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EXTENDED ANALYSIS USING NIST METHODOLOGY OF
SENSOR DATA ENTROPY

Florin RASTOCEANU?, Bogdan-lulian CIUBOTARU?, Tonut RADOT?,
Constantin Viorel MARIAN*

loT security is an unresolved issue at this time, which is not easy to achieve
due to the multitude of types of sensors used. As almost any security solution
involves cryptography elements, which by default requires random numbers
generators, we aimed to analyze the possibility to extract entropy from different
sensors data. The method proposed in this paper minimizes the effects of the
diversity of different devices used and optimizes the entropy level according to
consumed energy. The proposed solution was validated using the NIST
methodology, which involves 10 different estimators and a large dataset.
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1. Introduction

Internet of Things (loT) technologies are present in our lives in an
increasing percentage. In case of applications aimed at human consumers, Internet
connected electronic devices share personal data and confidential information. In
case of applications aimed at automating cars, industrial processes or
interconnected cities, the Internet connected electronic devices are mission critical
resources that share sensitive data. The market has a high growth rate. According
to statistics presented in [1], the number of connected 10T devices in 2020 is 30.73
trillion and is estimated to increase by about 2.5 times in the next five years. This
rapid growth creates a diversified and heterogeneous market in which security
issues are left in the background. The lack of standardization in the field
accentuates these problems. The NIST report [2] summarizes the status of
international cyber security standards for 10T applications and states that not one
of the security areas taking into consideration is fully standardized.

In this context, the identification of security solutions, independent of the
type of device used, represents an interest for the entire research community. The
paper aims to present a solution, which meets the security requirements for an 10T
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system, in order to ensure the CIA tirade: confidentiality, authentication and
integrity for any data. This is achieved using cryptographic protocols, methods
and algorithms. Most of cryptographic techniques use randomly generated
numbers, used in different forms: cryptographic keys, initialization vectors,
challenge response nonce, random seeds, passwords, etc. Modern cryptography
uses number random bit generators (RBG) which can be of two types:
deterministic random bit generator (DRBG) or a non-deterministic random bit
generator (NRBG). Both types use entropy sources that are based on noise
sources.

The solution proposed in this paper is a suitable noise source that can be
used for loT applications that are characterized by limited resources. It is well
known that most 10T solutions do not have sufficient resources to ensure security
through cryptographic functions. Using data already collected from sensors to be
used as a noise source can be a successful approach. To demonstrate this we
aimed to identify the types of sensors suitable for the construction of noise
sources. In our experiments, we used a number of six different types of sensors:
temperature, humidity, air pressure, accelerometer, gyroscope and magnetometer.
In order to highlight the applicability of the proposed solution, the data were
acquired from sensors during their use in specific and common applications. Thus,
the temperature, humidity and air pressure sensors were evaluated in parameters
monitoring applications inside the buildings but also in the open air, and the
motion sensors (the accelerometer, the magnetometer and the gyroscope) in a
movement case (data collected from a moving car), but also in the case of no
movement.

The remainder of this paper is structured as follows. Section 2 presents
theoretical background that includes solutions for entropy extraction and NIST
methodology used to validate an entropy source. Section 3 presents the
experiments performed and results interpretation and in section the conclusions
are summarized.

2. Theoretical background

There are currently different methods to extract entropy. Some of them are
based on random events such as inter-keyboard timings, inter-interrupt timings
from some interrupts. These are specific to environments running operating
systems such as Linux [3] or Windows [4]. These solutions are often not suitable
for 10T devices due to the resources required by operating systems. On the other
hand, there are reports of various vulnerabilities, most of which come from
improper operation [5][6]. Other methods of entropy extraction are based on the
randomness of physical phenomena [7][8]. Although they generate enough
entropy for cryptographic applications, these solutions require additional
resources or even additional hardware. The solution proposed in this paper has the
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advantage of using what already exists on loT devices that collect data from
Sensors.

The idea of extracting entropy from data collected from sensors has been
discontinued by researchers. There are several published papers in which sensors
of various types have been used to extract entropy. In most cases, the conclusions
were that the data extracted from the sensors contained sufficient entropy, but
there were also conclusions that contradicted this. These contradictions arise for
several reasons. One is that different entropy estimators have been used. Another
would be that the data are extracted under different conditions and often in
insufficient quantity for a statistical analysis.

In [9] the authors extracted data from on-board of temperature, humidity
and light sensors. Min-entropy and Shannon entropy were used as entropy
estimators. To extract the data, they used four methods in which they selected the
least significant bits, starting from the idea that they can provide the higher
amount of entropy. The conclusion was that the most entropy could be harvested
using the method of extracting only the least-significant bit of the sensors data. J
Voris, N. Saxena, T. Halevi in [10] analyzed the entropy generated by the
accelerometer in different types of movement: stationary, hand, drop, triangle, key
twist, circle, alpha and arc swipe. They used min-entropy estimator in all their
experiments. For experiments that involved movement they used accelerometer
samples collected within 10 minutes. In the stationary case alone, they used a
number of samples over 1000000 to estimate entropy. The conclusion of this
paper was that accelerometers are suitable for generating entropy and, more than
that, are resistant to a variety of environmental variations and even to adversarial
manipulation.

On the other hand, the conclusions from [11] contradict these results. In
this paper, the authors evaluated several types of sensors such as vibration,
magnetic, temperature, humidity, motion, gas pressure in three modes of
operation: stability, saturation and dynamic mode. Min-entropy, Shannon entropy
and four other estimators were used to calculate the entropy: frequency tests,
collision test, compression test and Markov test. A first important conclusion is
that the values obtained with these estimators are very different. For example, the
value of the entropy calculated with the Shannon formula can be five times higher
than that of the estimator calculated after the compression test. Another
conclusion is that only vibration, motion and magnetic sensors can provide
sufficient entropy. As the authors admit, because only for the stability mode they
managed to collect enough samples, the confidence level for this mode is higher
than in the saturation and dynamic mode.

From the studies performed so far, the following question cannot be
answered: can the data extracted from the sensors be used for the construction of
entropy sources? In this paper, for the first time, a NIST-accredited methodology
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was used, which includes a number of 10 estimators and datasets of at least
1000000 samples. The use of a large and diverse number of estimators as well as
sufficiently large datasets minimizes the probability that entropy values to be
greatly overestimated. Since the goal is for this source of entropies to be used by
IoT devices with limited resources, we performed tests to identify the maximum
level of entropy that can be extracted from a single sample by making a bitmap
based on the entropy generated by the bits on each sample position.

Recently, NIST released final version of the recommendations for the
construction of entropy sources used in random bit generators [12]. This
publication specifies the design principles and requirements for the entropy
sources and the tests for the validation of entropy sources. An entropy source
contains several components: a noise source, health tests and an optional
conditional component. The root element of an entropy source is the noise source.
This component must contain a non-deterministic process that provides the
uncertainty associated with the output values of the entropy source. Therefore, the
first step in analyzing an entropy source is to estimate the value of the raw data
entropy that represents the output from the noise source. Depending on the
analyzed characteristics, the NIST methodology approaches the entropy
estimation process differently. Thus, the analyzed data can be independently and
identically distributed (11D) or non-IID. In both cases, the tests are performed on a
dataset of 1000000 samples extracted directly from the noise source, named raw
data. This dataset can be composed of several subsets of length at least 1000
samples. Min-entropy is used to estimate the entropy value in these
recommendations. Min-entropy of a random variable X (in bits) is the largest
value m (in bits) that has the property that each observation of X provides at least
m bits of information. In [12] and in our experiments the min-entropy of an
independent discrete random variable X that takes values from the set
A={x1,x2,...,xk} with probability Pr(X=xi) = pi for 1 =1,...,k is defined as:

H = I’}fﬂ(_ log, p;) = —log, ﬂﬁf P; 1)

The samples extracted from a noise source are considered IID if each
sample has the same probability distribution as every other sample, and all
samples are mutually independent. This is tested by applying statistical tests that
have the role of highlighting the fact that samples are not IID. If no evidence is
identified that these samples are non-I1D, then it is assumed that the samples are
IID. The statistical tests used for 11D data are of two types: permutation tests and
chi-square tests. Permutation testing is a method of testing a statistical hypothesis
in which the result of the statistical test applied to a permutation of the original
data is compared with the result of the statistical test applied to the original data
and not with a standard statistical distribution. In this case, 10000 permutations of
the dataset are generated. Permutations are obtained using Fisher-Yates shuffle
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algorithm. The individual statistical tests used to verify the 1ID characteristic of
the data are the following [12]: Excursion Test Statistic, Number of Directional
Runs Test, Length of Directional Runs Test, Number of Increases and Decreases
Test, Number of Runs Based on the Median Test, Average Collision Test
Statistic, Maximum Collision Test Statistic, Periodicity Test Statistic, Covariance
Test Statistic, Compression Test Statistic. The choice of this testing process
started from the premise that the values obtained by the statistical tests applied to
permutations of the original data do not differ much in the case of 11D data. After
attesting that the source is IDD, the entropy of the min-entropy estimation is
determined using the most common estimated value. Chi-square statistical
procedures includes the following tests [12]: Independence for Non-Binary Data,
Goodness-of-fit for Non-Binary Data, Independence for Binary Data, Goodness-
of-fit for Binary Data, Length of the Longest Repeated Substring Test.

Because the vast majority of entropy sources are not 11D and to exploit these
sources as well, NIST has developed a more complex methodology for testing
these sources using a diverse and conservative set of entropy tests. Thus, a
number of ten different estimators are used for which the min-entropy value is
calculated. The minimum of all the estimates is taken as the entropy assessment.
The estimators used are as follows [12]:

Most Common Value Estimate finds the proportion of the most common value
in the input dataset and constructs a confidence interval for this proportion.
The upper bound of the confidence interval is used to estimate the min-
entropy per sample of the source.

Collision Estimate measures the mean number of samples to the first collision
in a dataset, where a collision is any repeated value. The goal of the method
is to estimate the probability of the most-likely output value, based on the
collision times. This entropy estimation method is only applied to binary
inputs.

Markov Estimate provides a min-entropy estimate by measuring the
dependencies between consecutive values from the input dataset. The min-
entropy estimate is based on the entropy present in any subsequence (i.e.,
chain) of outputs, instead of an estimate of the min-entropy per output.

Compression Estimate computes the entropy rate of a dataset, based on how
much the dataset can be compressed. This estimator is based on the Maurer
Universal Statistic [13].

t-Tuple Estimate examines the frequency of t-tuples (pairs, triples, etc.) that
appears in the input dataset and produces an estimate of the entropy per
sample, based on the frequency of those t-tuples.

Longest Repeated Substring Estimate computes the collision entropy
(sampling without replacement) of the source, based on the number of
repeated substrings (tuples) within the input dataset.
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Multi Most Common in Window Prediction Estimate contains several
subpredictors, each of which aims to guess the next output, based on the last
W outputs.

Lag Prediction Estimate contains several subpredictors, each of which predicts
the next output, based on a specified lag. The lag predictor keeps a
scoreboard that records the number of times that each subpredictor was
correct and uses the subpredictor with the most correct predictions to predict
the next value.

MultiMMC Prediction Estimate is composed of multiple Markov Model with
Counting (MMC) subpredictors. Each MMC predictor records the observed
frequencies for transitions from one output to a subsequent output (rather
than the probability of a transition, as in a typical Markov model), and
makes a prediction, based on the most frequently observed transition from
the current output.

LZ78Y Prediction Estimate is based on LZ78 encoding with Bernstein's Yabba
scheme [14] for adding strings to the dictionary.

3. Experiments and results

The purpose of the experiments was to validate a noise source based on
unpredictable phenomena captured from different types of sensors. For this
purpose, the NIST methodology described in chapter 3 was used. As the data
collected from the sensors are not 11D, the corresponding was approached.

3.1.  Platform description

For all the experiments performed, on-board sensors were used on the B-
L475E-10T0O1A1 board developed by STMicroelectronics. This board is specially
developed for use in loT nodes and is equipped with an ultra-low-power
STM32L4 Series MCUs based on ARM Cortex-M4 core.

The board is equipped with the following sensors:

- HTS221 a capacitive digital sensor for relative humidity and temperature;

- LIS3MDL a high-performance 3-axis magnetometer;

- LSMG6DSL a 3D accelerometer and 3D gyroscope;

- LPS22HB an absolute digital output barometer that includes temperature

and air pressure sensors.

3.2. Experiments description

The experiments aimed to identify the possibility of using sensors evaluated
for entropy extraction in common use cases. Thus, the analyzed sensors were
divided into two categories: sensors that perceive movement (accelerometer,
gyroscope and magnetometer) and sensors that perceive environment properties
(temperature, humidity and pressure). For each category, we analyzed two use-
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cases. For the first category, the sensors were placed in an indoor environment
thus simulating air quality monitoring applications in homes or offices and in an
outdoor environment simulating air quality monitoring application in smart cities
or in agricultural applications. Accelerometer, gyroscope and magnetometer
sensors were analyzed in no-moving case and in car-driving use case.

The entropy analysis was performed in several stages. In the first stage,
1000000 samples were extracted for each experiment, representing the least
significant 8 bits of the values of the data acquired from the sensors. The values of
8 bits were chosen in accordance to NIST entropy evaluation methodology [12],
where is specified that for sizes larger than 8 the results are not guaranteed.

In the second stage, for the cases where reasonable values of entropy were
obtained, bitstrings composed of bits from a single position were analyzed. In
addition, in the last stage, the entropy of the samples containing only bits of the
positions for which good values of the entropy were obtained was re-evaluated.

In all experiments performed for data extraction, the B-L475E-IOT01A1l
board sensors was used. The data were collected by a laptop on the serial port
emulated by the Teraterm application. The recommended NIST SP800-
90B_EntropyAssessment C ++ package application, downloaded from the Github
web site [15], was used to evaluate the entropy.

e Experiment 1

- Purpose: evaluation of the entropy of motion sensors in two use-cases:
no-moving and car-driving.

- Sensors used:

o LSM6DSL accelerometer wusing the following parameters:
measurement range: +2G for no-moving use case and +4G for car-
driving use case and ODR: 416 Hz for both uses-cases;

o LSM6DSL gyroscope wusing the following parameters:
measurement range: 245mdps for no-moving use case and 1000
mdps for car-driving use case and ODR: 416 Hz for both use-
cases;

o LIS3MDL magnetometer: measurement range: +4 Gauss for no-
moving use case and £8 Gauss for car-driving use case and ODR:
80 Hz for both use- cases;

- Data acquisition method: 1000000 samples composed of the least
significant 8 bits extracted from sensors data. For the tests in the no-
moving use case, the board was placed on the table without moving at all
during the experiment. For car-driving tests, the data were acquired while
the car was in motion. In order not to influence the results, the car was
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driven on roads outside the city, thus excluding as much as possible the
waiting times at traffic lights or pedestrian crossings;

Results: Table I shows the entropy values per bit (min-entropy) for the
three sensors for each axis (x-axis, y-axis and z-axis) in the two use-cases.

Table 1

Accelerometer, gyroscope and magnetometer entropy values per bit for no-moving and /car

driving use cases

No moving case Car driving case
Sensor type - - - - - -
X-axis y-axis z-axis X-axis y-axis z-axis
Accelerometer 0.46 0.41 0.30 0.82 0.82 0.82
Gyroscope 0.25 0.36 0.26 0.53 0.54 0.39
Magnetometer 0.47 0.46 0.62 0.56 0.48 0.59

Experiment 2

Purpose: evaluation of the entropy of air properties sensors in two use-
cases: indoor and outdoor.

Sensors used: HTS221 temperature extracted using 1Hz ODR and 16 bits
resolution, HTS221 humidity extracted using 1Hz ODR and 16 bits
resolution, LPS22HB air pressure extracted using 25 Hz ODR and 24 bits
resolution, LPS22HB temperature extracted using 25Hz ODR and 16 bits
resolution:

Data acquisition method: 1000000 samples composed of the least
significant 8 bits extracted from sensors data;

Results: Table Il shows the entropy values (min-entropy) for the four
sensors in the two use-cases.

Table 2
Temperature, humidity and air pressure entropy values per bit for indoor/outdoor use cases
Use case _ HTS221 _ LPS22HB
Humidity Temperature Air pressure Temperature
Indoor 0.0321 0.0041 0.3067 0.0004
Outdoor 0.0405 0.0078 0.3028 0.0019

Experiment 3

Purpose: identifying the bit positions that contribute the most to the
entropy of the extracted data;

Sensors used: LSM6DSL accelerometer, LSM6DSL gyroscope, LIS3MDL
magnetometer and LPS22HB air pressure

Data acquisition method: 8 bitstrings of 1000000 bits extracted from the
same position from the data accumulated from the sensors (the same data
from experiment 1 were used);
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Results: Figs. 1-3- show the entropy values for accelerometer, gyroscope,
magnetometer and air pressure sensors for each axis in the two use-case
and Fig. 4 shows the entropy values (min-entropy) for air pressure in the

two use-case.
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Fig. 3. Magnetometer entropy values for each sample bit

1.00
0.80
0.60
0.40
0.20
0.00

min-entropy

BIndoor

0.83

0.88

0.87

0.81

030

0.00

0.00

0.00

Outdoor

0.84

0.835

0.89

0.81

032

0.03

0.00

0.00

e Experiment 4

- Purpose: identifying the sample size according to the bit entropy value per
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- Sensors used: LSM6DSL accelerometer, LSM6DSL gyroscope, LIS3MDL
magnetometer and LPS22HB air pressure

- Data acquisition method: 1000000 samples composed of the bits that
generate entropy (taking into account the results obtained in experiment 3,
we analyzed samples with different sizes);

- Results: Table 111 shows the entropy values (bits per sample) for the four
sensors in each use-case.

3.3. Results analysis

Not all types of sensors can generate entropy under any conditions. From
the results of experiment 2 (Tables | and 1) it can be deduced that the values of
temperature and humidity cannot change fast enough to generate entropy. Also in
the results of the same experiment, it is observed that the air pressure changes
enough to ensure an acceptable level of entropy. On the other hand, it must be
considered that this sensor has a much higher sensitivity of 4094 LSB/hPa than
temperature sensors with a sensitivity of 64 LSB/°C or the humidity sensor with a
sensitivity of 256 LSB/% rH. In the case of sensors that monitor the environment
properties, no large differences in entropy values were observed for the two use
cases. In the case of motion sensors, the problem is different. According to the
results of Experiment 1, they can produce entropy even if they are not moved and
theoretically, there should be no changes in the displayed values. This is due to
the sensitivity of the sensors, which is large enough to detect very small values of
the measured phenomena. Thus, these sensors can detect vibrations of very small
amplitude or minor changes in the magnetic field. In the case of car driving due to
the applied motion, the entropy values increase significantly for accelerometer and
gyroscope. Because magnetometer is not influenced very much by this type of
movement, its values are at the same level.

From the results of experiment 3 (Fig. 1+4) it can be seen that not all bits
produce entropy. In all the analyzed cases, less significant bits produce more
entropy, which validates from an experimental point of view the theoretical
analysis. The number of bits that produce entropy is different from sensor to
sensor and is different even for different axes of the same sensor. From what can
be observed the bits that produce entropy do not depend much on the type of
motion applied to the sensors. Considering this aspect, in experiment 4 we tried to
identify how many least significant bits should select from the sample to obtain a
maximum value of entropy per sample. In Table 111 the maximum values obtained
for entropy are bolded. The highest values are obtained by the accelerometer in
the case of car-driving (approximately 6 bits of entropy per sample), but not much
lower values are obtained by the other sensors.
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Table 3
Entropy values in bits/sample for different sample sizes
Accelerometer
No moving case Car driving case
X-axis y-axis z-axis X-axis y-axis z-axis
LSB4 3.4452 3.418 3.3514 3.2722 3.2722 3.4289
LSB5 4.5005 4.1806 4.089 4.3818 4.3818 4.2337
LSB6 3.0933 2.6726 3.3552 4.8049 4.8049 4.9146
LSB8 3.7377 3.2904 3.6296 6.6008 6.6008 6.6344
Gyroscope
No moving case Car driving case
z-axis X-axis z-axis X-axis z-axis X-axis
LSB3 2.5392 2.485 2.5301 2.5249 2.4407 2.4157
LSB4 3.1611 3.2561 2.8752 3.0367 2.9862 2.7979
LSB5 2.8757 3.5868 2.9282 3.8585 3.5642 3.4328
LSB8 2.063 2.8812 2.1167 4.296 4.3472 3.1736
Magnetometer
No moving case Car driving case
z-axis X-axis z-axis X-axis z-axis X-axis
LSB4 - - - 3.1551 3.1587 3.1451
LSB5 4.1465 4.0954 4.0954 4.0125 4.0732 4.1665
LSB6 2.7094 2.6811 2.8065 2.5144 2.3736 2.7029
LSB7 4.9631 5.1138 5.4314 - - -
LSB8 3.8132 3.7446 49727 4512 3.8448 4,776
Air pressure
Indoor Outdoor
LSB3 2.4921 2.4921
LSB4 3.2984 3.2984
LSB5 2.5577 2.5577
LSB8 2.4225 2.4225

4. Conclusions and future work

In this paper, we analyzed the possibility of extracting entropy from data
sensors. For this purpose, we analyzed a number of six sensors used in common
use cases. For the evaluation of the entropy, we used the min-entropy estimator
according to the NIST methodology [12], which uses a number of 10 different
estimators and datasets with minimum 1000000 samples. The lowest value of the
entropy values obtained by the estimators was taken into account. From the
obtained results, it can be concluded that all motion sensors (accelerometer,
magnetometer and gyroscope) and air pressure sensor could be used for entropy
extraction. In addition, from the performed experiments, it can be observed that
higher values of the entropy per extracted sample can be obtained if only the bits
that generate the highest entropy are used.
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Motion sensors generate entropy even when no motion is applied to them.
This may be due to their sensitivity, the intrinsic noise of the sensor and the
components with which the data is collected. These aspects were not analyzed in
this paper and will be addressed in future work. Other aspects that were not also
analyzed in this paper and that can be addressed in future work are related to the
stability of the entropy values generated by the sensors. In conclusion, using for
the first time the new NIST-approved methodology, we demonstrated in this paper
that it is possible to use data generated by certain sensors as a source of entropy.
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