tripole (i.e., exchanging heat with only one 
external system) can only receive work – which it will transform entirely in heat 
released into the environment. This is a classical consequence of the Second Law, 
which confirms the validity of the mathematical model described here. 

We call this kind of monothermal tripole a brake and we represent it 
graphically as in Fig. 2. Brakes have only one characteristic function (the other 
one being equal to zero). Although any of the two functions fH and fL can be 
nonzero (as we have seen above), we convene to always make fH = 0 and keep fL 
as the single characteristic function of a brake: 
 Ωbrake = 0, f (TL ,τ )( ) (4.6) 
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  (4.7) 

Brakes can be used to model various irreversibility sources. For example, 
friction losses directly proportional to speed can be modeled with a brake having 
the characteristic function: 

 , (4.8) 

where k [J/m] is a constant, L is a characteristic size of the system (e.g., the 
piston’s stroke), and L/τ = w is the average speed. This brake receives mechanical 
work and converts it entirely into heat, which is released into the environment: 

  (4.9) 

4.2. Heat exchanger 
If the tripole doesn’t exchange mechanical work with its environment, we 

have a heat exchanger. In this case the two characteristic functions fH and fL are 
additionally constrained by the “zero power” condition: 
  (4.10) 

 fL (TH ,TL ,τ ) = TH

TL

fH (TH ,TL ,τ ) (4.11) 

One of the characteristic functions can be derived from the other. 
Consequently, such a tripole can be characterized using only one function: 
 Ωheat  exchanger = ( f (TH ,TL ,τ ), TH / TL ⋅ f (TH ,TL ,τ )), (4.12) 
which determines the energy fluxes: 

W
fτ

QL

TL

Fig. 2. A brake tripole
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  (4.13) 

4.2.1. Limited duration heat transfer 
Let us consider a heat exchanger tripole which exchanges a constant heat 

flux  during the time period τexchange < τ, and exchanges no heat during the rest 
of the cycle. The heat exchanged during a full cycle will be: 
  (4.14) 

The characteristic function of this heat exchanger is: 

  (4.15) 

and the average heat flux follows: 

  (4.16) 

4.2.2. Newtonian heat transfer 
The Newtonian heat transfer means a linear dependency between the 

temperature difference and the heat flux: 
 , (4.17) 
where K is the thermal conductance (which may depend on the temperatures and 
on the cycle duration). 

Substituting this into equations (4.15) and (4.16), we obtain the 
characteristic function of the Newtonian heat exchanger: 

 f (TH ,TL ,τ ) = K(TH ,TL ,τ ) ⋅ 1− TL

TH

⎛
⎝⎜

⎞
⎠⎟
τ exchange

τ
 (4.18) 

and its average heat flux: 

  (4.19) 

Fig. 3. A heat exchanger tripole 

QH

TH

f
τ

QL

TL
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4.3. Reversible tripole 
If in equation (3.5) expressing The Second Law we take equality, we have 

a reversible tripole (Sgen = 0). From (3.6) it follows that the functions fH and fL 
become equal. This means that a reversible tripole is described by a single 
characteristic function: 
 Ωreversible = ( f (TH ,TL ,τ ), f (TH ,TL ,τ )), (4.20) 
with the energy fluxes given by: 

  (4.21) 

We see that the efficiency of this tripole (viewed as a motor) is given by 
the Carnot formula: 

  (4.22) 

This result should not be surprising: indeed, if the tripole contains a gas, 
the setup described in the definition leads to a Carnot cycle (or equivalent – 
Stirling with perfect heat regeneration). 

Important remark: As opposed to an irreversible tripole, which has two 
distinct characteristic functions fH and fL, the reversible tripole can be described 
with only one characteristic function f. Unfortunately, this creates confusion when 
one studies first the reversible case and then wants to advance to the irreversible 
case: the habit of describing the system with only one function, acquired while 
studying the reversible case, leads to an attempt to describe also the irreversible 
system with one function – which is incorrect and leads to contradictions. 
4.3.1. Reversible Carnot machine 

Let us consider that the tripole is a reversible Carnot machine with one 
cylinder containing a perfect gas. During the isothermal transformations we 
consider constant instantaneous heat fluxes, equal to  and , respectively. 

The isothermals: 
By integrating The First Law on the isothermal expansion, we find that the 

mechanical work is equal to the heat received from the hot source: 
 WH =QH = mRTH ln(V2 /V1) (4.23) 

If this heat is receive in constant flux, the time needs to be: 

  (4.24) 

Similarly, for the cold isothermal (with negative ): 
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 WL =QL = mRTL ln(V4 /V3) (4.25) 

  (4.26) 

The adiabats: 
Let us denote: 

 θ =
TH

TL

 (4.27) 

By integrating The First Law on the adiabatic expansion, we get: 

 V3

V2

= θ
1

γ −1  (4.28) 

The stroke is: 

 L23 =
V3 −V2

Ap

=
V2

Ap

θ
1

γ −1 −1
⎛

⎝⎜
⎞

⎠⎟
 (4.29) 

If the piston travels this distance with the average speed w23 , the duration 
must be: 

 τ 23 =
L23

w23

=
V2

Apw23

θ
1

γ −1 −1
⎛

⎝⎜
⎞

⎠⎟
 (4.30) 

The mechanical work is: 

 W23 =
mR TH −TL( )

γ −1
 (4.31) 

Similarly, for the adiabatic compression (with the negative speed w41 ): 

 V4

V1

= θ
1

γ −1  (4.32) 

 τ 41 = −
V1

Apw41

θ
1

γ −1 −1
⎛

⎝⎜
⎞

⎠⎟
 (4.33) 

 W41 = −
mR TH −TL( )

γ −1
, (4.34) 

which we see is the opposite of the mechanical work on the adiabatic expansion. 
The cycle: 
We can compute the cycle duration: 

 τ = τ H +τ L +τ 23 +τ 41 (4.35) 
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  (4.36) 

We define the total compression ratio (Lmax is the total length of the 
cylinder, and Lmin is the length of the “dead space”): 

 λ =
Lmax

Lmin

=
Vmax

Vmin

=
V3

V1

, (4.37) 

so that after a few calculations we can write the cycle duration: 

  (4.38) 

We see that the cycle duration is determined by the temperatures, which 
makes the characteristic function of the tripole become a function of the 
temperatures alone. From the first equation of the system (4.21) we express the 
characteristic function: 

  (4.39) 

The average energy fluxes are: 

  (4.40) 

Very fast adiabats: 
We note that the average power is decreased by the second term in the 

denominator of (4.39), which is always positive. Because of this, let us consider 



108                                             Vlad Enache, Stoian Petrescu 

that we can increase the adiabats speeds enough that that term becomes negligible. 
The characteristic function becomes: 

  (4.41) 

and the energy fluxes can be written simply: 

  (4.42) 

Optimizing the temperatures: 
Assuming Newtonian heat transfer from a source with temperature TSH and 

to a sink with temperature TSL, the power can be written by simply plugging in the 
Newtonian heat transfer formulae (4.17) for the instantaneous heat flux into the 
average mechanical power formula from (4.42), obtaining: 

  (4.43) 

In order to obtain the maximum power, we nullify both partial derivatives 
with respect to the temperatures. After calculations, we get the optimum point: 

 TL
*

TH
* =

TSL

TSH

 (4.44) 

 TL
* = TSL

TSH KH + TSL KL

KH + KL

 (4.45) 

 TH
* = TSH

TSH KH + TSL KL

KH + KL

 (4.46) 

  (4.47) 
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This is the known Curzon-Ahlborn result – which confirms that the 
formulae proven in this section are valid. 

Remark: Although the results of this section were obtained for a piston-
cylinder machine, they are also valid for continuous flux machines – we can 
consider that the tripole is a kilogram of gas exchanging heat and work with parts 
of the machine as it travels cyclically through it; at the end we just have to 
multiply all the fluxes with the number of kilograms of gas found in the machine. 

 5. Conclusions 

Inspired by the notion of electrical dipoles, we propose a new framework 
for studying thermal machines: the thermodynamic tripoles. Any thermodynamic 
system is described through two characteristic functions in the general case (or 
just one function in some special, degenerate cases). These functions allow us to 
model conveniently both the internal irreversibilities (caused by the finite speed of 
the machine) and the external irreversibilities (caused by heat exchange in finite 
time). 

When only external irreversibilities are taken into account (and the 
adiabats are very fast), a formula is derived for the average mechanical power: 

  (5.1) 

Using this formula, the known Curzon-Ahlborn result for endoreversible 
machines follows naturally. 

Even though here we detailed the endoreversible case only, essentially the 
same procedure can be used to compute the average power when the machine also 
has internal irreversibilities – which can be given by FST. This makes the tripoles 
framework a valuable tool for optimizing thermal machines in a relevant way for 
practical engineering situations. 
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