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EXTENDED ANALYSIS USING NIST METHODOLOGY OF 

SENSOR DATA ENTROPY 
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Constantin Viorel MARIAN4 

 
IoT security is an unresolved issue at this time, which is not easy to achieve 

due to the multitude of types of sensors used. As almost any security solution 

involves cryptography elements, which by default requires random numbers 

generators, we aimed to analyze the possibility to extract entropy from different 

sensors data. The method proposed in this paper minimizes the effects of the 

diversity of different devices used and optimizes the entropy level according to 

consumed energy. The proposed solution was validated using the NIST 

methodology, which involves 10 different estimators and a large dataset. 
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1. Introduction 
 

Internet of Things (IoT) technologies are present in our lives in an 

increasing percentage. In case of applications aimed at human consumers, Internet 

connected electronic devices share personal data and confidential information. In 

case of applications aimed at automating cars, industrial processes or 

interconnected cities, the Internet connected electronic devices are mission critical 

resources that share sensitive data. The market has a high growth rate. According 

to statistics presented in [1], the number of connected IoT devices in 2020 is 30.73 

trillion and is estimated to increase by about 2.5 times in the next five years. This 

rapid growth creates a diversified and heterogeneous market in which security 

issues are left in the background. The lack of standardization in the field 

accentuates these problems. The NIST report [2] summarizes the status of 

international cyber security standards for IoT applications and states that not one 

of the security areas taking into consideration is fully standardized. 

In this context, the identification of security solutions, independent of the 

type of device used, represents an interest for the entire research community. The 

paper aims to present a solution, which meets the security requirements for an IoT 
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system, in order to ensure the CIA tirade: confidentiality, authentication and 

integrity for any data. This is achieved using cryptographic protocols, methods 

and algorithms. Most of cryptographic techniques use randomly generated 

numbers, used in different forms: cryptographic keys, initialization vectors, 

challenge response nonce, random seeds, passwords, etc. Modern cryptography 

uses number random bit generators (RBG) which can be of two types: 

deterministic random bit generator (DRBG) or a non-deterministic random bit 

generator (NRBG). Both types use entropy sources that are based on noise 

sources.  

The solution proposed in this paper is a suitable noise source that can be 

used for IoT applications that are characterized by limited resources. It is well 

known that most IoT solutions do not have sufficient resources to ensure security 

through cryptographic functions. Using data already collected from sensors to be 

used as a noise source can be a successful approach. To demonstrate this we 

aimed to identify the types of sensors suitable for the construction of noise 

sources. In our experiments, we used a number of six different types of sensors: 

temperature, humidity, air pressure, accelerometer, gyroscope and magnetometer. 

In order to highlight the applicability of the proposed solution, the data were 

acquired from sensors during their use in specific and common applications. Thus, 

the temperature, humidity and air pressure sensors were evaluated in parameters 

monitoring applications inside the buildings but also in the open air, and the 

motion sensors (the accelerometer, the magnetometer and the gyroscope) in a 

movement case (data collected from a moving car), but also in the case of no 

movement.  

The remainder of this paper is structured as follows. Section 2 presents 

theoretical background that includes solutions for entropy extraction and NIST 

methodology used to validate an entropy source. Section 3 presents the 

experiments performed and results interpretation and in section the conclusions 

are summarized. 
 

2. Theoretical background 
 

There are currently different methods to extract entropy. Some of them are 

based on random events such as inter-keyboard timings, inter-interrupt timings 

from some interrupts. These are specific to environments running operating 

systems such as Linux [3] or Windows [4]. These solutions are often not suitable 

for IoT devices due to the resources required by operating systems. On the other 

hand, there are reports of various vulnerabilities, most of which come from 

improper operation [5][6]. Other methods of entropy extraction are based on the 

randomness of physical phenomena [7][8]. Although they generate enough 

entropy for cryptographic applications, these solutions require additional 

resources or even additional hardware. The solution proposed in this paper has the 
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advantage of using what already exists on IoT devices that collect data from 

sensors. 

The idea of extracting entropy from data collected from sensors has been 

discontinued by researchers. There are several published papers in which sensors 

of various types have been used to extract entropy. In most cases, the conclusions 

were that the data extracted from the sensors contained sufficient entropy, but 

there were also conclusions that contradicted this. These contradictions arise for 

several reasons. One is that different entropy estimators have been used. Another 

would be that the data are extracted under different conditions and often in 

insufficient quantity for a statistical analysis.  

In [9] the authors extracted data from on-board of temperature, humidity 

and light sensors. Min-entropy and Shannon entropy were used as entropy 

estimators.  To extract the data, they used four methods in which they selected the 

least significant bits, starting from the idea that they can provide the higher 

amount of entropy. The conclusion was that the most entropy could be harvested 

using the method of extracting only the least-significant bit of the sensors data. J 

Voris, N. Saxena, T. Halevi in [10] analyzed the entropy generated by the 

accelerometer in different types of movement: stationary, hand, drop, triangle, key 

twist, circle, alpha and arc swipe. They used min-entropy estimator in all their 

experiments. For experiments that involved movement they used accelerometer 

samples collected within 10 minutes. In the stationary case alone, they used a 

number of samples over 1000000 to estimate entropy. The conclusion of this 

paper was that accelerometers are suitable for generating entropy and, more than 

that, are resistant to a variety of environmental variations and even to adversarial 

manipulation.  

On the other hand, the conclusions from [11] contradict these results. In 

this paper, the authors evaluated several types of sensors such as vibration, 

magnetic, temperature, humidity, motion, gas pressure in three modes of 

operation: stability, saturation and dynamic mode. Min-entropy, Shannon entropy 

and four other estimators were used to calculate the entropy: frequency tests, 

collision test, compression test and Markov test. A first important conclusion is 

that the values obtained with these estimators are very different. For example, the 

value of the entropy calculated with the Shannon formula can be five times higher 

than that of the estimator calculated after the compression test. Another 

conclusion is that only vibration, motion and magnetic sensors can provide 

sufficient entropy. As the authors admit, because only for the stability mode they 

managed to collect enough samples, the confidence level for this mode is higher 

than in the saturation and dynamic mode.  

From the studies performed so far, the following question cannot be 

answered: can the data extracted from the sensors be used for the construction of 

entropy sources? In this paper, for the first time, a NIST-accredited methodology 
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was used, which includes a number of 10 estimators and datasets of at least 

1000000 samples. The use of a large and diverse number of estimators as well as 

sufficiently large datasets minimizes the probability that entropy values to be 

greatly overestimated.  Since the goal is for this source of entropies to be used by 

IoT devices with limited resources, we performed tests to identify the maximum 

level of entropy that can be extracted from a single sample by making a bitmap 

based on the entropy generated by the bits on each sample position. 

Recently, NIST released final version of the recommendations for the 

construction of entropy sources used in random bit generators [12]. This 

publication specifies the design principles and requirements for the entropy 

sources and the tests for the validation of entropy sources. An entropy source 

contains several components: a noise source, health tests and an optional 

conditional component. The root element of an entropy source is the noise source. 

This component must contain a non-deterministic process that provides the 

uncertainty associated with the output values of the entropy source. Therefore, the 

first step in analyzing an entropy source is to estimate the value of the raw data 

entropy that represents the output from the noise source. Depending on the 

analyzed characteristics, the NIST methodology approaches the entropy 

estimation process differently. Thus, the analyzed data can be independently and 

identically distributed (IID) or non-IID. In both cases, the tests are performed on a 

dataset of 1000000 samples extracted directly from the noise source, named raw 

data. This dataset can be composed of several subsets of length at least 1000 

samples. Min-entropy is used to estimate the entropy value in these 

recommendations. Min-entropy of a random variable X (in bits) is the largest 

value m (in bits) that has the property that each observation of X provides at least 

m bits of information. In [12] and in our experiments the min-entropy of an 

independent discrete random variable X that takes values from the set 

A={x1,x2,…,xk} with probability Pr(X=xi) = pi for i =1,…,k is defined as: 
 

    (1) 

  

The samples extracted from a noise source are considered IID if each 

sample has the same probability distribution as every other sample, and all 

samples are mutually independent. This is tested by applying statistical tests that 

have the role of highlighting the fact that samples are not IID. If no evidence is 

identified that these samples are non-IID, then it is assumed that the samples are 

IID. The statistical tests used for IID data are of two types: permutation tests and 

chi-square tests. Permutation testing is a method of testing a statistical hypothesis 

in which the result of the statistical test applied to a permutation of the original 

data is compared with the result of the statistical test applied to the original data 

and not with a standard statistical distribution. In this case, 10000 permutations of 

the dataset are generated. Permutations are obtained using Fisher-Yates shuffle 
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algorithm. The individual statistical tests used to verify the IID characteristic of 

the data are the following [12]: Excursion Test Statistic, Number of Directional 

Runs Test, Length of Directional Runs Test, Number of Increases and Decreases 

Test, Number of Runs Based on the Median Test, Average Collision Test 

Statistic, Maximum Collision Test Statistic, Periodicity Test Statistic, Covariance 

Test Statistic, Compression Test Statistic. The choice of this testing process 

started from the premise that the values obtained by the statistical tests applied to 

permutations of the original data do not differ much in the case of IID data. After 

attesting that the source is IDD, the entropy of the min-entropy estimation is 

determined using the most common estimated value. Chi-square statistical 

procedures includes the following tests [12]: Independence for Non-Binary Data, 

Goodness-of-fit for Non-Binary Data, Independence for Binary Data, Goodness-

of-fit for Binary Data, Length of the Longest Repeated Substring Test. 

Because the vast majority of entropy sources are not IID and to exploit these 

sources as well, NIST has developed a more complex methodology for testing 

these sources using a diverse and conservative set of entropy tests. Thus, a 

number of ten different estimators are used for which the min-entropy value is 

calculated. The minimum of all the estimates is taken as the entropy assessment. 

The estimators used are as follows [12]: 

Most Common Value Estimate finds the proportion of the most common value 

in the input dataset and constructs a confidence interval for this proportion. 

The upper bound of the confidence interval is used to estimate the min-

entropy per sample of the source. 

Collision Estimate measures the mean number of samples to the first collision 

in a dataset, where a collision is any repeated value. The goal of the method 

is to estimate the probability of the most-likely output value, based on the 

collision times. This entropy estimation method is only applied to binary 

inputs. 

Markov Estimate provides a min-entropy estimate by measuring the 

dependencies between consecutive values from the input dataset. The min-

entropy estimate is based on the entropy present in any subsequence (i.e., 

chain) of outputs, instead of an estimate of the min-entropy per output. 

Compression Estimate computes the entropy rate of a dataset, based on how 

much the dataset can be compressed. This estimator is based on the Maurer 

Universal Statistic [13]. 

t-Tuple Estimate examines the frequency of t-tuples (pairs, triples, etc.) that 

appears in the input dataset and produces an estimate of the entropy per 

sample, based on the frequency of those t-tuples. 

Longest Repeated Substring Estimate computes the collision entropy 

(sampling without replacement) of the source, based on the number of 

repeated substrings (tuples) within the input dataset. 
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Multi Most Common in Window Prediction Estimate contains several 

subpredictors, each of which aims to guess the next output, based on the last 

w outputs. 

Lag Prediction Estimate contains several subpredictors, each of which predicts 

the next output, based on a specified lag. The lag predictor keeps a 

scoreboard that records the number of times that each subpredictor was 

correct and uses the subpredictor with the most correct predictions to predict 

the next value. 

MultiMMC Prediction Estimate is composed of multiple Markov Model with 

Counting (MMC) subpredictors. Each MMC predictor records the observed 

frequencies for transitions from one output to a subsequent output (rather 

than the probability of a transition, as in a typical Markov model), and 

makes a prediction, based on the most frequently observed transition from 

the current output. 

LZ78Y Prediction Estimate is based on LZ78 encoding with Bernstein's Yabba 

scheme [14] for adding strings to the dictionary. 
 

3. Experiments and results 
 

The purpose of the experiments was to validate a noise source based on 

unpredictable phenomena captured from different types of sensors. For this 

purpose, the NIST methodology described in chapter 3 was used. As the data 

collected from the sensors are not IID, the corresponding was approached. 

3.1.  Platform description 
 

For all the experiments performed, on-board sensors were used on the B-

L475E-IOT01A1 board developed by STMicroelectronics. This board is specially 

developed for use in IoT nodes and is equipped with an ultra-low-power 

STM32L4 Series MCUs based on ARM Cortex-M4 core. 

The board is equipped with the following sensors: 

- HTS221 a capacitive digital sensor for relative humidity and temperature; 

- LIS3MDL a high-performance 3-axis magnetometer; 

- LSM6DSL a 3D accelerometer and 3D gyroscope; 

- LPS22HB an absolute digital output barometer that includes temperature 

and air pressure sensors. 

3.2. Experiments description 
 

The experiments aimed to identify the possibility of using sensors evaluated 

for entropy extraction in common use cases. Thus, the analyzed sensors were 

divided into two categories: sensors that perceive movement (accelerometer, 

gyroscope and magnetometer) and sensors that perceive environment properties 

(temperature, humidity and pressure). For each category, we analyzed two use-
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cases. For the first category, the sensors were placed in an indoor environment 

thus simulating air quality monitoring applications in homes or offices and in an 

outdoor environment simulating air quality monitoring application in smart cities 

or in agricultural applications. Accelerometer, gyroscope and magnetometer 

sensors were analyzed in no-moving case and in car-driving use case. 

The entropy analysis was performed in several stages. In the first stage, 

1000000 samples were extracted for each experiment, representing the least 

significant 8 bits of the values of the data acquired from the sensors. The values of 

8 bits were chosen in accordance to NIST entropy evaluation methodology [12], 

where is specified that for sizes larger than 8 the results are not guaranteed. 

In the second stage, for the cases where reasonable values of entropy were 

obtained, bitstrings composed of bits from a single position were analyzed. In 

addition, in the last stage, the entropy of the samples containing only bits of the 

positions for which good values of the entropy were obtained was re-evaluated. 

In all experiments performed for data extraction, the B-L475E-IOT01A1 

board sensors was used. The data were collected by a laptop on the serial port 

emulated by the Teraterm application. The recommended NIST SP800-

90B_EntropyAssessment C ++ package application, downloaded from the Github 

web site [15], was used to evaluate the entropy. 
 

• Experiment 1 
 

- Purpose: evaluation of the entropy of motion sensors in two use-cases:       

no-moving and car-driving.  

- Sensors used:  

o LSM6DSL accelerometer using the following parameters: 

measurement range: ±2G for no-moving use case and ±4G for car-

driving use case and ODR: 416 Hz for both uses-cases; 

o LSM6DSL gyroscope using the following parameters: 

measurement range: 245mdps for no-moving use case and 1000 

mdps for car-driving use case and ODR: 416 Hz for both use-

cases; 

o LIS3MDL magnetometer: measurement range: ±4 Gauss for no-

moving use case and ±8 Gauss for car-driving use case and ODR: 

80 Hz for both use- cases; 

- Data acquisition method: 1000000 samples composed of the least 

significant 8 bits extracted from sensors data. For the tests in the no-

moving use case, the board was placed on the table without moving at all 

during the experiment. For car-driving tests, the data were acquired while 

the car was in motion. In order not to influence the results, the car was 
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driven on roads outside the city, thus excluding as much as possible the 

waiting times at traffic lights or pedestrian crossings; 

- Results: Table I shows the entropy values per bit (min-entropy) for the 

three sensors for each axis (x-axis, y-axis and z-axis) in the two use-cases. 

Table 1 

Accelerometer, gyroscope and magnetometer entropy values per bit for no-moving and /car 

driving use cases 

Sensor type 
No moving case Car driving case 

x-axis y-axis z-axis x-axis y-axis z-axis 

Accelerometer 0.46 0.41 0.30 0.82 0.82 0.82 

Gyroscope 0.25 0.36 0.26 0.53 0.54 0.39 

Magnetometer 0.47 0.46 0.62 0.56 0.48 0.59 

 

• Experiment 2 
 

- Purpose: evaluation of the entropy of air properties sensors in two use-

cases: indoor and outdoor.  

- Sensors used: HTS221 temperature extracted using 1Hz ODR and 16 bits 

resolution, HTS221 humidity extracted using 1Hz ODR and 16 bits 

resolution, LPS22HB air pressure extracted using 25 Hz ODR and 24 bits 

resolution, LPS22HB temperature extracted using 25Hz ODR and 16 bits 

resolution:   

- Data acquisition method: 1000000 samples composed of the least 

significant 8 bits extracted from sensors data; 

- Results: Table II shows the entropy values (min-entropy) for the four 

sensors in the two use-cases. 
Table 2 

Temperature, humidity and air pressure entropy values per bit for indoor/outdoor use cases 

Use case 
HTS221 LPS22HB 

Humidity Temperature Air pressure Temperature 

Indoor 0.0321 0.0041 0.3067 0.0004 

Outdoor 0.0405 0.0078 0.3028 0.0019 

 

• Experiment 3 
 

- Purpose: identifying the bit positions that contribute the most to the 

entropy of the extracted data; 

- Sensors used: LSM6DSL accelerometer, LSM6DSL gyroscope, LIS3MDL 

magnetometer and LPS22HB air pressure 

- Data acquisition method: 8 bitstrings of 1000000 bits extracted from the 

same position from the data accumulated from the sensors (the same data 

from experiment 1 were used); 
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- Results: Figs. 1-3- show the entropy values for accelerometer, gyroscope, 

magnetometer and air pressure sensors for each axis in the two use-case 

and Fig. 4 shows the entropy values (min-entropy) for air pressure in the 

two use-case. 

 

 

 

 

 

 

 

 
Fig. 1. Accelerometer entropy values for each sample bi 

 

 

 

 
 

Fig. 2. Gyroscope entropy values for each sample bit 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Magnetometer entropy values for each sample bit 

 
 

 

 

Fig. 2. Gyroscope entropy values for each sample bit 

 

 
Fig. 4. Air pressure entropy values for each sample bit 

 

 

• Experiment 4 

 

- Purpose: identifying the sample size according to the bit entropy value per 

sample; 

 
(a) no- moving case     (b) car-driving case 
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- Sensors used: LSM6DSL accelerometer, LSM6DSL gyroscope, LIS3MDL 

magnetometer and LPS22HB air pressure 

- Data acquisition method: 1000000 samples composed of  the bits that 

generate entropy (taking into account the results obtained in experiment 3, 

we analyzed samples with different sizes); 

- Results: Table III shows the entropy values (bits per sample) for the four 

sensors in each use-case.  

3.3.  Results analysis 
 

 Not all types of sensors can generate entropy under any conditions. From 

the results of experiment 2 (Tables I and II) it can be deduced that the values of 

temperature and humidity cannot change fast enough to generate entropy. Also in 

the results of the same experiment, it is observed that the air pressure changes 

enough to ensure an acceptable level of entropy. On the other hand, it must be 

considered that this sensor has a much higher sensitivity of 4094 LSB/hPa than 

temperature sensors with a sensitivity of 64 LSB/°C or the humidity sensor with a 

sensitivity of 256 LSB/% rH. In the case of sensors that monitor the environment 

properties, no large differences in entropy values were observed for the two use 

cases. In the case of motion sensors, the problem is different. According to the 

results of Experiment 1, they can produce entropy even if they are not moved and 

theoretically, there should be no changes in the displayed values. This is due to 

the sensitivity of the sensors, which is large enough to detect very small values of 

the measured phenomena. Thus, these sensors can detect vibrations of very small 

amplitude or minor changes in the magnetic field. In the case of car driving due to 

the applied motion, the entropy values increase significantly for accelerometer and 

gyroscope. Because magnetometer is not influenced very much by this type of 

movement, its values are at the same level.  

From the results of experiment 3 (Fig. 1÷4) it can be seen that not all bits 

produce entropy. In all the analyzed cases, less significant bits produce more 

entropy, which validates from an experimental point of view the theoretical 

analysis. The number of bits that produce entropy is different from sensor to 

sensor and is different even for different axes of the same sensor. From what can 

be observed the bits that produce entropy do not depend much on the type of 

motion applied to the sensors. Considering this aspect, in experiment 4 we tried to 

identify how many least significant bits should select from the sample to obtain a 

maximum value of entropy per sample. In Table III the maximum values obtained 

for entropy are bolded. The highest values are obtained by the accelerometer in 

the case of car-driving (approximately 6 bits of entropy per sample), but not much 

lower values are obtained by the other sensors. 
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Table 3 

Entropy values in bits/sample for different sample sizes 

 

Accelerometer 

No moving case Car driving case 

x-axis y-axis z-axis x-axis y-axis z-axis 

LSB4 3.4452 3.418 3.3514 3.2722 3.2722 3.4289 

LSB5 4.5005 4.1806 4.089 4.3818 4.3818 4.2337 

LSB6 3.0933 2.6726 3.3552 4.8049 4.8049 4.9146 

LSB8 3.7377 3.2904 3.6296 6.6008 6.6008 6.6344 

 Gyroscope 

No moving case Car driving case 

z-axis x-axis z-axis x-axis z-axis x-axis 

LSB3 2.5392 2.485 2.5301 2.5249 2.4407 2.4157 

LSB4 3.1611 3.2561 2.8752 3.0367 2.9862 2.7979 

LSB5 2.8757 3.5868 2.9282 3.8585 3.5642 3.4328 

LSB8 2.063 2.8812 2.1167 4.296 4.3472 3.1736 

 Magnetometer 

No moving case Car driving case 

z-axis x-axis z-axis x-axis z-axis x-axis 

LSB4 - - - 3.1551 3.1587 3.1451 

LSB5 4.1465 4.0954 4.0954 4.0125 4.0732 4.1665 

LSB6 2.7094 2.6811 2.8065 2.5144 2.3736 2.7029 

LSB7 4.9631 5.1138 5.4314 - - - 

LSB8 3.8132 3.7446 4.9727 4.512 3.8448 4.776 

 Air pressure 

 Indoor Outdoor 

LSB3 2.4921 2.4921 

LSB4 3.2984 3.2984 

LSB5 2.5577 2.5577 

LSB8 2.4225 2.4225 

4. Conclusions and future work 

In this paper, we analyzed the possibility of extracting entropy from data 

sensors. For this purpose, we analyzed a number of six sensors used in common 

use cases. For the evaluation of the entropy, we used the min-entropy estimator 

according to the NIST methodology [12], which uses a number of 10 different 

estimators and datasets with minimum 1000000 samples. The lowest value of the 

entropy values obtained by the estimators was taken into account. From the 

obtained results, it can be concluded that all motion sensors (accelerometer, 

magnetometer and gyroscope) and air pressure sensor could be used for entropy 

extraction. In addition, from the performed experiments, it can be observed that 

higher values of the entropy per extracted sample can be obtained if only the bits 

that generate the highest entropy are used. 
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Motion sensors generate entropy even when no motion is applied to them. 

This may be due to their sensitivity, the intrinsic noise of the sensor and the 

components with which the data is collected. These aspects were not analyzed in 

this paper and will be addressed in future work. Other aspects that were not also 

analyzed in this paper and that can be addressed in future work are related to the 

stability of the entropy values generated by the sensors. In conclusion, using for 

the first time the new NIST-approved methodology, we demonstrated in this paper 

that it is possible to use data generated by certain sensors as a source of entropy. 
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